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Abstract 
The main goal of this paper is to define storage jamming. We also discuss our work 
to date on possible defenses against it; in order to make the case that there are solu­
tions. 
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1 INTRODUCTION 

In the past, the most likely motive for attacks that modify data would have been fi­
nancial gain. The problem of fraud has been addressed by Clark and Wilson (Clark 
and Wilson, 1987), by Sandhu and Jajodia (Sandhu and Jajodia, 1990), and by oth­
ers (Katzke and Ruthberg, 1989; Ruthberg and Polk, 1989). However, changes in 
technology have made many organizations so dependent on information systems 
that it is now possible to disrupt or degrade their operations by interfering with their 
supporting information systems (Defense Science Board, 1994). When this disrup­
tion is accomplished by unauthorized modification of data we call it storage jam­
ming. 

Storage jamming is the malicious modification of stored data, for the purpose of 
degrading or disrupting real-world operations that depend on the correctness of the 
data. We assume the person initiating the malicious modification (frequently via a 
Trojan horse) does not receive any direct benefit, financial or otherwise, but rather is 
motivated by more indirect goals such as improving the competitive position of his or 
her own organization. The target data need not be data stored by a general purpose 
database system, it can be any values stored for future reference: application data, 
system data (e.g. initialization files), linking data (index structures, hot lists, routing 
tables), or metadata. In this sense, a file of electronic mail messages that have been 
saved for future reference is a fair target. We call the values introduced into storage 
by the jammer bogus values. We call the values we meant to store authentic values. If 
a data item contains a bogus value, we say that the data item has been jammed. To 
simplify analysis of a complex problem, we exclude the possibility of mistakes made 
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by users or inadvertent flaws in software. (This does not mean that we exclude from 
consideration conventional data integrity techniques that also have anti-jamming 
properties.) 

There are many possibilities open to the storage jammer. The amount and variety of 
stored data that is critical can be large. Other issues that significantly affect the 
problem include the rate and extent of the malicious changes, the method used to 
compute plausible bogus values, the target system architecture, and the security 
properties of the jamming agent. It is important to understand the nature of possible 
jamming attacks in order to balance the cost of defenses against the ease of making 
such an attack. 

The main goal of this paper is to define storage jamming. We also discuss our work 
to date on possible defenses against it; in order to make the case that there are solu­
tions. In the next section we discuss the nature of storage jamming including possi­
ble jamming strategies and vulnerability to jamming. The next two sections discuss a 
variety of anti-jamming techniques. Some of these candidate techniques are based 
on previous work on security-oriented data integrity but are unsuitable for use 
against jamming attacks. We then discuss a particular kind of anti-jamming mecha­
nism called a detection object. The paper ends with a summary and discussion of fu­
ture work. 

2 STORAGE JAMMING 

The jammer's objective is to reduce the quality of stored data below a certain level, 
without being detected. Unlike conventional jamming of sensor and communication 
systems, we presume that it is relatively easy to stop the jamming once it is detect­
ed 1• If the jammer does not care if the jamming is detected then we are probably 
talking about a denial of service attack rather than jamming. We describe a jammer 
by the conditions it uses to choose a data item to jam and the rules for determining 
the bogus value to be written. 

Example 1 

A simple random jammer might be described by the two conditions 
1. jam( storage-block) = storage-block exclusive-or jamming-block-value 
2. if there is a storage block at disk-address[X) then disk-address[X) := 

jam( disk-address[X]) 
where X is a random variable defined on the disk address space of the target system 
and jamming-block-value is a constant bit string the same size as a storage block. 0 

Example2 

A high level jammer might use conditions better described via SQL 
update emp set sal = sal + x where job = 'mathematician'; 

1. We believe that there are certain kinds of mission critical legacy systems where 
jamming could not be stopped easily. For instance, if the system cannot be reinitial­
ized in a convenient way, then the problem of stopping the jamming becomes much 
more difficult. 
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In this case the data items are chosen by the where clause and the set clause to 
choose records in the emp table whenever empjob is mathematician. The set clause 
determines the bogus value of salary to be current salary plus a random value. 0 
2.1 Jamming Strategies 
It is helpful to characterize storage jamming in terms of the possible strategies. 
There are many possible characteristics, we consider eleven of them here: 

• Persistence Of Bogus Values: The unauthorized changes can be persistent or the 
jammer can restore the changed values after an arbitrary length of time. A useful 
variation of this would be to save deleted objects or values and reintroduce them 
at a later time. In electronic warfare terminology this would be a form of repeat­
backjwroning. Temporary bogus values may be harder to detect but may still be 
read by critical applications or system programs. 

