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abstract 

Many new and old applications have to split the information into smaller units while 
transmitted through a network. If not the whole packet is able to get through to the des­
tination the fraction transmitted is of no value. Several areas within the tele- and data 
communication field ~here this applies are pointed out. Further a discrete time model 
with bursty arrivals is introduced and analyzed. The result shows the advantage of the 
'All or Nothing Policy' for the burst loss probability and the waiting time. 
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1 INTRODUCTION 

The needs for tele- and data communications have evolved almost from the first day of 
computing. Communications on which all forms of distributed systems are built, are 
concerned with the different techniques that are utilized to achieve the reliable transfer 
of information between two distant devices. The length of the physical separation may 
vary, but the issue is however the same, to exchange information in the most efficient 
way using existing equipment in the networks. For business, governments, universities 
and other organizations these information exchanges have become indispensable. The 
importance of efficiently utilize the network becomes essential, since we deal with limited 
resources. One important factor is the size of the buffers within the network nodes or in 
other connected equipment, since these are a relative expensive part. The evolution of 
telecommunications is towards a multi-service network fulfilling all user needs for voice, 
data and video communications in an integrated way. These services are also many times 
real time applications, which means that there are no time for retransmissions of lost 
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180 Part Four Queueing Models 

information. Several papers show a substantial delay using different ARQ-schemes, which 
confirm our opinion (Anagnostou, Sykas and Protonotarios, 1984). Retransmissions are 
mostly due to lost information in full buffers somewhere along the route from sender to 
destination. 

2 MODEL DESCRIPTION 

The model under consideration could be applied on several areas in the communication 
field. A few of those are outlined below. The general problem solved by this model is 
to utilize the buffer as efficient as possible. The traffic arriving to this system emanate 
from several sources, which all generate bursts with a randomly distributed length. The 
interarrival time for bursts from one source are also randomly distributed. A burst is 
a unity, which means that the individual packets constituting the burst are of no use 
single-handed. If we in advance could discard packets, belonging to a burst, that are not 
able to enter the common queue due to space limitations, we have gained a lot. The first 
packet of a burst carries a length indicator, which displays the total length of the burst. 
If not all packets, arriving in succession, of a burst have opportunity to enter the queue 
or the server(s) all of them are lost. Since it is of no use to waste queueing space and/or 
processing time on packets that are of no value for the receiver our proposed policy tries 
to minimize the burst loss probability. This 'All or Nothing Policy' will be explored on 
below. 

3 APPLICATIONS 

The mentioned policy could be applied to several areas within the tele- and data commu­
nication field. A few of those are briefly discussed below, however there are many more 
which we hope that the reader will discover and be able to use this general model for 
performance and dimensioning studies on. 

3.1 Video Coding 

Many of the new services that are going to evolve and that already exists are using im­
ages and/or high quality sound, which demand high bandwidth. To reduce the amount 
of information that has to be transferred, different coding schemes are evaluated to ob­
tain efficient techniques and algorithms. If we try to focus on some of these services, 
they would correspond to services like HDTV (50-100 Mbps), picture telephony (64-128 
kbps (CCITT H.261)) , Hi-Fi sound and group 4 telefax (64 kbps) and some other ser­
vices related to office based communication devices. Coding techniques are going to be 
essential for all graphic, image and video information services. Some already standard­
ized by JPEG (Joint Photographic Experts Group) and MPEG (Motion Picture Experts 
Group), sponsored by ISO and CCITT, provide for compression ratios up to 1:200. For 
further information about line transmission of non-telephone signals, the reader is referred 
to (CCITT, 1988). In the case of MPEG (see International Organization for Standard-



Discrete time analysis of a finite capacity queue 181 

ization, Joint Technical Committee 1, Subcommittee 29, WGll), a new more efficient 
version called MPEG-2 is now used. In this technique the code is dependent not only on 
the current image, but also on the previous as well as the succeeding images, as shown in 
Figure 1. This means that if we have a buffer there is no use capturing part of a packet, 

Figure 1 The principle of the MPEG-2 coding scheme. 

i.e. we could as well discard the entire packet making space for future needs. 

3.2 Intermediate Systems 

An Intermediate System (IS) is a device to interconnect two or more systems. Depending 
on the services the IS has to perform they are divided into three categories; 

• Repeater connects two identical networks, it just regenerates the signal. This means 
that even collisions or disturbed signals would be regenerated. A repeater operates on 
OSI layer 1. 

• Bridge connects two homogeneous networks, i.e. two LANs. The bridge acts like as 
an address filter, picking up packets from one LAN that are intended for a destination 
on another LAN. The bridge operates at layer 2 of the OSI model. 

