
23

Storage Jamming
J. McDermott and D. Goldschlag
United States Naval Research Laboratory
Washington, DC 20375, USA
{mcdermott,goldschlag}@itd.nrl.navy.mil

Abstract
The main goal of this paper is to define storage jamming. We also discuss our work
to date on possible defenses against it; in order to make the case that there are solu­
tions.

Keywords
Storage jamming, unauthorized modification, Trojan horse, detection object

1 INTRODUCTION

In the past, the most likely motive for attacks that modify data would have been fi­
nancial gain. The problem of fraud has been addressed by Clark and Wilson (Clark
and Wilson, 1987), by Sandhu and Jajodia (Sandhu and Jajodia, 1990), and by oth­
ers (Katzke and Ruthberg, 1989; Ruthberg and Polk, 1989). However, changes in
technology have made many organizations so dependent on information systems
that it is now possible to disrupt or degrade their operations by interfering with their
supporting information systems (Defense Science Board, 1994). When this disrup­
tion is accomplished by unauthorized modification of data we call it storage jam­
ming.

Storage jamming is the malicious modification of stored data, for the purpose of
degrading or disrupting real-world operations that depend on the correctness of the
data. We assume the person initiating the malicious modification (frequently via a
Trojan horse) does not receive any direct benefit, financial or otherwise, but rather is
motivated by more indirect goals such as improving the competitive position of his or
her own organization. The target data need not be data stored by a general purpose
database system, it can be any values stored for future reference: application data,
system data (e.g. initialization files), linking data (index structures, hot lists, routing
tables), or metadata. In this sense, a file of electronic mail messages that have been
saved for future reference is a fair target. We call the values introduced into storage
by the jammer bogus values. We call the values we meant to store authentic values. If
a data item contains a bogus value, we say that the data item has been jammed. To
simplify analysis of a complex problem, we exclude the possibility of mistakes made

D. L. Spooner et al. (eds.), Database Security IX
© IFIP International Federation for Information Processing 1996

366 Part Ten Storage Jamming and Wrap-up

by users or inadvertent flaws in software. (This does not mean that we exclude from
consideration conventional data integrity techniques that also have anti-jamming
properties.)

There are many possibilities open to the storage jammer. The amount and variety of
stored data that is critical can be large. Other issues that significantly affect the
problem include the rate and extent of the malicious changes, the method used to
compute plausible bogus values, the target system architecture, and the security
properties of the jamming agent. It is important to understand the nature of possible
jamming attacks in order to balance the cost of defenses against the ease of making
such an attack.

The main goal of this paper is to define storage jamming. We also discuss our work
to date on possible defenses against it; in order to make the case that there are solu­
tions. In the next section we discuss the nature of storage jamming including possi­
ble jamming strategies and vulnerability to jamming. The next two sections discuss a
variety of anti-jamming techniques. Some of these candidate techniques are based
on previous work on security-oriented data integrity but are unsuitable for use
against jamming attacks. We then discuss a particular kind of anti-jamming mecha­
nism called a detection object. The paper ends with a summary and discussion of fu­
ture work.

2 STORAGE JAMMING

The jammer's objective is to reduce the quality of stored data below a certain level,
without being detected. Unlike conventional jamming of sensor and communication
systems, we presume that it is relatively easy to stop the jamming once it is detect­
ed 1• If the jammer does not care if the jamming is detected then we are probably
talking about a denial of service attack rather than jamming. We describe a jammer
by the conditions it uses to choose a data item to jam and the rules for determining
the bogus value to be written.

Example 1

A simple random jammer might be described by the two conditions
1. jam(storage-block) = storage-block exclusive-or jamming-block-value
2. if there is a storage block at disk-address[X) then disk-address[X) :=

jam(disk-address[X])
where X is a random variable defined on the disk address space of the target system
and jamming-block-value is a constant bit string the same size as a storage block. 0

Example2

A high level jammer might use conditions better described via SQL
update emp set sal = sal + x where job = 'mathematician';

1. We believe that there are certain kinds of mission critical legacy systems where
jamming could not be stopped easily. For instance, if the system cannot be reinitial­
ized in a convenient way, then the problem of stopping the jamming becomes much
more difficult.

Storage jamming 367

In this case the data items are chosen by the where clause and the set clause to
choose records in the emp table whenever empjob is mathematician. The set clause
determines the bogus value of salary to be current salary plus a random value. 0
2.1 Jamming Strategies
It is helpful to characterize storage jamming in terms of the possible strategies.
There are many possible characteristics, we consider eleven of them here:

• Persistence Of Bogus Values: The unauthorized changes can be persistent or the
jammer can restore the changed values after an arbitrary length of time. A useful
variation of this would be to save deleted objects or values and reintroduce them
at a later time. In electronic warfare terminology this would be a form of repeat­
backjwroning. Temporary bogus values may be harder to detect but may still be
read by critical applications or system programs.

• Security Attributes Of The Jwroning Program: The jamming may be done by an au­
thorized program or by an unauthorized program. If it is done by an authorized
program it may be done as part of an authorized invocation, i.e the program sim­
ply writes incorrect values, or the jammer may be able to cause an unauthorized
invocation of a legitimate application.

