
4 

Argos - A Configurable Access 
Control System for Interoperable 
Environments 

D. Jonscher, K.R. Dittrich 
Universitat Zurich, Institut fur Informatik, Winterthurerstr. 190 
CH- 8057 Zurich 
ljonscher,dittrich}@ifi. unizh. ch 

Abstract 

The integration of autonomous information systems causes a fundamental problem for security 
management. How to ensure a consistent authorisation state if several independent software 
components are involved, each having an access control system of its own? In other words, 
how to ensure an organisation-wide security policy? 

Argos has been developed for the CHASSIS I project, where it serves as an access control 
system at the global layer of heterogeneous database federations. However, it can be used for 
any object-based system. The Argos mechanisms are very flexible; it is possible to enforce a 
variety of security policies in the area of identity-based access control (discretionary access 
control with several mandatory extensions). 

Since database federations have to take the autonomy of component systems into account, 
Argos is able to propagate global authorisations to the involved (local) component systems. 
Autonomy means that the local systems are free to accept or reject these propagated authori­
sations. Therefore, the global system has to act as a coordinator of the involved component 
systems, which includes the enforcement of failure protocols. 

In this paper, we focus on the propagation of global authorisations from the global to the 
local layers. Further, we describe the functionality of Argos, i.e. the spectrum of policies Argos 
is able to enforce.2 

Keywords 

access control, federated database systems, interoperability, object-oriented database systems 

Configurable Heterogeneous And Safe, Secure Information System (a joint project, together witb tbe Univer­
sity of Geneva and ABB Baden, funded within SPP lnformatik-Forschung under project number 5003-34355) 

2 This is a considerably reduced version of the paper tbat has been presented at the IFIP WG 11.3 conference. 
Due to lack of space tbe algorithms implementing tbe revocation approach (Section 3.6) and tbe validation of 
accesses (Appendix) have been omitted. Furthermore, all formulas have been removed. A complete version of 
tbis paper can be requested from "jonscher@ifi.unizh.ch". 

D. L. Spooner et al. (eds.), Database Security IX
© IFIP International Federation for Information Processing 1996



44 Part Two Federated and Replicated Databases 

1 Introduction 
Information is one of the most important resources of our society. Various "data repositories" 
are used to cope with the huge amount of data. Beginning in the sixties, database management 
systems (DBMS) have proved to be the most attractive, convenient and secure vehicle to 
manage data. However, they were mainly used for particular application domains and have 
evolved independently from each other, burdened with several million lines of code to serve 
many different applications. 

Nowadays, there is an increasing need to integrate existing data repositories into (apparent­
ly) homogeneous systems that allow queries involving several independent databases, enforce 
global integrity constraints, etc. Unfortunately, existing application programs often prevent 
from moving the data into a new distributed database system. In this case, integration has to be 
carried out without affecting existing applications. 

This led to a recent research direction in the area of database technology, the development of 
so-called database federations /ShLa 90/. Federations offer a global unified view on existing 
component database management systems (CDBMS) while preserving local autonomy. The 
most promising approach to realise a federated database management system (FDBMS) is to 
use object-oriented technology, especially if we have to cope with heterogeneous CDBMS 
/SaCG 91, HiiDi 92, NiWM 93, Kent 93/. 

FDBMS have to offer strong security mechanisms to "convince" the administrators of 
CDBMS that it is reasonable to join the federation. As a part of the CHASSIS project, which 
aims at the design and implementation of secure interoperable systems, we have developed and 
implemented an access control concept for database federations /JoDi 93a, JoDi 93b, JoDi 94/ 
(using C++ and ObjectStore, a commercial, C++ based, object-oriented database system). In 
this paper (which is the follow-up paper of /JoDi 941), we describe the access control system­
called Argos -that is used by the database federation to evaluate global accesses against the 
global security policy, as well as to propagate global authorisations to the involved component 
systems. 

The contributions of Argos are: 
a configurable access control system which is able to enforce a variety of access control 
policies in the area of identity-based access control 
a new implementation technique for cascading as well as non-cascading revocations of 
access rights which is semantically equivalent to the approach of System R /GrWa 76, Fagi 
78/ with the extensions proposed in /BeSJ 93, BeSJ 95/ 

• an (implemented) approach to propagate global authorisations to autonomous local systems 
by mapping global onto local access rights 

The basic access control concept for object-oriented DBMS which is also included in Argos 
is not a contribution, because several similar approaches in the area of identity-based access 
control already exist /Ahad 92, BeJS 93, BeOS 94, Bert 92, Briig 92, FaSp 91, FeGS 89, 
FeWF 94, GaGF 93, GuSF 91, HuDT 93, HuDT 94, LGSF 90, NyOs 92, NyOs 93, PfHD 
88, RaWK 88, RBKW 91, Spoo 88, TiDH 92a, TiDH 92b/. Our contribution in this area is the 
integration of a domain concept into an object-oriented environment by using method classes. 
The related work in the area of access control for FDBMS is discussed in /JoDi 93al. To our 
knowledge, this is the first paper where a propagation of authorisations to autonomous compo­
nent systems is discussed. 

The remainder of this paper is organised as follows: In Section 2 we describe the object­
oriented data model that Argos assumes at the global layer. Section 3 gives an overview of the 
access control mechanisms of Argos, including the definition of access rights, the calculation of 
implicit access rights, the authorisation paradigm and the revocation approach. The access 
control policies that can be enforced by Argos are presented in Section 4. Afterwards, we 
describe in Section 5 the principle of the propagation of authorisations as well as how it has 
been implemented. The summary and an outlook are given in Section 6. 



Argos 45 

2 The data model 

Argos has been tailored towards object-oriented database systems according to /Atki 89/, but 
only the very basic features of object-orientation are assumed, so that Argos can also be used 
for other systems. 

An object-oriented database consists of a collection of cooperating, interrelated and 
distinguishable units, called objects. Objects have an identity independent from their value, a 
state, which is based on a- usually structured- value, and a behaviour. The state is encapsu­
lated, i.e. it can only be observed or modified by invoking methods via a well-defined interface 
(information hiding). These methods define the behaviour of an object. 

Every object is an instance of a type which defmes its structure (of the value) and behaviour. 
This intentional interpretation of types corresponds to the database notion of a schema. The set 
of objects which are instances of a type is called the extension of a type. 