• Security Attributes Of The Jwroning Program: The jamming may be done by an au­
thorized program or by an unauthorized program. If it is done by an authorized 
program it may be done as part of an authorized invocation, i.e the program sim­
ply writes incorrect values, or the jammer may be able to cause an unauthorized 
invocation of a legitimate application. 

• Target System Structure: Target systems can vary in structure from unstructured 
legacy systems to modern, well-structured systems. Since poorly structured sys­
tems are hard to understand, we expect it will be harder to determine if a poorly 
structured system is being jammed. The modularity and encapsulation in a well­
structured system isolate the effects of bogus data to a single part of the system. 
They also make it easier to determine that the source of the system error was bo­
gus data rather than an unusual interaction of program logic. 

• MeWlS Of Choosing Bogus Values: The jammer can adopt a number of basic algo­
rithms for generating the data to write. The bogus values can be chosen arbitrari­
ly, randomly, by interpolation, by replay, by permutation, etc. Arbitrary choices 
may be easy to detect, but can be performed by small programs that may be eas­
ier to insert into a system. 

• MeWlS of Choosing Target Data Items: The jammer can select targets randomly, 
via some selection criteria, or by simply piggybacking on an application program. 
This last approach lets the application chose the target for the jammer. We have 
found it helpful to characterize the selection in terms of a condition, as in exam­
ples 1 and 2 above. 

• Class Of Target Data: As we said in the introduction, the data can be application 
data, linkage data, metadata, or system data. A more important classification of 
target data is the level of abstraction. For example, the units of target data (data 
items) could be data in a relational database or they could be disk blocks in the 
nodes of a B+tree. Another important classification of target data is the size or 
granularity of the target data items. The jammer could target sets or lists of data, 
or select components of a data item, at the same level of abstraction. 

• Rate Of Change In Target Data: If there are many updates to the data, then jam­
ming may be easier. There will be more opportunities and more checks will be re­
quired to find the jamming. 

• Rate Of Jamming: The rate at which changes are made is significant. A jammer 
may be designed to jam as fast as possible without being detected, with the ex­
pectation that the jammer will only be triggered at a critical moment. Alternative-
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ly, the jammer may run continuously and make changes infrequently. The rate of 
jamming can be quantified, at a given level of abstraction, in terms of the number 
of data items jammed per state transition. One way to do this is view each high­
level command as the input causing a state transition. Note that we include all 
state transitions, including those that only read data. For example, if we have 
100 commands processed, 5 of which jam, 5 of which are authentic updates and 
the remaining 90 are read-only commands, then the rate of jamming is 0.5 data 
items per transition. 

• Extent Of Jamming: A slow jammer can still do much damage by using a cumula­
tive strategy of jamming slowly but widely, i.e. ultimately change every value 
stored in a database. This type of jamming is usually called barragejanuning. On 
the other hand, a jammer can hope to escape detection but still disrupt opera­
tions by only modifying a critical subset of the stored data. This kind of jamming 
is called spotjanuning. The extent of jamming can be quantified, at a given level 
of abstraction, in terms of the number of data items jammed in a given state. For 
example, if we have 10 000 data items in states and 300 have been jammed, 
then the extent of jamming is 3o/o of state s. This notion of extent is dependent on 
the given level of abstraction and the condition used by the jammer to select tar­
gets. Extent is an important issue for the storage jammer. If storage jamming is 
continuous, then at some point all of the data targeted by the jammer will be 
jammed. We assume that at some point before the extent of jamming reaches 
1 OOo/o the presence of the jammer will be detected by direct inspection by the us­
ers. For this reason, we expect the jammer will stop before such a point is 
reached. The jammer can then wait until normal computations change the bogus 
values into authentic values and then start jamming again. 

• Adaptability Of 'The Jamriler: An enemy may hope to do more damage by having 
the jamming software changing its strategy. This may be a simple adaptation, 
such as changing the constraints that are checked when generating bogus val­
ues. It may be more complex, trying to adapt to detection mechanisms that might 
be present. As we will see later, it may be necessary to prevent the jammer from 
reading the data or code of the detection process, in order to frustrate this adapt­
ability. 