• Target System Structure: Target systems can vary in structure from unstructured
legacy systems to modern, well-structured systems. Since poorly structured sys­
tems are hard to understand, we expect it will be harder to determine if a poorly
structured system is being jammed. The modularity and encapsulation in a well­
structured system isolate the effects of bogus data to a single part of the system.
They also make it easier to determine that the source of the system error was bo­
gus data rather than an unusual interaction of program logic.

• MeWlS Of Choosing Bogus Values: The jammer can adopt a number of basic algo­
rithms for generating the data to write. The bogus values can be chosen arbitrari­
ly, randomly, by interpolation, by replay, by permutation, etc. Arbitrary choices
may be easy to detect, but can be performed by small programs that may be eas­
ier to insert into a system.

• MeWlS of Choosing Target Data Items: The jammer can select targets randomly,
via some selection criteria, or by simply piggybacking on an application program.
This last approach lets the application chose the target for the jammer. We have
found it helpful to characterize the selection in terms of a condition, as in exam­
ples 1 and 2 above.

• Class Of Target Data: As we said in the introduction, the data can be application
data, linkage data, metadata, or system data. A more important classification of
target data is the level of abstraction. For example, the units of target data (data
items) could be data in a relational database or they could be disk blocks in the
nodes of a B+tree. Another important classification of target data is the size or
granularity of the target data items. The jammer could target sets or lists of data,
or select components of a data item, at the same level of abstraction.

• Rate Of Change In Target Data: If there are many updates to the data, then jam­
ming may be easier. There will be more opportunities and more checks will be re­
quired to find the jamming.

• Rate Of Jamming: The rate at which changes are made is significant. A jammer
may be designed to jam as fast as possible without being detected, with the ex­
pectation that the jammer will only be triggered at a critical moment. Alternative-

368 Part Ten Storage Jamming and Wrap-up

ly, the jammer may run continuously and make changes infrequently. The rate of
jamming can be quantified, at a given level of abstraction, in terms of the number
of data items jammed per state transition. One way to do this is view each high­
level command as the input causing a state transition. Note that we include all
state transitions, including those that only read data. For example, if we have
100 commands processed, 5 of which jam, 5 of which are authentic updates and
the remaining 90 are read-only commands, then the rate of jamming is 0.5 data
items per transition.

• Extent Of Jamming: A slow jammer can still do much damage by using a cumula­
tive strategy of jamming slowly but widely, i.e. ultimately change every value
stored in a database. This type of jamming is usually called barragejanuning. On
the other hand, a jammer can hope to escape detection but still disrupt opera­
tions by only modifying a critical subset of the stored data. This kind of jamming
is called spotjanuning. The extent of jamming can be quantified, at a given level
of abstraction, in terms of the number of data items jammed in a given state. For
example, if we have 10 000 data items in states and 300 have been jammed,
then the extent of jamming is 3o/o of state s. This notion of extent is dependent on
the given level of abstraction and the condition used by the jammer to select tar­
gets. Extent is an important issue for the storage jammer. If storage jamming is
continuous, then at some point all of the data targeted by the jammer will be
jammed. We assume that at some point before the extent of jamming reaches
1 OOo/o the presence of the jammer will be detected by direct inspection by the us­
ers. For this reason, we expect the jammer will stop before such a point is
reached. The jammer can then wait until normal computations change the bogus
values into authentic values and then start jamming again.

• Adaptability Of 'The Jamriler: An enemy may hope to do more damage by having
the jamming software changing its strategy. This may be a simple adaptation,
such as changing the constraints that are checked when generating bogus val­
ues. It may be more complex, trying to adapt to detection mechanisms that might
be present. As we will see later, it may be necessary to prevent the jammer from
reading the data or code of the detection process, in order to frustrate this adapt­
ability.

• Means Of Introducing The Januner: Security breaches accomplished via a network
connection are currently of great interest and jamming software could certainly
be introduced that way. Unfortunately, network intrusions are not the only way
that jamming software could be introduced. They could be installed during soft­
ware development, or installed separately after an information system is de­
ployed. In most cases, we assume that the human who introduces the jamming
software will not remain close to, or be associated with the system under attack.
However, one viable strategy is to have a human there to help the jamming soft­
ware. If the situation is such that a jamming agent could be reinstalled easily or
assisted by a human, then the jamming would be particularly difficult to stop.
This possibility may be a practical issue for large mission-criticallegacy systems.
These systems often cannot be shut down for maintenance and can be sensitive
to small changes to seemingly unrelated data or programs. Finally, a jammer
may be introduced via firmware. It would be more difficult to check firmware for
malicious code than to check software that is stored in executable files.