Types are organised in type hierarchies. A subtype inherits structure and behaviour from its 
supertypes. The inheritance paradigm is based on inclusion and substitution inheritance /Atki 
89/. An instance of a type also belongs to all extensions of the type's supertypes. Moreover, it 
is able to answer every request that can be sent to an instance of its supertypes. A subtype can 
specialise inherited methods by overriding. Conflicts due to multiple inheritance (two inherited 
methods have the same name) must be solved explicitly, i.e. a local method must be defined 
that overrides all inherited methods which are in conflict with each other (see /JoDi 93b/ for a 
formal definition). 

3 The global access control mechanisms 

3.1 Subjects 

Three kinds of subjects (in the sense of authorisation units) are supported: users, roles and 
subject domains. 

Users (or applications) are basic subjects issuing requests that have to be checked by the 
access control system. Let U be the set of users. 

Roles are abstract users reflecting the organisational, functional or social position of users in 
the universe of discourse. Concrete users can "play" a role, thus obtaining the access rights that 
have been granted to a role. Users can be associated with several roles. To benefit from access 
rights that have been granted to a role, a user must activate the role explicitly (by executing an 
Argos command). Several roles can be activated concurrently by the same user. The activation 
of roles is persistent, i.e. roles remain activated across user sessions. 

Conflict relations can be defined in order to restrict which roles cannot concurrently be 
activated (activation conflict relation), and which roles a user cannot concurrently be associated 
with (association conflict relation). The former prevents forbidden accumulations of rights, and 
the latter supports separation of duties principles /ClWi 87/. 

Subordination relationships can be defined between roles. These relationships are used to 
infer implicit rights ( cf. Section 3.4.2). The intended semantics of this hierarchy is that a role 
being higher in the role hierarchy has strictly greater power than any of its subordinated roles. 

Users and roles are administered by security administrators. "Security administrator" (SA) 
is a predefined role, i.e. users who have activated this role are acting as SA. 

Subject domains (sets of subjects) can be used to define more general authorisation units. 
Elements of subject domains are users and/or roles. Subject domains can be nested. The 
resulting algebraic structure is a poset. The semantics of this hierarchy is that all elements which 
belong to a subject domain sd also belong to all superdomains of sd. 



46 Part Two Federated and Replicated Databases 

3.2 Protection objects 

According to the data model, type extensions are the basic protection objects3, but for simplicity 
we will subsequently consider types extensionally. Whenever a type appears as a protection 
object, we refer to its extension. 

Protection object domains (sets of protection objects) can be used to define more abstract 
protection objects. Elements of protection object domains are types. Analogously to subject 
domains, protection object domains can be nested, provided cycles are not introduced. The 
semantics of this hierarchy is that all elements which belong to a protection object domain pd 
also belong to all superdomains of pd. 

3.3 Actions 

Argos supports two kinds of actions, methods and method classes. Method classes represent 
sets of methods of the same type. The creator of a type can define several method classes for 
this type, e.g. "read_methods" and "write_methods". The following restrictions apply: 
• Each method can at most belong to one method class (an exception is the predefined method 

class "ALL"; all methods belonging to a type are implicitly associated with ALL). 
• A type inherits method classes from its supertypes. Inheritance conflicts between method 

classes also have to be solved by overriding. 
• Name conflicts between methods and method classes are forbidden, i.e. action names have 

to be unique for every type. 
A method can be associated with an inherited method class. However, the association of an 
inherited method with a method class cannot be overridden by a subtype (but the method can 
be overridden and afterwards associated with a different method class). 

Method classes are required to define meaningful access rights for protection object 
domains. Method names usually are type-specific. Thus, it makes no sense to define a right to 
execute a method for a set of types, because in general only few of these types will have a 
method with this name. Method classes, however, allow for specifying generic rights if the 
same name is chosen for semantically equivalent method classes of different types. 

3.4 Access rights 

3.4.1 Explicit access rights 

An Argos access right defines a relationship between a subject, a protection object and an action 
(which is equivalent to a variation of the protection matrix /GrDe 72, HaRU 76, Lamp 71/). 
They allow or forbid a (set of) user(s) to execute a (set of) method(s) for a (set of) type(s). An 
access right can be represented as a six-tuple: 

(subject, protection object, action name, kind of right, grantor, grant option) 

"Subject" stands for the grantee. Two kinds of rights are supported, permissions and 
prohibitions. The grantor represents the user who has granted that access right. Grant options 
only apply to permissions. They allow the grantee(s) to pass on that access right to other sub­
jects /GrWa 76, Fagi 78/. Note that "grant()" and "revoke()" are generic methods that can be 
executed on any type, i.e. Argos also supports authorisation rights beyond grant options 
(similar to SeaView !Lunt 88/). 

3 A later release of Argos will also support individual objects as protection objects. 



Argos 47 

3.4.2 Implicit access rights 

A set of pre-defined rules is used to infer implicit access rights /FeSW 81, Briig 92, RaWK 88, 
RBKW 91/ from explicit access rights. Note that the rules have to be applied recursively. 

An access right for a role implies the same right for all users who have activated this role. 
A permission for a role implies the same permission for all superior roles. A prohibition for 
a role implies the same prohibition for all inferior roles. This results in a system where roles 
have more authority than their subordinated roles. 
An access right for a subject domain (protection object domain) implies the same right for all 
elements of this domain. 
An access right for a method class implies the same access right for all methods that belong 
to the method class.4 
An access right for a type implies the same access right for all subtypes of the type. 
A permission with grant option implies the permission to grant the same permission to other 
subjects. 

3.5 The authorisation state 

The authorisation state determines which requests (of users to execute a method of a type) are 
permitted and which ones are not. 

Note that even the set of implicit access rights does not yet reveal the authorisation state, 
because conflicts between permissions and prohibitions are possible. A conflict between two 
rights is given if they refer to the same grantee, the same protection object and the same action, 
but one is a permission and the other a prohibition. Argos applies a simple conflict resolution 
policy: prohibitions always override permissions. 

Furthermore, the set of access rights (explicit and implicit ones) needs not be complete, i.e. 
there may be requests where neither a permission nor a prohibition applies. Argos supports 
both closure assumptions, the open world assumption (unspecified requests are always per­
mitted) and the closed world assumption (unspecified requests are always forbidden). 

3.6 The authorisation paradigm 

Argos implements a combination of the ownership and the administration paradigm. Every 
protection object has an owner who is either a concrete user or a pre-defined "user" SYSTEM. 

An administration paradigm is applied for all objects that are owned by SYSTEM. Security 
administrators act on behalf of this artificial owner (centralised authorisation). 

If a concrete user is the owner of a protection object, this user is responsible for authorisa­
tions concerning her protection object. 

Thus, the kind of owner determines the authorisation paradigm to be applied. The adminis­
tration paradigm can be considered as a special case of the ownership paradigm. The owner can 
transfer her property to another user or to SYSTEM. 