• Means Of Introducing The Januner: Security breaches accomplished via a network 
connection are currently of great interest and jamming software could certainly 
be introduced that way. Unfortunately, network intrusions are not the only way 
that jamming software could be introduced. They could be installed during soft­
ware development, or installed separately after an information system is de­
ployed. In most cases, we assume that the human who introduces the jamming 
software will not remain close to, or be associated with the system under attack. 
However, one viable strategy is to have a human there to help the jamming soft­
ware. If the situation is such that a jamming agent could be reinstalled easily or 
assisted by a human, then the jamming would be particularly difficult to stop. 
This possibility may be a practical issue for large mission-criticallegacy systems. 
These systems often cannot be shut down for maintenance and can be sensitive 
to small changes to seemingly unrelated data or programs. Finally, a jammer 
may be introduced via firmware. It would be more difficult to check firmware for 
malicious code than to check software that is stored in executable files. 
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2.2 VulnerablUty to Jamming 
A system's vulnerability to electronic warfare is often characterized in terms of inter­
ceptibility, accessibility, and susceptibility. Interceptibility is a measure of the ease 
with which an enemy can determine the existence, function, and location of a sys­
tem. Accessibility is a measure of the ease with which an enemy can reach a system 
with an effective electronic warfare attack. Susceptibility is a measure of system 
properties that determines the effect of attacks on the system's performance. In this 
paper we are concerned with susceptibility. Performance criteria for measuring sus­
ceptibility can include 

• mission success rate: the rate at which activities supported by the system suc­
ceed, 

• query error rate: the rate at which queries are not processed according to the sys­
tem data model, database design, and the non-bogus portion of the system histo­
ry, 

• record error rate: the rate at which erroneous records, object instances, etc., oc­
cur in storage, 

• field error rate: the rate at which erroneous fields of a record, attributes of an ob-
ject, etc., occur in storage, and 

• bit error rate: the rate at which erroneous bits occur in the representation of data. 
Another important criteria is detection of jamming. If the jamming is detected, then 
we may often assume that it will cease to be effective. So a system that allows easy 
detection of jamming may not be very susceptible to it, even though the system has 
no real way of preventing or tolerating the jamming that may occur before detection. 
2.3 Reducing VulnerablUty to Jamming 
Fortunately, there are some general software and system engineering practices that 
can reduce a system's vulnerability to storage jamming. Many of these practices 
should be followed in developing the software and firmware of critical systems. 
• The system should be well-structured. That is, it should be modular, layered, and 

encapsulate its data. Departures from this well-structuredness may be necessary 
for other reasons, but the likelihood of successful jamming is increased. 

• The system data should be designed. That is, there should be an explicit specifi­
cation of the relationships between data items, their structure, and the opera­
tions that can be performed on them. Identification of data integrity constraints 
or invariants is a critical part of this and makes it easier to discover storage jam­
ming that may be taking place. 

• The system behavior should be specified. This seems obvious, but is not always 
followed in practice. If the behavior is unspecified, then jamming is harder to de­
tect. 

• Major state transitions of the system should be transactional. That is, they 
should have the transaction properties of atomicity, isolation, consistency, and 
durability. 

• Commercial off-the-shelf data management products, such as database systems, 
should be used for data storage instead of application-specific files. The transac­
tion processing, encapsulation, and integrity provided by these systems makes 
storage jamming more difficult. 
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• Fault tolerance techniques such as checksums, backup and recovery mecha­
nisms, and redundancy may be used to increase the difficulty of jamming data. 

• Computer security techniques such as access control, audit, and identification 
and authentication may be used to increase the difficulty of jamming data. 

These practices can reduce vulnerability to jamming, but they do not really address 
the problem. What we really can say about these engineering practices is that a fail­
ure to follow them may make it impossible to protect a mission critical system from 
storage jamming. These measures are just a starting point for dealing with the prob­
lem. A more effective way to reduce vulnerability to storage jamming is to adopt spe­
cific anti-jamming defenses. 

3 lUlti-Janur.dng 

Defenses themselves can be either mechanisms: actual software or hardware con­
structs present in the protected system, or measures: practices that are followed 
outside the protected system, e.g. by people. An example mechanism would be a au­
dit tool that could check integrity constraints and determine that some values in 
storage were not consistent 1. An example measure would be a blind buy of COTS to 
reduced the likelihood of malicious code in a critical system. The final defense is 
likely to be a combination of mechanisms and measures. 