Storage jamming 369

2.2 VulnerablUty to Jamming
A system's vulnerability to electronic warfare is often characterized in terms of inter­
ceptibility, accessibility, and susceptibility. Interceptibility is a measure of the ease
with which an enemy can determine the existence, function, and location of a sys­
tem. Accessibility is a measure of the ease with which an enemy can reach a system
with an effective electronic warfare attack. Susceptibility is a measure of system
properties that determines the effect of attacks on the system's performance. In this
paper we are concerned with susceptibility. Performance criteria for measuring sus­
ceptibility can include

• mission success rate: the rate at which activities supported by the system suc­
ceed,

• query error rate: the rate at which queries are not processed according to the sys­
tem data model, database design, and the non-bogus portion of the system histo­
ry,

• record error rate: the rate at which erroneous records, object instances, etc., oc­
cur in storage,

• field error rate: the rate at which erroneous fields of a record, attributes of an ob-
ject, etc., occur in storage, and

• bit error rate: the rate at which erroneous bits occur in the representation of data.
Another important criteria is detection of jamming. If the jamming is detected, then
we may often assume that it will cease to be effective. So a system that allows easy
detection of jamming may not be very susceptible to it, even though the system has
no real way of preventing or tolerating the jamming that may occur before detection.
2.3 Reducing VulnerablUty to Jamming
Fortunately, there are some general software and system engineering practices that
can reduce a system's vulnerability to storage jamming. Many of these practices
should be followed in developing the software and firmware of critical systems.
• The system should be well-structured. That is, it should be modular, layered, and

encapsulate its data. Departures from this well-structuredness may be necessary
for other reasons, but the likelihood of successful jamming is increased.

• The system data should be designed. That is, there should be an explicit specifi­
cation of the relationships between data items, their structure, and the opera­
tions that can be performed on them. Identification of data integrity constraints
or invariants is a critical part of this and makes it easier to discover storage jam­
ming that may be taking place.

• The system behavior should be specified. This seems obvious, but is not always
followed in practice. If the behavior is unspecified, then jamming is harder to de­
tect.

• Major state transitions of the system should be transactional. That is, they
should have the transaction properties of atomicity, isolation, consistency, and
durability.

• Commercial off-the-shelf data management products, such as database systems,
should be used for data storage instead of application-specific files. The transac­
tion processing, encapsulation, and integrity provided by these systems makes
storage jamming more difficult.

370 Part Ten Storage Jamming and Wrap-up

• Fault tolerance techniques such as checksums, backup and recovery mecha­
nisms, and redundancy may be used to increase the difficulty of jamming data.

• Computer security techniques such as access control, audit, and identification
and authentication may be used to increase the difficulty of jamming data.

These practices can reduce vulnerability to jamming, but they do not really address
the problem. What we really can say about these engineering practices is that a fail­
ure to follow them may make it impossible to protect a mission critical system from
storage jamming. These measures are just a starting point for dealing with the prob­
lem. A more effective way to reduce vulnerability to storage jamming is to adopt spe­
cific anti-jamming defenses.

3 lUlti-Janur.dng

Defenses themselves can be either mechanisms: actual software or hardware con­
structs present in the protected system, or measures: practices that are followed
outside the protected system, e.g. by people. An example mechanism would be a au­
dit tool that could check integrity constraints and determine that some values in
storage were not consistent 1. An example measure would be a blind buy of COTS to
reduced the likelihood of malicious code in a critical system. The final defense is
likely to be a combination of mechanisms and measures.

Anti-jamming techniques may be intended to either prevent, tolerate, or detect
jamming. One of the most important combinations of anti-jamming measures and
mechanisms is a set of backup and restore facilities that can remove the effects of
jamming. Unfortunately, backup and restore facilities do not come into play until the
jamming has happened. Important potential prevention mechanisms include access
control and type enforcement. Both can limit the extent of the jamming by confining
it within a domain, but do not completely prevent it. Since COTS applications are
generally used in multiple domains, these domain-based mechanisms could allow
jamming to take place in every domain that used the COTS application. Important
potential toleration mechanisms include error correcting codes available from com­
munication theory that potentially would allow a system to tolerate jamming. Unfor­
tunately, these codes are applied to low-level data representation schemes and
provide no tolerance of jamming via an agent that manipulates data at a high level of
abstraction, e.g. via an SQL statement. It is not clear that these encoding schemes
would extend to abstract high-level data. System development, administration, and
maintenance measures that limit the introduction of malicious code are promising
prevention measures, but difficult to apply in practice. Detection mechanisms and
measures are less well understood, but seem to offer more promise. This promise in
part stems from the fundamental nature of storage jamming: it is simple to stop the
jamming once it is detected.

There are several security-oriented data integrity approaches that do offer more
promise: the Clark-Wilson model (Clark and Wilson, 1987), Sandhu's transaction

1. Even though verification tools are automated systems, we do not consider them
mechanisms because they do not execute at the same time as the system they pro­
tect.

Storage jamming 371

control expressions (Sandhu, 1991), the assured pipeline ofBoebert and Kain (Boe­
bert and Kain, 1985; Thomsen and Haigh, 1990), and the extended trusted path of
Wiseman (Wiseman et al., 1988; Wiseman, 1991). None of these approaches, with
the possible exception of the extended trusted path, was intended to deal with jam­
ming. They do make things harder for the jammer. Unfortunately, in systems that
must use shrink-wrapped or unverified software, they don't really provide significant
protection against more than casual jamming attempts. This is not a shortcoming,
none of these approaches was intended to defend against data jamming.Jamming
defenses do not necessarily provide the protection that can be achieved with these
techniques. On a practical level, their purposes are orthogonal.