However, the owner only determines the original source of authority for a protection object. 
She is free to grant permissions with grant option, or even permissions to execute the grant 
method (grant permissions) to other users. Analogously, grant prohibitions, or even revoke 
permissions/prohibitions can be granted. 

Security administrators need a way to restrict who is permitted to participate in decentralised 
authorisation if an ownership paradigm is applied. Decentralised authorisation means that an 

4 Action names are only resolved for individual types. If the protection object of an access right is a protection 
object domain, at first the types which belong to that domain are retrieved, and afterwards the action name is 
resolved. Rights where the action name does not refer to an action of the corresponding type are simply 
ignored. 



48 Part Two Federated and Replicated Databases 

access right should be granted where neither the grantor nor the grantee is a security administra­
tor. Such restrictions are also based on roles.5 Each role can get a giveAuthority- and/or a get­
Authority-privilege. If a user u wants to grant an access right to another subjects, u must have 
activated a role having the giveAuthority-privilege. The grantee on the other hand needs the 
required privilege to get access rights from other users than security administrators: 
• If the grantee is a role it must have the getAuthority-privilege. 

If the grantee is a user, he must be associated with a role having this privilege. 
In case of subject domains, every user or role being a direct or indirect element of this 
domain needs the required privilege. 

Otherwise, the authorisation fails. 
Subsequently, we assume that both, the grantor and the grantee are permitted to participate 

in decentralised authorisation. If so, a user u can grant an access right (not) to execute an action 
on a protection object to a grantee if: 

u is the owner of the corresponding protection object (or u is acting as a security adminis­
trator in case of system-owned objects), or 

• u has a grant permission for this protection object (covering the action to be granted) that is 
not overridden by a grant prohibition, or 
u has the permission she wants to grant with grant option, and this permission is not over­
ridden by a prohibition. 

Note that the latter only applies to permissions to be granted, whereas the former two 
conditions allow for granting both, permissions and prohibitions. 

A user u can revoke an access right (not) to execute an action on a protection object from a 
grantee if the right to be revoked exists (as an explicit access right) and one of the following 
conditions is fulfilled: 

u is the owner of the corresponding protection object (or u is acting as a security adminis­
trator in case of system-owned objects), or 
u has a revoke permission for this protection object that is not overridden by a revoke prohi­
bition, or 
u has granted the access right to be revoked. 

Note that the last revoke condition holds independently from the current authorisation state. 
If a user has got an access right with grant option and passes it on to another subject, she can 
even revoke this access right if she later gets a prohibition that overrides the permission which 
gave her the authority to pass on that access right. A different policy is described in /BeSJ 93, 
BeSJ 95/. 

A fundamental problem in case of decentralised authorisation which is based on grant 
options is the semantics of the revocation of rights. Griffith and Wade /GrWa 76/ have defined 
a formal semantics of recursive revocations for such systems (later corrected by Fagin /Fagi 
78/). Their approach is based on the assumption that the revocation of an access right ar should 
result in an authorisation state which is equivalent to a situation where ar has never been 
granted. Hence, if a permission has been granted with grant option from A to B, and B has 
passed on this permission to C (with or without grant option), a revocation of the permission 
from B requires an automatic revocation of C's permission as well (cascading revocation). 

The corresponding algorithm is based on time-stamps and the information who has granted 
an access right (the grantor). Since this algorithm is well known and has been implemented in 
several commercial relational database systems (e.g., in Oracle), we omit a detailed description 
(see /GrWa 76, Fagi 78/ for a comprehensive discussion). 

5 Argos mainly is a role-based system. Although access rights can also be granted to concrete users, we 
consider this as the exceptional case according to the Argos philosophy. In principle, however, it would also 
make sense to grant authorisation privileges to concrete users. 



Argos 49 

The need for non-cascading revocations has already been justified in /BeSJ 93, BeSJ 95/. 
If, for instance, a user changes his position in a company, his access rights have to be adjusted 
accordingly. If some of his access rights must be revoked, it usually makes no sense to revoke 
access rights he has granted (based on the authority of his position) to other users as well. 
Hence, the System R approach has been extended by groups, prohibitions and non-cascading 
revocations /BeSJ 93, BeSJ 95/. 

Argos also supports cascading as well as non-cascading revocations. It is up to the revoker 
to decide which scheme has to be applied. However, Argos supports additional access control 
mechanisms beyond those mentioned in /BeSJ 93, BeSJ 95/: 

Authorisation rights are not necessarily combined with access rights (grant options). It is 
also possible to grant rights to execute the grant method. 
Argos supports implicit access rights beyond groups (based on role hierarchies, (nested) 
subject domains, type hierarchies, (nested) protection object domains, and method classes). 

The latter is the reason that the time-stamp algorithm does no longer work well. Without 
implicit access rights, it is easy to calculate which access rights have to be revoked recursively 
in case of a cascading revocation of an access right. The authorisation chain can easily be 
determined by matching (recursively) the grantee of the right to be revoked with the grantor of 
rights for the same protection object and the same action. The time-stamp is required in case of 
multiple sources of authority (for the grantor) to check which authority has been passed to the 
grantee. 

In Argos, however, the situation is much more complicated. Therefore, we have imple­
mented a different algorithm that is semantically equivalent to the Griffith and Wade scheme 
(with the modification given in /BeSJ 93, BeSJ 95/ which is required in systems using 
prohibitions). Descent relationships are now explicitly managed. Each access right keeps a set 
of references to its ancestors and another one to its descendants. These relationships - which 
obviously are inverses of each other - are automatically managed by Argos, and provide for the 
basis of the revocation algorithm. Due to lack of space we cannot present the algorithm here, 
but it is included in the conference version of this paper (cf. Footnote 2). 

3.7 Restrictions of the domain concept 

Authorisations not only happen if a grant or revoke command is executed. An implicit authori­
sation takes place if a more general authorisation unit (than a single user, type or method) is 
changed. In particular, if an element is added to a subject domain, the new element gets the 
access rights which do already exist for this domain. Analogously, if an element is added to a 
protection object domain, the grantees of rights which are based on this domain get the corre­
sponding access rights for the new element. Therefore, adding/removing an element to/from a 
domain requires several checks: 
• The adding/removing user needs an access permission for the domain itself. 

The adding/removing user must be authorised to grant/revoke existing access rights which 
are based on this domain according to the new/old element. 

The first case is very simple in Argos, since domains (subject as well as protection object 
domains) are protection objects of their own. Thus, accesses to domains are subject to access 
control like any other request. 