Anti-jamming techniques may be intended to either prevent, tolerate, or detect 
jamming. One of the most important combinations of anti-jamming measures and 
mechanisms is a set of backup and restore facilities that can remove the effects of 
jamming. Unfortunately, backup and restore facilities do not come into play until the 
jamming has happened. Important potential prevention mechanisms include access 
control and type enforcement. Both can limit the extent of the jamming by confining 
it within a domain, but do not completely prevent it. Since COTS applications are 
generally used in multiple domains, these domain-based mechanisms could allow 
jamming to take place in every domain that used the COTS application. Important 
potential toleration mechanisms include error correcting codes available from com­
munication theory that potentially would allow a system to tolerate jamming. Unfor­
tunately, these codes are applied to low-level data representation schemes and 
provide no tolerance of jamming via an agent that manipulates data at a high level of 
abstraction, e.g. via an SQL statement. It is not clear that these encoding schemes 
would extend to abstract high-level data. System development, administration, and 
maintenance measures that limit the introduction of malicious code are promising 
prevention measures, but difficult to apply in practice. Detection mechanisms and 
measures are less well understood, but seem to offer more promise. This promise in 
part stems from the fundamental nature of storage jamming: it is simple to stop the 
jamming once it is detected. 

There are several security-oriented data integrity approaches that do offer more 
promise: the Clark-Wilson model (Clark and Wilson, 1987), Sandhu's transaction 

1. Even though verification tools are automated systems, we do not consider them 
mechanisms because they do not execute at the same time as the system they pro­
tect. 
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control expressions (Sandhu, 1991), the assured pipeline ofBoebert and Kain (Boe­
bert and Kain, 1985; Thomsen and Haigh, 1990), and the extended trusted path of 
Wiseman (Wiseman et al., 1988; Wiseman, 1991). None of these approaches, with 
the possible exception of the extended trusted path, was intended to deal with jam­
ming. They do make things harder for the jammer. Unfortunately, in systems that 
must use shrink-wrapped or unverified software, they don't really provide significant 
protection against more than casual jamming attempts. This is not a shortcoming, 
none of these approaches was intended to defend against data jamming.Jamming 
defenses do not necessarily provide the protection that can be achieved with these 
techniques. On a practical level, their purposes are orthogonal. 

The point of the preceding discussion is that four different potential anti-jamming 
mechanisms lead us to the same condition, namely that we must expect everything 
to be partially correct. But commercial off-the-shelf software or low-assurance cus­
tomized applications are the order of the day. Older Oegacy) systems are perhaps 
very-low-assurance systems because of their poor structure and thus even less likely 
to be protected by any of the mechanisms discussed so far. We conjecture that par­
tial correctness will never be provided for the entire path followed by information 
from input to output, for the entire life of a system. Instead, at best we can assume 
that some small subsystem is sufficiently correct to defend against jamming. 

Reference monitors that check accesses are not very effective against storage jam­
ming. A successful mechanism will probably not be based on directly on cryptogra­
phy either. Extensive use of cryptography would defeat the purpose of many internal 
data structures, and might not be feasible with off-the-shelf applications. Low level 
encryption engines would not provide protection against jamming at a high level of 
abstraction, e.g. via the methods of an object-oriented application program. 

One alternative that we will leave to another paper is the possibility of having mul­
tiple versions of the software developed by separate teams. Each version of the soft­
ware would vote for the values it intended to store. In principle, the trusted parts of 
such a mechanism would be a trusted input multiplexer, a trusted comparison or 
voting mechanism, and a trusted output demultiplexer. Although this kind of n-ver­
sion programming has been shown to be of limited use in preventing unintentional 
flaws, it would be a different matter to use it to prevent misbehavior via malicious 
software. Presumably, the likelihood of compromisi,ng two or more development 
teams in a way that allows coordination between the malicious components is very 
small. 

The alternatives to partial correctness that we propose here are background sys­
tems that detect jamming in a timely fashion. The alternatives are based on data ar­
chitecture; the strategy is to arrange the data storage in such a way that jamming 
changes are easily detected. The three mechanisms we have identified so far are spe­
cialized integrity constraints, multi-process multi-domain transactions, and detec­
tion objects. 