The point of the preceding discussion is that four different potential anti-jamming
mechanisms lead us to the same condition, namely that we must expect everything
to be partially correct. But commercial off-the-shelf software or low-assurance cus­
tomized applications are the order of the day. Older Oegacy) systems are perhaps
very-low-assurance systems because of their poor structure and thus even less likely
to be protected by any of the mechanisms discussed so far. We conjecture that par­
tial correctness will never be provided for the entire path followed by information
from input to output, for the entire life of a system. Instead, at best we can assume
that some small subsystem is sufficiently correct to defend against jamming.

Reference monitors that check accesses are not very effective against storage jam­
ming. A successful mechanism will probably not be based on directly on cryptogra­
phy either. Extensive use of cryptography would defeat the purpose of many internal
data structures, and might not be feasible with off-the-shelf applications. Low level
encryption engines would not provide protection against jamming at a high level of
abstraction, e.g. via the methods of an object-oriented application program.

One alternative that we will leave to another paper is the possibility of having mul­
tiple versions of the software developed by separate teams. Each version of the soft­
ware would vote for the values it intended to store. In principle, the trusted parts of
such a mechanism would be a trusted input multiplexer, a trusted comparison or
voting mechanism, and a trusted output demultiplexer. Although this kind of n-ver­
sion programming has been shown to be of limited use in preventing unintentional
flaws, it would be a different matter to use it to prevent misbehavior via malicious
software. Presumably, the likelihood of compromisi,ng two or more development
teams in a way that allows coordination between the malicious components is very
small.

The alternatives to partial correctness that we propose here are background sys­
tems that detect jamming in a timely fashion. The alternatives are based on data ar­
chitecture; the strategy is to arrange the data storage in such a way that jamming
changes are easily detected. The three mechanisms we have identified so far are spe­
cialized integrity constraints, multi-process multi-domain transactions, and detec­
tion objects.

Specialized data integrity constraints can simplify detection because the detection
software could check them efficiently but the jammer would have some difficulty in
computing plausible bogus values that satisfied them. Multi-process multi-domain

372 Part Ten Storage Jamming and Wrap-up

transactions extend this concept by structurtng updates, deletes, etc. in such a way
that no single process could determine plausible bogus values. Finally, detection ob­
jects are data structures that appear to be part of an application, but are not used. If
these objects are changed, then there is a high probability that the change was made
byajammer.

4 Detection Objects

A detection object is an abstract mechanism that is intended to detect the actions of
malicious software that jams storage. It overcomes the difficulty of checking the
computation pedormed by a program by always remaining in a predictable state. If
the detection object is not in its proper, predictable state, then it was probably mod­
ified by a jammer. We call the data items that are intended to store legitimate data,
i.e. not detection objects, protected data items. Protected data items and detection
objects are defined in terms of jammers that might target them. Detection objects
satisfy two properties

• Detection objects are indistinguishable to the jammer from their corresponding
protected data items, that is, they satisfy the same condition as the jammer. Call
this condition indistinguishabUity.

• The only legitimate process that modifies detection objects is the jamming detec-
tion process. Call this condition sensitivity.

Example3

If we wished to protect aircraft altitude records, we could insert records for flights
that did not exist, for example flight QQ99 altitude 28 000. The detection process
would have internal storage that it could compare and test for the presence of the
QQ99 record and its "correct" altitude of 28 000. Since the altitude value is precom­
puted, and no radar sensor report will ever make an authentic update to QQ99, any
change to it must be a bogus update.

If a detection process inserts enough detection objects into the storage structures
of an information system, an active jammer will eventually jam one of the detection
objects and be detected. A simple model of this can be constructed if we assume that
the jammer is equally likely to jam any of the potential targets, protected data items
or detection objects. Suppose we include enough detection objects to make them be
1% of the total storage. This gives a probability p of jamming a protection object as
p = O.Ol. We can then represent the continued jamming as a binomial distribution
with n jamming attempts as trials and the i successes as jamming of detection ob­
jects. We have the binomial distribution function

PIX$;il= ,L(~)in-pf·k (1)
o,.:;~ru

with X being the number of jamming changes made to detection objects. With 1% of
the total storage being detection objects, the probability of detecting the jammer after
300 changes is 0.95, and 0.63 after only 100 changes. If the percentage of detection
objects is raised to 2%, then the probability of detection becomes 0.95 after only 150
changes are made. From this we see that a moderately sized set of data, say
10 000 storage objects, is efficiently protected by detection objects. With 2% of the

Storage jamming 373

members as detection objects, our example data set has 9800 protected data items
and we have a 95% chance of detecting the jammer after less than 150 of the pro­
tected data items have been jammed. On the other hand, if we have only 100 objects
in the data set then the entire set could be compromised with only a 63% chance
that the detection objects would reveal the jamming. The answer in this case (small
sets of data) is to use a much higher proportion of detection objects. If we add 100
detection objects to protect a set of 100 objects, then the probability of jamming a
detection object is one-half. This gives us a 97% chance of detecting the jamming af­
ter only five data items have been changed. The reduced efficiency is tolerable for
smaller sets.