The latter case, however, is more complicated. If many access rights based on a domain 
already exist, the overhead which is caused by checking the second constraint mentioned above 
may be tremendous. Hence, the current version of Argos enforces additional restrictions for do­
mains: 

Any user can create a domain. He becomes the owner of this domain (if a security adminis­
trator creates a domain, SYSTEM becomes its owner). 



50 Part Two Federated and Replicated Databases 

Only the owner of a domain can add/remove elements to/from it, and can grant access rights 
based on this domain. 

• Domain structures have to be homogeneous with respect to ownership. This means that 
subdomains have to have the same owner as their superdomain. Moreover, the elements of 
protection object domains (types) must have the same owner as the domain itself. 

These principles are not as restrictive as they may appear at first glance. Most examples of 
applications where domains have been used rely on an administration paradigm. In this case, all 
protection objects are owned by SYSTEM and are administered by security administrators, i.e. 
the above mentioned restrictions are trivially fulfilled. The situation becomes complicated if 
domains are combined with the ownership paradigm. 

Now, a request to change the extent of a domain can easily be checked. The user u who has 
requested the change must be the owner of the domain. Nothing more is required in case of 
protection object domains, because the owner of the domain is also the owner of the elements 
of this domain and is thus permitted to grant/revoke access rights to/from these elements ( cf. 
Section 3.6). Further, if access rights based on this domain already exist, u as well as the 
grantees of these rights are permitted to participate in decentralised authorisation. In case of 
subject domains which are not owned by SYSTEM, however, it has to be checked whether the 
new element (being a user, a role or another subject domain) is permitted to participate in decen­
tralised authorisation. Furthermore, it has to be checked whether u is also permitted to grant/ 
revoke all existing access rights for this subject domain to/from the new element. 

4 Access control policies that can be enforced by Argos 

Requests are evaluated by instances of the predefined type "ReferenceMonitor". Each reference 
monitor (it is possible to have several reference monitors at the same time, but only a single 
monitor can be active for a system) encapsulates a security policy.lts state (19 attributes) de­
termines the policy to be enforced. The settings of the attributes reflect the following policy 
aspects: 
• the access rights to be supported (permissions, prohibitions, or both) 
• the kind of closure assumption (open or closed world assumption) 
• the authorisation paradigm to be applied (ownership or administration paradigm) 

the authorisation mechanisms (grant options, authorisation rights, both, or even none) 
should decentralised authorisation be restricted (using authorisation privileges) 
should roles be used, and if so should they be arranged in a role hierarchy (poset) 
should subject (protection object) domains be used, and if so should it be possible to nest 
them 
should implicit access rights be inferred along the type hierarchy 
should method classes be used 
should a context authentication service for access rights be used IHoTe 95/ 

Meaningless combinations like a positive system (only permissions can be granted) with the 
open world assumption, or grant options in a negative system are automatically detected and 
rejected. 

These attributes determine the behaviour of the corresponding reference monitor. All 
methods check the current policy and behave accordingly (e.g., if roles but not role hierarchies 
are used, Argos does even not know the command to define a subordination relationship; 
accordingly, the rule to infer implicit access rights along the role hierarchy is disabled). 

This flexibility permits to choose only a subset of the mechanisms offered by the "tool-kit" 
Argos that is required for a concrete application. Using all Argos features at the same time 
would probably result in a system which can hardly be managed. 



Argos 51 

The security policy can even be changed on the fly. In this case, however, the authorisation 
base (set of explicit access rights) is nQ1 transformed. Information about features that are no 
longer supported is not deleted; it is simply ignored. It is possible, for instance, to define a role 
hierarchy, and to change the policy afterwards so that subordination relationships cannot be 
established anymore. Although the existing relationships are not deleted, they are ignored 
during the evaluation phase of a request. 

5 The propagation of authorisations in interoperable environments 

Data repositories that are used today are often burdened with several million lines of code (so­
called legacy applications; cf. Figure la). New applications which benefit from today's modem 
network technologies require the integration of existing data. Since replication is not only a 
waste of storage space but also causes considerable consistency problems if replicated data are 
updated, interoperable environments are mushrooming. In such environments, new systems 
can be built on top of existing ones. They provide for new services to global users (or applica­
tions), via a uniform interface (cf. Figure lb). Persistent data that are needed for this service 
(global system) are not necessarily directly managed by the global system (although it may have 
its own data store as depicted in the figure); instead it gets the data from other data repositories 
(local systems like DBS, file systems, etc.). 

LDR 
LA 
GS 
GA 

Local Data Repo itory 
Local Application 
Global System 
Global Application 

Figure la Isolated local systems. Figure lb Interoperable environment. 

Local data repositories usually have their own access control system. In many cases, 
however, the global system also needs an access control system. In /JoDi 94/ we have 
motivated the need for a global access control layer for a special case of interoperable systems, 
namely for database federations /ShLa 90/. New protection objects emerge at the global layer, 
where local systems only contribute parts to the construction of these virtual objects. Hence, 
only the global system can care for their proper protection. Another obvious reason for a global 
access control layer is given in environments where personal information is managed. Inte­
grated systems aggravate privacy problems, and the global system has to offer very flexible 
access control mechanisms to enforce an appropriate security policy. 



52 Pan Two Federated and Replicated Databases 

In interoperable systems, we are also faced with a specific authorisation problem. Local 
systems usually are autonomous, i.e. they enforce an access control policy independent from 
the global system. If the global system mediates a request to a local system, the local system 
checks whether this request is permitted from its own point of view, even if the request has 
already been evaluated against the security policy of the global system. In this case, a 
cooperation protocol between both access control layers is required in order to achieve 
consistency between the global and the local authorisation states. It is not satisfactory for global 
users if the global system permits their request, but the execution of the requested global 
operation fails due to insufficient local authorities. This problem is solved by the coupling part 
of Argos which has not been mentioned yet. 

+ 
result 

Argos 

.,,,://////. f///////7 ////////. "/-<:;,;///////.,/////////• 

00 
CDBMS CDBMS 

(ORACLE 7) (ObjectStore) 

Figure 2 The Argos architecture. 

Note that such a cooperation is not restricted to the area of database federations. It is 
required in any client/server system where both, the client and the server enforce their own 
access control policy. 

In the following, we describe the coupling protocols and algorithms of Argos, exemplified 
in an environment where Argos is used as a global access control system of a tightly coupled 
database federation (cf. Figure 2; see /JoDi 93a, JoDi 94/ for a detailed discussion of tightly 
coupled federations and the security problems to be solved). 