• Router connects several networks that mayor may not be similar. It has the capability 
of connecting more than two networks, which means that it has to have some sort of 
routing algorithm implemented to decide to which output port the packet should be 
directed. The router operates on OSI layer 3. 

In such a device, many different traffic streams are merged together and share the same 
buffer. Different connections use the same intermediate system, for example several con­
nectionless services could be routed through a Token Ring (IEEE 802.4) and a CSMA/CD 
(IEEE 802.3) using a interconnecting bridge. The packets have to be queued in the bridge 
waiting for access to the CSMA/CD network, in which no access is granted within a cer­
tain amount of time. In this cases using real time data, there is no time for the receiver to 
resequent or demand retransmissions of parts of a packet, i.e. if we loose part of a packet 
we could as well discard the whole packet in the IS. 

3.3 IP Traffic 

The IP (Internet Protocol) is intended for communication through several networks. It 
provides a connectionless delivery system for hosts connected to networks with the pro­
tocol implemented. The IP has to be implemented on the hosts constituting the OD pair 
as well. The connection is unreliable and on a best effort basis. The interface to other 
layers, shown in Figure 2 are to transport and network layers. The transport layer is 
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Figure 2 The seven layer protocol stack, showing the position of }P. 

usually implemented as the Transmission Control Protocol (TCP), but other protocols 
could be used on this level. On the link layer we could have interfaces towards different 
LAN access protocols or others like SMDS. IP is also to be used over ATM networks 
and on ATM Local Area Networks (Chao, Ghosal, Saha and Tripathi, 1994). The basic 
unit for transfer is specified as a datagranI. The datagram consists of a data field and a 
header, the different fields are shown in Figure 3 and a more specific explanation of each 
field could be found in (Comer, 1991). Parts of certain interest to our studies are the 
"Total Length" and "Fragment Offset" fields , described below: 

• Total Length To identify the number of octets in the entire datagram. (Usually 
less than 1500 octets, which is the maximum packet length of Ethernet.) IP specifi­
cations sets a minimum size of 576 octets that must be handled by routers without 
fragmentation . 

• Fragment Offset The field represents the displacement (in octets) of this segment 
from the beginning of the entire datagram. Since the datagrams may arrive out of 
sequence, this field is used to assemble the collection of fragments into the original 
datagram. 

The datagram could during transmission be duplicated, lost, delayed or out of order. 
This is to permit nodes with limited buffer space to handle the IP datagram. In some 
error situations datagrams are discarded, while in other situations error messages are sent . 
If we have to discard information it is more efficient to discard information belonging to 
the sanIe IP datagram since fractions are of no use. 

4 ANALYTICAL MODEL 

The queueing model under consideration is a discrete-time, multi-server, finite capacity 
queue with burst arrivals, shown in Figure 4. Once the first packet of a burst arrives at 
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Figure 3 The IP datagram. 

the queue, the successive packets will arrive on every time slot until the last packet of 
the burst arrives. The number of packets of the nth burst is denoted by S", which is 
assumed to be independent and identically distributed (i .i.d.) with a general distribution. 
We assume that there exists a positive number S",ax such that Pr[S" > S",ax] = 0 and 
that we can know the value of S" when the first packet of the nth burst arrives. The 
interarrival time between the nth and (n + 1 }st burst is denoted by Tn+! , which is assumed 
to be i.i .d. with a general distribution. We allow that Tn may take the value 0, i.e. the 
first packet of more than one burst may arrive on the sanle slot . There are m servers 
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Figure 4 Queueing model of the analyzed system. 
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which are synchronized so that they start and end service at the same time. The service 
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time of a packet is assumed to be equal to one slot. The packets arrive at the queue at the 
beginning of a slot and leave the queue at the end of a slot. The capacity of the shared 
buffer is finite, say M, excluding the service space. Arriving packets are allowed to enter 
the queue only when none of the packets belonging to the same burst are lost. At the 
arrival instant of the first packet of the nth burst, the system tries to reserve buffer space 
for all packets which belong to the nth burst, if it finds all servers busy, so that all packets 
of the nth burst can enter the queue. If this is not possible, all packets of the nth burst 
are lost. This 'All or Nothing Policy' minimizes burst loss probabilities. The packets in 
the queue are served in a FIFO discipline on a burst basis. That is, the packets of the nth 
burst have higher priority than any packets of the (n+l)st, or higher numbered, burst 
whenever they arrive. 