Detection objects only protect the sets of data to which they correspond. For ex­
ample, if there are two databases aircraft tracks and flight plans on a system, with
detection objects inserted into database aircrqft tracks but not database flight plan,
and a jammer only modifies database flight plan, then the jamming will not be de­
tected. The exact meaning of "correspond" is not straightf01ward. It is difficult to as­
sert that a given set of protection objects "protects" a specific set. We might say that
a detection object y protects a set P of data items if y is a member of P. However, the
jammer might only be designed to select a subset of P. If we call J the set of all data
items that could potentially be modified by a given jammer j and D the set of all de­
tection objects, then the set ~ is the set of all detection objects that are also in J,
that is ~={xI xE J and xED}; in our binomial distribution example ~ contained 200
detection objects. Likewise ~ is the set of all protected data items that are in J, that
is, ~ = {xl x E J and x ~ D}; in our example~ contained 9800 protected data items. If
Dj is non empty then we can say that ~ protects ~ against jammer j. So we see that
detection objects protect data items against specific jammers that target both those
data items and some of the detection objects. The problem of exactly specifying the
set of all jammers that might be detected by a given set of detection objects is a diffi­
cult one and beyond the goals of this paper. (It is related to the set cover problem
which is NP-complete.)

4.1 Preserving lndistingalshability and Sensitivity
Our discussion up to this point has little significance unless we can implement de­
tection objects that preserve indistinguishability and sensitivity. We can implement
plausibly indistinguishable detection objects by using the types, schema, class defi­
nitions, etc. of the data items we intend to protect. We can further preserve indistin­
guishability by storing plausible values in the detection objects. The conditions that
a jammer may select on are not limited to stored values from a single system state.
Other attributes may be used: for example time of last update, a pointer value in the
representation of the data (e.g. jam all linked list entries where the link value is odd),
and data item names (e.g. jam all files whose names begin with the letter Q). The
jammer may also look at more than one state, in order to jam only those data items
that change rapidly. The closest approximation to complete indistinguishability re­
sults when we create detection objects with values of every attribute chosen using
the same distribution as the corresponding values in the protected objects. In practi­
cal cases, we can estimate the distributions, since practical jammers that could de­
tect flaws in our estimated distributions would be both difficult to write and also
relatively large programs. We consider this latter characteristic to be undesirable

374 Part Ten Storage Jamming and Wrap-up

(from the malefactor's perspective) in malicious software because it significantly in­
creases the likelihood that the malicious software will be detected for some reason
other than modifying a detection object.

Preserving sensitivity can be difficult and can conflict with indistinguishability. If
applications are to leave detection objects alone, then there must be some means for
the applications to distinguish the detection objects. There are two risks here: first, if
such an attribute is in use, the jammer may be able to discover it; second, the jam­
mer may be a Trojan horse in an application and may use the application logic to by­
pass the detection objects, without discovering what the distinguishing attribute is.
Commingled-Object Detection

One alternative strategy for preserving sensitivity is not to have a distinguishing at­
tribute, that is, only the detection process will be able to determine if a given data
item is in fact a detection object. With this approach, the detection process installs
the detection objects in the data structures of the protected system and records
some attribute of the installed object (such as an address) that the detection process
can use to identify it later as a detection object. Under these circumstances, a pro­
gram would change the detection objects if those objects were accessed by the pro­
gram. To effectively scan for jamming, the detection process would first reset all of
the detection objects to the proper state and then run the programs to be scanned.
The scanned programs would be run using a script which should cause the pro­
grams to set the detection objects to another proper state. If the some of the detec­
tion objects are not in the expected state, then there may be jamming. We call this
strategy commingled-object detection because it intersperses detection objects with
protected data items.

If detection objects are commingled with application or system data, their con­
tents may be returned as part of a query. To prevent this, the detection process can
provide a service or call that identifies detection objects, such as isDetectionObject(x)
so that they need not be displayed. We need to restrict this service so that a jammer
cannot use it to escape detection. Since we only try to detect jamming by having the
detection process invoke a program against a predefined script, use of the identifica­
tion service can be restricted to processes that are not being invoked to detect jam­
ming. If a process has been invoked for the purpose of scanning it for jammers, then
the detection process can always return false when asked if an object is a detection
object.
Example4

Suppose we wish to protect an air traffic control system from jamming by using com­
mingled objects. Our protected system has two databases: aircraft-tracks and flight-

Storage jamming 375

plans, as shown below. Detection objects are shaded; there are two of them in this
example:

flight-plans aircraft-tracks

Flight Origin De tination ETA Flight Course Speed Altitude

BA282 LHR lAD 0935 BA282 290 1250 40000
PA73 MSY FRA 1410 PA73 075 625 37000
'rw37 LHR JFK 0940 TW37 285 595 34000
QQ99 FRA BWI 1105 QQ99 085 595 33000