The FDBMS applies an operational integration, i.e. it offers global types with appropriately 
defined methods to global users. Users need not care which component systems are involved 



Argos 53 

(location transparency). The integration is actually carried out in the implementation of the 
global methods where the required calls of the involved component systems are embedded.6 
Further, our prototype is based on two component systems, a relational DBMS (Oracle, release 
7.1) and an object-oriented DBMS (ObjectStore; release 3.1). Since ObjectStore does not yet 
provide for an access control concept beyond the operating system mechanisms (file protec­
tion), we have so far only implemented the Oracle coupling. Figure 2 shows the corresponding 
architecture (bold boxes represent parts of Argos that have been implemented). 

If a request is submitted to the FDBMS, the FDBMS invokes the responsible reference 
monitor of Argos. The monitor checks whether the request is permitted and returns the result of 
this evaluation to the FDBMS, which has to enforce the decision. 

Argos supports two levels of local autonomy (of CDBMS; cf./JoDi 94/). Low authorisa­
tion autonomy means that the CDBMS does not check which global user is accessing its data. It 
only verifies that the request has been mediated by the FDBMS, and uses the identifier of the 
FDBMS for local access control. This scheme requires some trust of the CDBMS in the access 
control policy of the FDBMS. If a CDBMS does not want to trust the global system, it can 
insist on full authorisation autonomy. In this case, a CDBMS uses the (local) identifier of the 
corresponding global user (which has locally been authenticated) on behalf of whom the 
FDBMS has mediated the request to the CDBMS. 

Full authorisation autonomy is the interesting case from the scientific point of view. If a 
global user grants a permission to another global subject, it is not sufficient to check whether 
the authorisation is permitted from the global point of view. When the global grantee (more 
precisely, a user to whom this global access right applies) issues a request that has been 
permitted by the global authorisation, she also needs the corresponding local permissions. 
Otherwise, the global permission would be useless. Our main objective is to ensure a consistent 
global authorisation state. Consistency means that a request which is permitted from the global 
point of view will not fail due to an access rejection by a CDBMS. Note that we do not want to 
ensure equivalence between both layers. Although an equivalent authorisation state seems to be 
desirable, it is almost impossible to achieve if we have to cope with heterogeneous CDBMS. 
Each CDBMS supports different access control mechanisms which are usually much simpler 
than those of Argos. Argos can support almost every identity-based mechanism of today's 
commercial DBMS, but not vice versa. If, e.g., a CDBMS only supports a coarse granule of 
protection objects, it may happen that a global permission requires a more general local 
permission. This amplification of rights (which has already been mentioned in /WaSp 87/) may 
be a problem if global users can also directly access the local system. Obviously, this 
amplification cannot occur in case oflow authorisation autonomy /JoDi 94/. 

Consistency can be achieved by involving all CDBMS which require full authorisation 
autonomy in the evaluation of a global authorisation. The principle is quite simple. If the global 
authorisation is permitted from the global point of view, Argos determines the CDBMS that 
have to be involved. Afterwards, it checks whether the corresponding local access rights are 
already given to the grantee(s). If not, Argos tries to grant the required local rights on behalf of 
the global grantor. This process is called propagation of authorisations (from the global system 
to the local systems). If at least one of the required local authorisations fails, the whole 
propagation process is undone, and the global authorisation also fails. However, it depends on 
the semantics of a global method whether all local rights must be available or whether it also 
makes sense to execute a global method when some of the corresponding local requests are 
rejected. An example of the latter is a retrieval system for a set of libraries. Even if some of the 
libraries are not accessible, a retrieval can be useful for a global user. Since such semantic 
issues are beyond the capabilities of computers, it is up to the global grantor to choose the 
appropriate protocol, i.e. Argos supports both: 

6 Although operational integration seems to be inferior to schema integration approaches /ShLa 90/, it 
represents the state of the art if heterogeneous component systems have to be integrated. 



54 Part Two Federated and Replicated Databases 

a) consistency protocol: a global authorisation only succeeds if it is permitted from the global 
point of view and if all required local access rights are available or 
can be granted 

b) best effort protocol: a global authorisation succeeds if it is permitted from the global point 
of view, and Argos attempts to get as many local rights as possible 

In both cases, the global grantor gets a report which local rights are neither available nor can 
be granted, because in general the global grantor cannot know which local accesses are required 
for the successful execution of a global method. Afterwards, the global grantor can try to 
persuade the local authorities to get the missing local rights. 

5.1 Required mappings 

Suppose a global user u wants to grant a permission ar to a global subject s.7 If the authorisa­
tion is permitted, Argos has to find out which local permissions correspond to the granted 
global permission. This requires the following information: 

Global and local security administrators have to agree upon defining the mappings of global 
onto local subjects. For each CDBMS a mapping has to be defined which associates each 
global user (role) with exactly one local user (role) or with "0". A subject that is mapped 
onto "0" has no local equivalent, i.e. it is not locally known. 

• The designers of global methods must specify which local objects have to be accessed using 
which local action, when their methods are executed. (*) 

In general, a global permission corresponds to several local permissions. Generalisation 
concepts of Argos that are not supported by the corresponding CDBMS (like domains) are 
handled according to the following principles: 
• Global permissions which are based on a domain d are automatically mapped onto local 

permissions for the elements of d. Method classes are treated analogously. 
Authorisation rights are mapped onto access rights with grant option (for systems support­
ing grant options). 

5.2 The distribution monitor 

If the authorisation is permitted from the global point of view, ar is passed to the distribution 
monitor dm (usually only one exists). This monitor is the coordinator of the propagation 
process. It determines which CDBMS are affected, passes the information which local access 
rights are required to the involved coupling modules, and collects the information which local 
rights are neither available nor can be granted. If a coupling module reports a failure and the 
global grantor requested the consistency protocol, the distribution monitor is also responsible to 
enforce the failure protocol. The following steps are executed: 
1. dm checks the protection object and the action of ar, and determines all pairs of global types 

and methods that are covered by this access right 
2. dm determines which CDBMS are involved (the covered methods are known from step 1, 

and the required local capabilities can be retrieved according to(*)) 
3. the involved coupling modules receive the set of local capabilities they are responsible for, 

as well as the authorisation protocol ("consistency" or "best-effort") 
4. each coupling module checks its set of local capabilities, and reports the result to the 

distribution monitor (cf. Section 5.3). 

7 Currently, we only consider the propagation of permissions since almost no commercial CDBMS supports 
prohibitions. Although it is possible to propagate only non-overridden permissions, the overhead seems to be 
prohibitive. Therefore, we do not consider this case for the first version of Argos. 