Indeed, if 7"'+1 + t < 8"+1, the tth packet of the (n + l)st burst has already arrived 
at the arrival instant of the (T"+1 + t + 1 )st packet of the nth burst. In this case, the tth 
packet of the (n + 1 )st burst is served earlier than the (Tn +1 + t + 1 )st packet of the nth 
burst only if any server is idle. 

In the following two sections, we propose an efficient numerical method to analyze the 
queueing model described above. 

5 EMBEDDED MARKOV CHAIN 

In this section, we construct a finite state embedded Markov chain, which will be useful for 
obtaining some stationary performance measures of the queue described in the previous 
section. First of all, let us consider an embedded Markov chain by giving attention to all 
active bursts, i.e., accepted bursts with remaining packets (which have not yet arrived). 
If we keep track of the number of remaining packets of each active burst and the number 
of packets in the buffer (the queue length) at the arrival instant of bursts, the process 
has a Markov property. It might be possible to obtain some stationary performance 
measures, e.g., the burst loss probability, the queue length distribution and the waiting 
time distribution from the steady state probability distribution of this process. However, 
the process becomes intractable as the number of active bursts increases. Therefore, it 
is important to construct an embedded Markov chain in order to efficiently obtain some 
performance measures such as a packet loss probability. 

A similar model was analyzed and an effective embedded Markov chain was proposed 
by (Yamashita, 1994). We extend this methodology for the system with the 'All or 
Nothing Policy'. The basic idea of the method is as follows: Let us consider the embedded 
point of the nth burst arrival instant. When the number of active bursts is equal to or 
less than m, we keep track of the number of remaining packets of every burst. However, 
when the number of active bursts is greater than m, we choose m bursts in decreasing 
order of the number of remaining packets and keep track of the numbers of remaining 
packets of these m bursts. The number of packets in the buffer never decreases while at 
least m bursts are active whenever the (n + l)st burst arrives. Therefore, if we also keep 
track of the number of packets in the buffer on the last slot when at least m bursts are 
active, we can deside whether the (n + l)st burst should be accepted or not. 

Let vi denote the ith largest number of remaining packets among active bursts at the 
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arrival instant of the nth burst. In other words, vi' means the number of time slots with i 
arriving packets counting from the arrival instant of the nth burst, excluding the (n + 1 )st 
burst and all the bursts after (n + 1)st. Note that vi' ?: vii ?: ... ?: v;:,. vi'-I > vi' = 0 
means that only (i - 1) bursts are active at the arrival instant of the nth burst. v" 
denotes the vector (vi', vi', ... , v;:J Further, let w" be the number of packets in the buffer 
on the v~, th slot counting from the arrival instant ofthe nth burst, excluding the (n + 1 )st 
burst and all the bursts after (n + 1)st even if they have arrived already. w" takes into 
account the arrival packets due to the other active bursts not included in the vecor v". 

Now, let us obtain the relationship between w" and w .. +1 given v", T"+1, and S,,+1. 
If v;:, ::; T"+!, then W,,+I represents the number of packets in the buffer on the T"+1th 
slot counting from the arrival instant of the nth burst and is less than w" since the pack­
ets in the buffer, if any, will be served after the v::,th slot. The ith server is capable 
of serving (Tn+1 - vi)+ packets during the T,,+1 slots, where (N)+ = max(O, N). If 
V~, > Tn+1, on the other hand, w"+1 represents the number of packets in the buffer on 
the max( v:" Tn+1 + sn+1 )th slot counting from the arrival instant of the (n + 1 )st burst, 
and is greater than w" since the number of packets increases on every slot by one from 
the T"+1th to min(v:~, T,,+1 + S,,+1)th slots counting from the arrival instant of the nth 
burst, as long as there is enough space in the buffer. If any arriving packets is not able 
to enter the buffer due to lack of space, all packets of the nth burst are rejected to enter 
the buffer. Then, the ith server will serve the packets in the buffer on every slot by one 
from (vi' + 1 )st to Tn+1th slots (if vi' < T,,+1) counting from the arrival instant of the nth 
burst. From the above two discusions, we have 

w" + min( v:. - T"+1, S,,+1), if 0 < min( v::, - T"+1, S"+1) 

::;M-w", 
(1) 

if min( v::. - T"+1, S .. +I) 

>M-w". 