Figure 1 Commingled-object detection

The detection process could identify the detection objects in flight-plans and flight­
tracks as the fourth object in each table. To check or scan the software that manages
flight-plans, the detection process could execute an update that setflight-plans.eta
to Ill 0 where flight-plans.jlight was QQ99. Before executing this test command via
a script, the detection process would set the fourth record in flight-plans to the
known state shown above and also set the fourth record in aircraft-tracks to the
known state shown above. The detection process would then run the command to
update QQ99 in flight-plans. After running the command, it would check both the
fourth record inflight-plans and the fourth record inflight-tracks. If the altitude for
QQ99 was 37 000 instead of 33 000, the detection process would indicate probable
jamming to the system security officer. If the jamming software changed the altitude
of1W37, this would not be picked up by the detection process. Also, if the altitude of
QQ99 was changed by a radar sensor update, the detection process would either
have to resolve the change or raise a false alarm.

Commingled-object detection is suitable for protecting data that does not change
frequently. If there are lots of updates taking place, these updates may interfere with
the scanning. A detection object may be changed by a program that is not being
scanned. This interference would require the detection process to log and monitor all
updates in order to resolve possible problems. Commingled-object detection is also
less effective against slow jammers that may decide not to jam on every program in­
vocation.
QuarWltine Approaches
Another alternative for preserving sensitivity is to have the distinguishing attribute
be implicit and not available to potential jammers. This strategy can be carried out
in three ways: quarWltine systems, quarWltine subsystems, and quarWltine applica­
tions. The quarantine system approach is the easiest to explain and also the most
powerful detection mechanism. A quarantine system is a copy of the system to be
protected. It has all of the programs that run on the protected system. All of the data
in the quarantine system is put there by a script that leaves the quarantine system
in a predetermined state at all times. The script uses exactly the same data defini­
tions, metadata, class definitions, etc. as the system to be protected. No users are
accessing the quarantine system and it is not connected to any operational system.
The script can be designed to loop continuously so that the quarantine system is al­
ways active and under a plausible load. All of the data in the system can be checked
quickly by the background detection process because the data is in a predetermined

376 Part Ten Storage Jamming and Wrap-up

state that is known to the detection process. In a quarantine system. the set of pro­
tected data items ~ is empty and the set of potentially modified detection objects DJ
has 100% of the data items in J, for any januner J. The quarantine system protects
any operational system that has precisely the same software installed. To the extent
that the operational system has other software installed, it is unprotected. It might
be possible for a januner to avoid detection by only activating itself on certain instal­
lation specific parameters such as memory size or number ofi/0 buffers configured.
To allow for this. the script can be run against the quarantine system under an ap­
propriate variety of installation parameters.

A quarantine system does not have to be at the same location as the system it
protects. A complete copy of a new or upgraded system can be set up and run before
copies of it are sent out to operational sites. After the copies of the system are run­
ning at the operational site, the quarantine system can continue to run in parallel, to
protect against jammers that use a delay mechanism. This approach could also be
used to save time, by doing some quarantine processing before operational use. but
completing the processing while systems were in operation. The quarantine system
does not have to be as large or complete as the operational systems it protects. It
only needs to be able to run all of the software under the same installation parame­
ters as the protected systems.

ExampleS
Suppose we set up a quarantine system to protect our air traffic control system. On
a separate hardware platform, we install the air traffic control software, with simu­
lated inputs controlled by the detection process. Our two databases have the same
format as before but every record in the database is a detection object.

Flight-Plans Aircraft-Tracks

Flight Origin Destination ETA Flight Course Speed Altitude

QQ37 utR JFK 0940 QQ37 285 595 34000
QQ99 FRA BWI 1105 QQ99 085 595 33000

Figure 2 Quarantine-system detection objects

Now the detection process can run a command that should setjlight-plans.eta to
1110 where jlight-plansjlight was QQ99. There is no need to preset any data and
there is no possibility of interference from an application or system process. Also,
the detection process is much simpler because it does not need to distinguish detec­
tion objects from protected data items. After the update, the detection process can
detect any bogus change to any part of each table. For instance, if the jammer swaps
aircraft-tracksjlightvalues while it is supposed to be updatingjlight-plans. then it
will be detected. Quarantine systems will detect slow januners, random bit-level bar­
rage januners, spot januners. programs that jam by changing data outside their own
application, and programs that jam by deliberately writing incorrect values.

A quarantine subsystem is like a quarantine system that runs on the same hard­
ware as the operational system it protects. The quarantine subsystem is set up as a
protected subsystem that runs the same software and uses the same data defini­
tions. metadata. etc. as the protected system. Predefined scripts exercise the soft-

Storage jamming 377

ware arid always leave the data in a predetermined state. Once again, the set Fj is
empty and the set l)_j has 100% of the data items in J, for any jammer j. In this case,
the operational software is protected to the extent that potential jammers are unable
to determine that they are currently executing against the quarantine subsystem.
Example6
Suppose we decide to protect our air traffic control system with a quarantine sub­
system. Now we have four databases, as shown below:

Flight-Plans-1 Alrcraft-Tracks-1

Flight Origin Destination ETA Flight Course Speed Altitude

Flight-Plans-2 Aircraft-Tracks-2

Flight Origin Destination ETA Flight Course Speed Altitude

BA282 LHR lAD 0935 BA282 290 1250 40000
PA73 MSY FRA 1410 PA73 075 625 37000
TW37 LHR JFK 0940 TW37 285 595 34000

Figure 3 Quarantine-subsystem detection objects

In this case, jlight-pl.ans-1 and aircraft-tracks-1 form the quarantine subsystem.
The databasesjlight-plans-2 and aircraft-tracks-2 form the operational air traffic con­
trol system. All four tables are on the same platform. The detection process exercises
the operational software againstjlight-plans-1 and aircraft-tracks-1 . All of the values
injlight-plans-1 and aircraft-tracks-1 are put there by the detection process, so the
detection process is as simple as the quarantine subsystem but able to detect the
same wide range of jamming behaviors.

A quarantine application is like a partial quarantine subsystem. Instead of using
all of the programs and data definitions of the operational system, a quarantine ap­
plication runs a script against the programs, data definitions, metadata, etc. of a
single application.
4.2 Detection Objects in the System Ufe Cycle
The efficacy of a detection object defense is significantly influenced by the way it is
included in the system life cycle. Some parts of a detection object defense should be
deferred until late in the development process, or even until after the system has
been installed. Choice of the actual detection objects and the scripts used by the de­
tection process should be deferred until the system is in its final form and no new
code is likely to be introduced. It might be preferable to have the detection objects
and the corresponding scripts developed by the system security officer, or by a sepa­
rate development team. The critical point is that the indistinguishability of the detec­
tion objects depends on the assumption that the person designing the jamming
software does not know the specification of the detection objects, or the scripts that
will be run against them. It should be easier to achieve this if the specific detection
object design is done after the software and firmware for a system has been put in
place.

378 Part Ten Storage Jamming and Wrap-up

On the other hand, the background detection process should have an open design
that is carefully integrated with the system it protects. It should be a high-assurance
component that is shown to scan correctly, protect itself from tampering, and protect
the identity of the detection objects and their associated scripts. The ability to pro­
tect itself from tampering must be relatively high assurance, since it is intended to
function in a an environment where random modification of data is taking place. The
best means for doing this is probably something like an assured pipeline or extended
trusted path. In any case, the background detection process should be included in
the early phases of the system life cycle.

4.3 Scanning Detection Objects
The overall efficiency of a detection-object defense depends on not only careful man­
agement of storage for detection objects but also on low overhead for the scanning
process. It should be possible to compare the actual value of the detection object
with the expected value stored by the background detection process with relatively
few machine cycles.

The granularity of the checks is significant. If we are only interested in detecting a
change to our current set of detection objects, then a simple checksum over the en­
tire set via a polynomial code will suffice. We probably want to do more than that.
Locating the precise changes made by a jammer will help us to locate not only the
jammer but any possible damage it may have done to our operational data. There­
fore, we want to be able to compare individual detection objects with their expected
values. Unfortunately, to do this we have to store the expected bit-level representa­
tion of each detection object, along with any access structures it may be embedded
in. This problem becomes even harder when we maintain a plausible history for our
detection objects. The size of the store we need to maintain is a function of the length
of the cycle we want our history to run through; if we have d detection objects of size
1 and we want to change the state of all detection objects twice in our plausible his­
tory, then we need a minimum of 3d units of storage to be able to compare each de­
tection object to its expected value. We can mitigate this problem by using data
compression and off-line storage. We can also develop a hierarchy of checksums.
Each set of detection objects can be partitioned, with checksums for each block of
the partition. This partitioning can be repeated until the desired granularity of
checking is reached.

Large-granularity detection objects need fewer distinguishing attributes to main­
tain sensitivity; sets of detection objects look more like the real thing. This is one of
the merits of the quarantine systems approach over the commingle-object approach.
It is easier to construct an initial checksum that covers all detection objects.

Scripts that are used for jamming detection must satisfy the same properties as
the detection objects. The commands in the scripts must be indistinguishable from
plausible application or system commands that might be run against the data items
to be protected. The scripts must, for each state transition, leave all of the detection
objects in the predefined state expected by the detection process. Additionally, the
commands of the script must not allow other processes to modify detection objects.
Finally. the scripts themselves must be inaccessible to jammers. A jammer could in­
spect the scripts so as to avoid jamming against the detection system.

Storage jamming 379

4.4 Assurance

An effective detection object system should have assurance that it satisfies the two
properties of indistinguishability and sensitivity. It should also have assurance that
the protected subsystem cannot be tampered with or observed.

5 Summary

The real-world operations of modern organizations can be disrupted by storage jam­
ming of their supporting information systems. The objective of the jammer is to re­
duce data quality without being discovered and there are many ways to accomplish
this.