Argos 55 

If the authorisation protocol requires consistency and at least one coupling module has 
encountered an error, the whole global authorisation has to be rolled back. For this purpose, all 
involved coupling modules remember which local permissions they have granted during the 
current propagation. The distribution monitor informs each coupling module that has not found 
an error (for its CDBMS) that all successful local authorisations have to be rolled back. All 
other coupling modules can initiate this rollback operation without a message from the 
distribution monitor, because they know the authorisation protocol to be applied. Note that this 
scheme is similar to a two-phase commit protocol. 

The distribution monitor returns the result of the propagation to the reference monitor, and 
the reference monitor continues the global authorisation. If the distribution monitor has reported 
an error and the consistency protocol must be applied, the global authorisation is rejected, and 
the global grantor gets a report about the missing local permissions. The latter also happens if 
the best effort protocol is applied and a coupling module has found an error. 

5.3 The coupling modules 

Each CDBMS has its own coupling module. These coupling modules know which access con­
trol mechanisms are applied locally and which authorisation interface is provided there. 

Concrete coupling modules are instances of coupling module types, because several compo­
nent database systems may exist which are based on the same version of a DBMS. In this case, 
the coupling modules are identical. 

Argos applies a framework approach for coupling modules, i.e. each coupling module type 
is a subtype of a predefined, abstract coupling module type. Subtypes (i.e. coupling modules 
for particular kinds of component systems) only have to override some predefined methods. 
Argos requires the following functionality for coupling modules: 
• check whether a local subject name refers to a valid local subject (user and role names) 
• check whether a local protection object name refers to a valid local protection object 
• check whether a local action name refers to a valid local action (according to the associated 

local protection object) 
• check whether a concrete local permission exists 
• grant a local permission (using the local authorisation interface) 
• revoke a local permission (using the local authorisation interface) 

This functionality can even be provided by a file system. In case of UNIX, subject names 
can be verified by accessing the passwd flle. Protection objects are files, and the names can be 
verified by accessing the corresponding directory file. Action names are "r" (read), "w" (write) 
and "x" (execute). The existence of an access right can be checked by accessing the i-node of 
the corresponding file. An authorisation is only possible if the coupling module can act on 
behalf of the file's owner (using the setuid bit). A local right can be granted for the group of the 
owner (if the grantee belongs to this group) or to others (all registered users). 

In the following, we describe the algorithm that is used by a coupling module ocm for an 
Oracle CDBMS: 

1. The coupling module ocm gets the following information from the distribution monitor: 
• the global grantee 
• a set of local capabilities LC that have to be checked by ocm 
• the global grantor 
• the authorisation protocol to be applied ("consistency" or "best-effort") 

2. If the Oracle CDBMS only requires low authorisation autonomy (local accesses are validated 
using the identifier of the FDBMS itself), nothing has to be done and ocm reports a success 
to the distribution monitor. 



56 Part Two Federated and Replicated Databases 

3. Otherwise, ocm checks the type of the global grantee (user, role or subject domain) and 
determines all affected global users and roles (subject domains are not supported by Oracle 
7). Note that the coupling module ocm has to consider the relationships between the global 
and the local role hierarchy. We can only require that for each global role a local role exists. 
However, local autonomy means that the subordination relationships need not be identical. 
Argos checks which subordination relationships are missing at the local level. For each local 
"gap", the corresponding global superior role is added to the set of affected global roles, i.e. 
implicit global rights that cannot be inferred at the local level are granted explicitly. 

4. Subsequently, ocm checks whether all affected global users and roles have a local equivalent 
for this CDBMS. For each global subject not having a local equivalent, and each local 
capability, ocm adds an element to the set of missing local permissions MLP. If a local 
equivalent exists, the corresponding local subject is added to the set of affected local users 
ALU or roles ALR: 

5. The following steps are executed for each local subject x e (ALU u ALR): 

5.1 An empty set of local capabilities Y is created, and ocm logs on to Oracle with its own 
local identity. For each element of LC (the set of local capabilities), ocm checks 
whether the corresponding local permission is already available to x (the permission to 
read the local authorisation relations must be granted to Argos when the component 
system joins the federation). All missing local capabilities are added toY. 

5. 2 If Y is not empty, it is checked whether the global grantor has a local mapping for the 
CDBMS. Such a mapping is required to generate a local authorisation request automati­
cally. 
If the mapping is missing, then each element of Y is combined with x and added to 
MLP (the set of missing local permissions). Afterwards, ocm proceeds with step 6. 
Otherwise, ocm logs on to Oracle with the local identity of the global grantor (the 
password is either stored in the Argos schema or has to be typed in on the fly), and 
generates a local authorisation request for each element of Y. 
According to the reaction of Oracle, the corresponding right is either added to MLP or 
to the set of successfully granted local permissions GLP. The latter is only necessary if 
the authorisation protocol requires consistency. In this case, it may be required to undo 
all local authorisations. 

6. If the set of missing local permissions MLP is not empty, an error is reported to the 
distribution monitor; otherwise, success is reported. 

7. If MLP is not empty and the authorisation protocol requires consistency, then all elements of 
the granted local permissions GLP are revoked and removed from GLP. Otherwise, ocm 
waits for a message from the distribution monitor, which is either "commit" (clear GLP) or 
"rollback" (revoke all elements of GLP and remove them from GLP). 8 
MLP is cleared by the reference monitor when the failure report has been passed to the 
global grantor. 

6 Summary and outlook 

In this paper we have presented Argos, a configurable access control system which provides 
for very flexible mechanisms in the area of identity-based access control. Various security 

8 For each granted global permission, Argos keeps track which local permissions have been granted during the 
propagation of this authorisation. This information is required if the global permission is later revoked. In 
this case the revocation must also be propagated to the involved CDBMS, i.e. GLP and MLP are still kept 
by Argos. 



Argos 57 

policies can be enforced, from discretionary access control (unrestricted ownership paradigm) 
to more restrictive policies (ownership paradigm with restrictions who is permitted to participate 
in decentralised authorisation (authorisation privileges)), even to mandatory access control9. 

Furthermore, we have implemented an algorithm to revoke access rights (cascading as well 
as non-cascading revocation) which is not based on time-stamps, but is semantically equivalent 
to the approach of System R /GrWa 76, Fagi 78/ with the extensions given in /BeSJ 93, BeSJ 
951. 

We have described a framework for integrating heterogeneous component systems (which 
support identity-based access control) into a federated access control system, where component 
systems can choose among two levels of local autonomy (low or full authorisation autonomy). 

The grantor of a global access right can specify whether he wants to ensure a consistent 
local authorisation state (otherwise, the global authorisation is rolled back), or whether he is 
satisfied with any local access right that can be acquired. Argos automatically propagates a 
global authorisation to the involved component systems. The success of the propagation 
depends on the local access rights of the global grantor. 