Similarly, we can obtain the relationship between v/' and Vi"+1 given w", T"+1, and 
S"+1. When the (n + 1 )st burst is accepted, the last packet of the (n + 1 )st burst ar­
rives on the (T"+1 + S"+1)th slot counting from the arrival instant of the nth burst. If 
vi' ::; Tn+1 + S,,+1 < vi-I, then the ith largest number of remaining packets among active 
bursts at the arrival instant of the (n + 1)st burst, v;,+1, is S"+I. At the same time, 
vi'-V = vi'-l - Tn+1 and viW = vi' - Tn+1. On the other hand, when the (n + 1)st burst 
is rejected because of the 'All or Nothing Policy', no new burst arrives during Tn+1 slots. 
Accordingly, we have the following relations: 
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(vi'-l - T,,+1)+, if min( v::, - T"+!, S,,+1) ::; M - w", 

Vi'-l S Tn+! + S"+I, 

sn+! , if min( v::, - T"+!, S .. +!) ::; M - w", 

vn+1 = , vi' ::; Tn+! + S,,+1 < V:'-I' (2) 

viI. - Tu+l, if min (v::, - T"+!,sn+!) ::; M - w", 

T"+! + sn+1 < vi, 

or min( v::, - Tn+!, S,,+1) > M - w". 

where i = 1,2,· .. , m and we define vii = 00 for n = 1,2,· . '. 
(v",wn) has the Markov property, because (v"+\W,,+l) depends only on (v",w") 

given Tn+1 and S,,+I. Let us denote the relationship by: 

Since v'''s are bounded by S,,"'''' (v", wI) is a finite state embedded Markov chain at 
the arrival instant of bursts with less than (Sma" + 1)"'(M + 1) states, i.e., O(S,,:~~M). 
Tn+! ::::: Smax + M is a sufficient condition for vi'+! = S"+!, v2'+1 = '" = V::;+-I = 0, 
and wn+1 = O. Therefore, it is sufficient to consider the case T"+1 = 0,1,···, Sma" + 
M, sn+1 = 1,2,···, Smax for every state (v", w") when we calculate the coefficients of 
the equilibrium equations using (1) and (2). That is, it requires O(S:::;;;,lM(S",ax + M)) 
time units to calculate. Once we calculate the coefficients of the equilibrium equations, 
we can get the steady state probability distribution of (v", w") , denoted by P( v, w), by 
solving the system of stationary equilibrium equations: 

SmUJ· Smax+M 

P(v,w) = L L P(S)P(T) L P(v',w') 
S=I T=O (V',w')EA(V,,.,,S.T) 

for all possible states (v, w), where 

and P{S) and P{T) denote the probability that the number of packets of a burst is S and 
the probability that the interarrival time between bursts is T, respectively. 

In particular, when m = 1, we get, 

Smox M 

P{v,O) = L L Pr[S = v] L Pr[T = k]P{v',w') 
k=V'+1V' 
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Sma,/; 8 m .... 

+w[V 2:: M + 1] L L Pr[S = j]Pr[T = Vi - v]P( Vi, 0). 
lI':;::1J j=M+l 

Sm".,· M 

P(v,w) = L L Pr[S = v]Pr[T = Vi + Wi - w]P(v' , Wi) 

Sm", 10-1 

+L Pr[S = w - w']Pr[T = Vi - v]P(v' , Wi) 
1/'::::11 w'=max(O,tv-1I+1) 

Sllla..c SmUJ" 

+w[v 2:: M - w + 1] L L Pr[S = j]Pr[T = Vi - v]P(v' , w), 
t/'=lI j=M-lIJ+l 

w = 1,2,···,M. 

where W[·] is an indicator function which takes 1 or O. 
We note that this method is still much more efficient than the straightforward way men­

tioned at the beginning of this section, though the process (v", w") becomes intractable 
as the number of servers increases. 

6 PERFORMANCE MEASURES 

In this section, we get the performance measures using the steady state probability distri­
bution P( v, w) obtained in the previous section. We first calculate the burst loss proba­
bility, i.e., that one or more packets in the burst is rejected. As discussed in the previous 
section, when min( v;:, - Tn+! , S,,+l) > M - w" the (n + 1 )st burst is lost because of the 
'All or Nothing Policy'. Then the burst loss probability denoted by ~~.::"t is represented 
by 

~::.'t = LLP(S)P(T)L L P(v""w), (3) 
S T 1J m w>M -mill(Vm -T.S) 

where P(vno,w) is the marginal probability of P(v,w). Let us define the packet loss 
probability by the ratio between the average number of packets that are lost and the 
average number of packets that arrive in a burst. Similar arguments give the expression 
for the packet loss probability denoted by p!;:::ket as follows: 

pt:,~~ket = LLSP(S)P(T) L L P(v""w)/LSP(S), (4) 
s T 11m w>M -miU(1Im -T,S) S 

Now, we get the waiting time distribution W, assuming FIFO discipline on a burst 
basis, that is, the packets of the nth burst have the higher priority than any packets of 
the (n+l)st burst whenever they arrive. We define the waiting time distribution so that 
it satisfies the following equation: 