Storage jammers can be described in terms of the condition they use to select
data items to jam and the condition they use to chose bogus values. This paper has
shown eleven aspects of storage jamming strategy. A system's vulnerability to stor­
age jamming may be measured in terms ofinterceptibility, accessibility, and suscep­
tibility. Our concern has been to reduce susceptibility. Susceptibility can be reduced
by first following certain general system engineering practices and then adopting
specific anti-jamming techniques. There are several security-oriented data integrity
approaches that do have anti-jamming properties, but they all depend on showing
partial correctness in all application and system software. In this paper we show
how only a small subsystem needs to be trusted in order to provide significant anti­
jamming protection. The most promising mechanism is a background detection pro­
cess that can detect jamming in a timely fashion because data has been organized to
allow this. Three possible data organization approaches are specialized data integrity
constraints, multi-process multi-domain transactions, and detection objects.

A detection object is an abstract mechanism that overcomes the difficulty of
checking computation by always remaining in a predictable state. If a detection ob­
ject is not in its expected state, then jamming is probably taking place. Detection ob­
jects must satisfy two properties: indistinguishability ijammers cannot distinguish
detection objects from other data) and sensitivity (high probability that an unexpect­
ed detection object state indicates jamming). Possible implementations of detection
objects include the commingled-object, quarantine system, quarantine subsystem,
and quarantine application approaches. Design and implementation of detection ob­
jects and their associated scripts should be deferred until late in a·system's life cy­
cle. On the other hand, the design and integration of the background detection
process should be started as early as possible in a system's life cycle. A detection ob­
ject system should be able to quickly scan its detection objects, a function best per­
formed by a checksum computed over many objects. Additional scanning techniques
should be used to allow the detection object system to pinpoint the jammed data.

It is not clear that our proposed anti-jamming mechanisms would be effective in
preventing fraud. Fraud is most likely to be carried out by causing improper se­
quences of correct commands, with an eye to moving assets outside the system.
These sequences are improper because the humans initiating them are initiating
them with improper input. Furthermore, the human who wishes to receive the as­
sets diverted by computer fraud does not want degraded system operation, but cor-

380 Part Ten Storage Jamming and Wrap-up

rect allocation of resources to the wrong destination. It may be possible to define
certain kinds of fraud that would be detected by our mechanism, but we believe that
more specific measures that enforce separation of duties on users or roles are more
appropriate. In many cases, the jamming detection software would not detect the
fraud because the improper sequences of commands might not do anything to a de­
tection object.

6 References

Boebert, W.E. And Kain, R.Y. (1985) A practical alternative to hierarchical integrity
policies, in Proceedings of the 8th National Computer Security Conference (Gaithers­
burg, Maryland). 18-28.

Clark, D.D. and Wilson, D.R. (1987) A comparison of commercial and military com­
puter security policies, in Proceedings of the IEEE Symposium on Securi.iy and Priva­
cy (Oakland, California). 184-194.

Defense Science Board. (1994) Report of the Summer Study Task Force on Information
Architecture for the Battlefield, December 20, 1994.

Hinke, T. (1988} DBMS technology vs. threats, in Database Security: Status and Pros­
pects, ed. C. Landwehr, North-Holland, Amsterdam, 57-87.

Katzke, S.W. and Ruthberg, Z.G. (editors). (1989} Report of the Invitational Workshop
on Integrity Policy in Computer Information Systems (WIPICS), NIST, Special Publica­
tion 500-160.

Ruthberg, Z.G. and Polk, W.T. (editors). (1989} Report of the Invitational Workshop on
Data Integrity. NIST, Special Publication 500-168.

Sandhu, R.S. (1988) The schematic protection model: its definition and analysis for
acyclic attenuating schemes. JACM 35, 2. 404-432.

Sandhu, R.S. (1989} Terminology, criteria and system architectures for data integri­
ty. In Report of the Invitational Workshop on Data Integrity (Ruthberg, Z.G. and Polk,
W.T. editors}, NIST, Special Publication 500-168.

Sandhu, R.S. (1991) Separation of duties in computerized information systems. In
Database Security W: Status and Prospects (Jajodia, S. and Landwehr. C.E .. edi­
tors). North-Holland, 179-189.

Sandhu, R.S. and Jajodia, S. (1990) Integrity mechanisms in database management
systems, in Proceedings of the 13th NIST-NCSC National Computer Security Confer­
ence (Washington, DC). 526-540.

Thomsen, D.J. and Haigh, J.T. (1990} A comparison of type enforcement and Unix
setuid implementation of well-formed transactions, in Proceedings of Sixth Annual
Computer Security Applications Conference (Tucson, Arizona). 304-312.

Wiseman, S., Terry, P., Wood, A., and Harrold, C. (1988) The trusted path between
SMITE and the user, in Proceedings of the IEEE Symposium on Security and Privacy
(Oakland, California}. 147-155.

Wiseman, S. (1991) The control of integrity in databases, in Database Security W:
Status and Prospects, (JAJODIA, S. and LANDWEHR. C.E., editors). North-Holland,
191-203.

Storage jamming 381

7 BIOGRAPHIES

John McDermott has been active in computer security research since 1987. Here­
ceived his Ph.D. from George Mason University in 1994. His current interests in­
clude computer security, database systems, and distributed systems. David
Goldschlag has been active in computer security research and formal methods since
1986. He received his Ph.D. from the University ofTexas at Austin in 1992. His cur­
rent interests include computer security, intelligent agents, and formal methods.