The current state of the implementation is as follows: The Argos kernel (21 types with an 
average of7 methods per type; about 350 KB C++ source code), the propagation part (10 types 
with an average of 7 methods per type; about 150 KB C++ source code) and the programmatic 
interface (8 types with a total of 126 methods; about 400 KB C++ source code) have been 
implemented and are currently being debugged. The user interface, which will be a menu­
oriented character interface in the first place, has not yet been started. 

When the user interface is finished, we will integrate Argos into an OMG CORBA /OMG 
91/ environment by defming the IDL (interface defmition language) mappings for each method 
of the programmatic interface (which provides for the full functionality of Argos). This way, 
Argos can be used as an access control service for any application that is connected to the 
corresponding object request broker. 

Argos can also be used as a simulation tool to check the behaviour of users according to a 
concrete access control design. The latter is useful because Argos is able to explain its evalua­
tion decisions. Furthermore, the security policy can be modified until the most appropriate 
solution has been found. We do not expect that Argos- as it is currently implemented- can be 
used for productive systems. Flexibility inherently degrades performance, i.e. Argos mainly is 
a research vehicle. However, the implemented mechanisms (design and code) can be optimised 
and reused for "real" applications, taking only those mechanisms that are required to implement 
the chosen access control policy. 

In a later step of the project, we intend to develop a configurable coupling module. Such a 
module would simplify the integration of new component systems into the federation. Instead 
of overriding the required methods of the framework type, an integrator simply needs to 
register the local access control mechanisms that are available (e.g.: Users= yes; Roles= yes; 
RoleHierarchies =yes; SubjectDomains =no; AuthorisationParadigm =ownership; Grant­
Options =yes; AuthorisationRights =no; ... ) and an instance of this generic module picks the 
appropriate algorithm to propagate a global access right (perhaps even a prohibition) to the 
component system. The basic principle behind this idea has already been implemented by the 
reference monitor of Argos. 

Acknowledgement 

We are grateful for excellent comments from one of the anonymous reviewers. Further­
more, we would like to thank Jonathan Moffett from the University of York for many beneficial 
discussions and criticisms. 

9 With "mandatory access control" we do not refer to multilevel security, but to an administration paradigm 
without decentralised authorisation. 



58 Part Two Federated and Replicated Databases 

References 

/Ahad 92/ Ahad, R. et al.; Supporting Access Control in an Object-Oriented Database 
Language; Proc. EDBT '92, Vienna; Lecture Notes in Computer Science, 580, 
Springer-Verlag, 1992, 184-200 

/Atki 89/ Atkinson, M.; Bancilhon, F.; DeWitt, D.; Dittrich, K.; Maier, D.; Zdonik, S.; The 
Object-Oriented Database System Manifesto; 1st International Conference on 
Deductive and Object-Oriented Databases, Kyoto, Dec. 1989 

/BeJS 93/ Bertino, E.; Jajodia, S.; Samarati, P.; Access Control in Object-Oriented Data­
base Systems - Some Approaches and Issues; Adams, N.R.; Bhargava, B.K. 
(eds.); Advances in Database Systems; Lecture Notes in Computer Science, 759, 
Chapter 2, Springer-Verlag, Berlin, 1993 

/BeOS 94/ Bertino, E.; Origgi, F.; Sarnarati, P.; A New Authorization Model for Object­
Oriented Databases; IFIP WG 11.3 8th Int. Conference on Database Security, 
Bad Salzdetfurth, Aug. 1994 

/Bert 92/ Bertino, E.; Data Hiding and Security in Object-Oriented Databases; Proc. of the 
International Conference on Data Engineering, IEEE Computer Society Press, 
Phoenix, Feb. 1992, 338-347 

/BeSJ 93/ Bertino, E.; Sarnarati, P.; Jajodia, S.; Authorization in Relational Database Man­
agement Systems; 1st ACM Computer and Communications Security Conference, 
Fairfax, VA, Nov. 1993 

!BeSJ 951 Bertino, E.; Sarnarati, P.; Jajodia, S.; An Extended Authorization Model for Rela­
tional Databases; to appear: IEEE Transactions on Data and Knowledge Engi­
neering, 1995 

/Briig 92/ Briiggemann, H.H.; Rights in an Object-Oriented Environment; Jajodia, S.; 
Landwehr, C. (eds.); Database Security, V: Status and Prospects, Elsevier, IFIP, 
1992 

/ClWi 87/ Clark, D.D.; Wilson, D.R.; A Comparison of Commercial and Military Computer 
Security Policies; Proc. IEEE Symp. on Security and Privacy, Oakland, Apr. 
1987, 184-194 

/Fagi 78/ Fagin, R.; On an Authorisation Mechanism; ACM Transactions on Database Sys­
tems, Vol. 3, No.3, Sep. 1978, 310-319 

/FaSp 91/ Faatz, D.B.; Spooner, D.L.; Discretionary Access Control in Object-Oriented 
Engineering Database Systems; Jajodia, S.; Landwehr, C. (eds.); Database Secu­
rity, IV: Status and Prospects; Elsevier, IFIP, 1991 

/FeGS 89/ Fernandez, E.B.; Gudes, E.; Song, H.; A Security Model for Object-Oriented 
Databases; 1989 IEEE Symp. on Security and Privacy, Oakland, CA, May 1989 

/FeSW 81/ Fernandez, E.B.; Summer, R.C.; Wood, Ch.; Database Security and Integrity; 
Addison-Wesley, MA, 1981 

/FeWF 94/ Fernandez, E.B.; Wu, J.; Fernandez, M.H.; User Group Structures in Object­
Oriented Database Authorization; Proc. IFIP WG 11.3 8th Int. Conference on 
Database Security, Bad Salzdetfurth, Aug. 1994 

/GaGF 93/ Gal-Oz, N.; Gudes, E.; Fernandez, E.B.; A Model of Methods Access Authoriza­
tion in Object-Oriented Databases; Proc. of the 17th VLDB, Dublin, Aug. 1993, 
52-61 



Argos 59 

/GrDe 72/ Graham, G.S.; Denning, P.J.; Protection - Principles and Practice; AFIPS 
Spring Joint Computer Conference, AFIPS Press, Montvale, 1972, 417-429 

/GrWa 76/ Griffith, P.P.; Wade, B.W.; An Authorization Mechanism for a Relational Data­
base System; ACM Transactions on Database Systems, Vol. 1, No.3, Sep. 1976, 
242-255 