~ P[W = k] + p,packet = l. 
~ 108s 

k=O 
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Accordingly, we suppose the nth burst is not rejected. We first consider the waiting time 
of the jth packet of the {n + l)st burst, denoted by WJ'+l, given v,,, W," and Tn+!. Note 
that any packets of the {n+ 1 )st burst can not be served at least until the v:;, th slot count­
ing from the arrival instant of the nth burst, if T,,+l :::; v;;,. The jth packet of the {n + l)st 
burst arrives at the queue on {T,,+l + j)th slot counting from the arrival instant of nth 
burst. Wi'+! = k means that the number of packets in the buffer which should be served 
before the jth packet of the (n + l)st burst first becomes 0 at the (Tn+l + j + k)th slot 
counting from the arrival instant of the nth burst. The number of packets in the buffer 
which should be served before the jth packet of the (n + 1 )st burst at the (T,,+l + j + k )th 
slot counting from the arrival instant of the nth burst is equal to : 

[ queue length on the v~,th slot excluding all the bursts after nth: Wn ] 

+ [ # arrived packets of the (n + 1 )st burst at the arrival instant of the 
jth packet: j] 

+ [ # arrived packets of all the bursts before (n + 1 )st from the (v::, + 1 )st 
Td 1+j+k J slot: 2:i='" +I ei' m 

- [ # served packets from the (v;;, + l)st slot: (T,,+l + j + k - v;;,lm], 

where ei' is the largest number which satisfies v:'" 2 i, (ei' = 0, 1," " m). In other words, 
ei is the number of active bursts on the ith slot counting from the arrival instant of the 
nth burst, excluding all the burst after nth. Using 

Td 1+j+k T,,+l+j+k 
(Tn+l+j+k-v~Jm- L ei'= L (m-e;'), 

we have the following relations: 

Therefore, taking into account the condition that the burst is accepted, the waiting time 
distribution can be obtained by 

Pr[W = 0] = L L P(S)P(T) L P(v"" w) 
S T 

S T+j 
L 1IJ[w + j :s: L (m - ei)]/ L SP(S), 
j=1 i=1 S 

Pr[W = k] = L L P(S)P(T) L 
S T 11 wS:.M -miu(vm -T.S) 

S T+j+k~1 T+j+k 
L 1IJ[ L (m - ei) < W + j:S: L (m - ei)]/ L SP(S), 
j=1 i=1 ;=1 S 
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k = 1"", SmaJ' + lM/mJ, 

where the summation of v extends over all possible states of (Vi, V2, ... , V M) and ei means 
ei' given v. 

We can now calculate the mean waiting time using the waiting time distribution. 
Then, we get the mean queue length L using Little's law [?], i.e. 

L = HlS/f, (5) 

where 5, f, and HI denote the first moments of 5, T, and W, respectively. Though we 
assumed FIFO discipline on a burst basis when we derived the waiting time distribution, 
(3) ~ (5) hold true for other service disciplines, e.g., FIFO on a packet basis. 

7 NUMERICAL EXAMPLES 

In this section, we present some numerical examples and demonstrate the advantage of the 
'All or Nothing Policy' for the burst loss probability and the waiting time. We consider 
two examples, single and double server queues. For both examples, we assume that the 
interarrival time between bursts is uniformly or binomially distributed from 1 to 15, with 
mean 8.0 and squared coefficient of variation 0.2917 or 0.06944. We also assume that the 
number of packets in a burst is uniformly or binomially distributed from 1 to 11, with 
mean 6.0 and squared coefficient of variation 0.2778 or 0.05469. The number of states of 
the embedded Markov chain (v", wI!) for each example are shown in Table 1. 

We compare two systems, with and without the 'All or Nothing Policy'. The packet 
loss probability, the burst loss probability, and the mean waiting time of packets are illus­
trated as a function of the buffer capacity in Figures 5 ~ 10. In each example, we can find 
that the system with the 'All or Nothing Policy'is superior to the one without it for the 
burst loss probability and the mean waiting time of packets. On the other hand, using 
the 'All or Nothing Policy', the packet loss probability increases, however the packet loss 
probability is not important in applications discussed in section 3. 

Table 1 The number of states (v", w") 

Capacity of the buffer 1 3 5 7 9 
m= 1 22 44 66 88 110 
m=2 152 304 456 608 760 
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Figure 7 Burst Loss Probability (m = 1). 
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