/GuSF 911 Gudes, E.; Song, H.; Fernandez, E.B.; Evaluation of Negative, Predicate, and 
Instance-based Authorization in Object-Oriented Databases; Jajodia, S.; Land­
wehr, C. (eds.); Database Security, IV: Status and Prospects; Elsevier, IFIP, 1991 

/HiiDi 92/ Hartig, M.; Dittrich, K.R.; An Object-Oriented Integration Framework for 
Building Heterogeneous Database Systems; Proc. of the IFIP DS-5 Conference 
on Semantics of Interoperable Database Systems, Lome, Australia, Nov. 1992 

/HaRU 76/ Harrison, M.A.; Ruzzo, W.L.; Ullman, J.D.; Protection in Operating Systems, 
Comm. of the ACM, Vol. 19, No.8, Aug. 1976,461-471 

/HoTe 95/ Holbein, R.; Teufel, S.; A Security Service for Role Based Access Controls in 
Distributed Systems; 11th IFIP TC 11 International Conference on Computer 
Security SEC'95, South Africa, 1995, 270-285 

/HuDT 93/ Hu, M.-Y.; Demurjian, S.A.; Ting, T.C.; User-Role Based Security Profiles for 
an Object-Oriented Design Model; Thuraisingham, B.M.; Landwehr, C.E. (eds.); 
Database Security, VI: Status and Prospects, Elsevier, 1993, IFIP, 333-348 

/HuDT 94/ Hu, M.-Y.; Demurjian, S.A.; Ting, T.C.; User-Role Based Security in the ADAM 
Object-Oriented Design and Analysis Environment; Proc. IFIP WG 11.3 8th Int. 
Conference on Database Security, Bad Salzdetfurth, Aug. 1994 

/JoDi 93a/ Jonscher, D.; Dittrich, K.R.; Access Control for Database Federations; a discus­
sion of the state-of-the-art; Proc. DBTA Workshop on Interoperability of Database 
Systems and Database Applications, Fribourg, Switzerland, Oct. 1993, 156-178 

/JoDi 93b/ Jonscher, D.; Dittrich, K.R.; A Formal Security Model based on an Object­
Oriented Data Model; Technical Report No. 93.41, Institut fiir Informatik der 
Universitiit Zurich, Nov. 1993 

/JoDi 94/ Jonscher, D.; Dittrich, K.R.; An Approach for Building Secure Database Federa­
tions; Proc. 20th VLDB Conference, Santiago, Chile, Sep. 1994,24-35 

/Kent 93/ Kent, W.; Object Orientation and Interoperability; NATO Advanced Study Insti­
tute, Kusadasi, Turkey, Aug. 1993 

!Lamp 711 Lampson, B.W.; Protection; 5th Princeton Symp. on Information Science and 
Systems, Mar. 1971, 437-443 

ILGSF 90/ Larrondo-Petrie, M.M.; Gudes, E.; Song, H.; Fernandez, E.; Security Policies in 
Object-Oriented Databases; Spooner, D.L.; Landwehr, C. (eds.); Database Secu­
rity, ill: Status and Prospects, Elsevier, IFIP, 1990 

/Lunt 88/ Lunt, T.; Access Control Policies: Some Unanswered Questions; Computer Secu­
rity Foundations Workshop, Franconia, Jun. 1988 

/NiWM 93/ Nicol, J.R.; Wilkes, C.Th.; Manola, F.A.; Object Orientation in Heterogeneous 
Distributed Computing Systems; IEEE Computer, Jun. 1993, 57-67 

/NyOs 92/ Nyanchama, G.M.; Osborn, S.L.; Database Security Issues in Distributed Object 
Oriented Databases; Proc. of the Int. Workshop on Distributed Object Manage­
ment, Edmonton, Canada, Aug. 1992 



60 Part Two Federated and Replicated Databases 

/NyOs 93/ Nyanchama, M.; Osborn, S.; Role-Based Security, Object Oriented Databases & 
Separation of Duty; SIGMOD RECORD, Vol. 22, No.4, Dec. 1993,45-51 

/OMG 91/ The Common Object Request Broker: Architecture and Specification, Document 
Number 91.12.1 Revision 1.1, Object Management Group and X Open 

/PfHD 88/ Pfefferle, H.; Hiirtig, M.; Dittrich, K.; Discretionary Access Control in Struc­
turally Object-Oriented Database Systems; Proc. IFIP 11.3 Workshop on Data­
base Security, Kingston, Ontario, Canada, Oct. 1988 

/RaWK 88/ Rabitti, F.; Woelk, D.; Kim, W.; A Model of Authorization for Object-Oriented 
and Semantic Databases; Proc. of the International Conference on Extending 
Database Technology, Venice, Italy, Mar. 1988 

/RBKW 91/ Rabitti, F.; Bertino, E.; Kim, W.; Woelk, D.; A Model of Authorization for Next­
Generation Database Systems; ACM Transactions on Database Systems, Vol. 19, 
No.1, Mar. 1991,88-131 

/SaCG 91/ Saltor, F.; Castellanos, M.; Garcia-Solaco, M.; Suitability of data models as 
canonical models for federated databases; SIGMOD Record, Vol. 20, No.4, 
Dec. 1991 

/ShLa 90/ Sheth, A.P.; Larson, J.A.; Federated Database Systems for Managing Dis­
tributed, Heterogeneous, and Autonomous Databases; ACM Computing Surveys, 
Vol. 22, No.3, Sep. 1990, 180-236 

/Spoo 88/ Spooner, D.L.; The Impact of Inheritance on Security in Object-Oriented Data­
base Systems; Proc. IFIP WG 11.3 Workshop on Database Security, Kingston, 
Ontario, Canada, Oct. 1988 

/TiDH92a/ Ting, T.C.; Demurjian, A.; Hu, M.-Y.; Requirements, Capabilities, and Func­
tionalities of User-Role Based Security for an Object-Oriented Design Model; 
Jajodia, S.; Landwehr, C.E. (eds.); Database Security, V: Status and Prospects, 
Elsevier, IFIP, 1992 

/TiDH 92b/ Ting, T.C.; Demurjian, S.A.; Hu, M.-Y.; On Information Hiding for Supporting 
User-Role Based Database Security in the Object-Oriented Paradigm; Jajodia, 
S.; Landwehr, C. (eds.); Database Security, V: Status and Prospects, Elsevier, 
IFIP, 1992 

!WaSp 87/ Wang, C.-Y.; Spooner, D.L.; Access Control in a Heterogeneous Distributed 
Database Management System; IEEE 6th Symp. on Reliability in Distributed Soft­
ware and Database Systems, Williamsburg, VA, Mar. 1987, 84-92 