Specialized data integrity constraints can simplify detection because the detection 
software could check them efficiently but the jammer would have some difficulty in 
computing plausible bogus values that satisfied them. Multi-process multi-domain 
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transactions extend this concept by structurtng updates, deletes, etc. in such a way 
that no single process could determine plausible bogus values. Finally, detection ob­
jects are data structures that appear to be part of an application, but are not used. If 
these objects are changed, then there is a high probability that the change was made 
byajammer. 

4 Detection Objects 

A detection object is an abstract mechanism that is intended to detect the actions of 
malicious software that jams storage. It overcomes the difficulty of checking the 
computation pedormed by a program by always remaining in a predictable state. If 
the detection object is not in its proper, predictable state, then it was probably mod­
ified by a jammer. We call the data items that are intended to store legitimate data, 
i.e. not detection objects, protected data items. Protected data items and detection 
objects are defined in terms of jammers that might target them. Detection objects 
satisfy two properties 

• Detection objects are indistinguishable to the jammer from their corresponding 
protected data items, that is, they satisfy the same condition as the jammer. Call 
this condition indistinguishabUity. 

• The only legitimate process that modifies detection objects is the jamming detec-
tion process. Call this condition sensitivity. 

Example3 

If we wished to protect aircraft altitude records, we could insert records for flights 
that did not exist, for example flight QQ99 altitude 28 000. The detection process 
would have internal storage that it could compare and test for the presence of the 
QQ99 record and its "correct" altitude of 28 000. Since the altitude value is precom­
puted, and no radar sensor report will ever make an authentic update to QQ99, any 
change to it must be a bogus update. 

If a detection process inserts enough detection objects into the storage structures 
of an information system, an active jammer will eventually jam one of the detection 
objects and be detected. A simple model of this can be constructed if we assume that 
the jammer is equally likely to jam any of the potential targets, protected data items 
or detection objects. Suppose we include enough detection objects to make them be 
1% of the total storage. This gives a probability p of jamming a protection object as 
p = O.Ol. We can then represent the continued jamming as a binomial distribution 
with n jamming attempts as trials and the i successes as jamming of detection ob­
jects. We have the binomial distribution function 

PIX$;il= ,L(~)in-pf·k (1) 
o,.:;~ru 

with X being the number of jamming changes made to detection objects. With 1% of 
the total storage being detection objects, the probability of detecting the jammer after 
300 changes is 0.95, and 0.63 after only 100 changes. If the percentage of detection 
objects is raised to 2%, then the probability of detection becomes 0.95 after only 150 
changes are made. From this we see that a moderately sized set of data, say 
10 000 storage objects, is efficiently protected by detection objects. With 2% of the 
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members as detection objects, our example data set has 9800 protected data items 
and we have a 95% chance of detecting the jammer after less than 150 of the pro­
tected data items have been jammed. On the other hand, if we have only 100 objects 
in the data set then the entire set could be compromised with only a 63% chance 
that the detection objects would reveal the jamming. The answer in this case (small 
sets of data) is to use a much higher proportion of detection objects. If we add 100 
detection objects to protect a set of 100 objects, then the probability of jamming a 
detection object is one-half. This gives us a 97% chance of detecting the jamming af­
ter only five data items have been changed. The reduced efficiency is tolerable for 
smaller sets. 

Detection objects only protect the sets of data to which they correspond. For ex­
ample, if there are two databases aircraft tracks and flight plans on a system, with 
detection objects inserted into database aircrqft tracks but not database flight plan, 
and a jammer only modifies database flight plan, then the jamming will not be de­
tected. The exact meaning of "correspond" is not straightf01ward. It is difficult to as­
sert that a given set of protection objects "protects" a specific set. We might say that 
a detection object y protects a set P of data items if y is a member of P. However, the 
jammer might only be designed to select a subset of P. If we call J the set of all data 
items that could potentially be modified by a given jammer j and D the set of all de­
tection objects, then the set ~ is the set of all detection objects that are also in J, 
that is ~={xI xE J and xED}; in our binomial distribution example ~ contained 200 
detection objects. Likewise ~ is the set of all protected data items that are in J, that 
is, ~ = {xl x E J and x ~ D}; in our example~ contained 9800 protected data items. If 
Dj is non empty then we can say that ~ protects ~ against jammer j. So we see that 
detection objects protect data items against specific jammers that target both those 
data items and some of the detection objects. The problem of exactly specifying the 
set of all jammers that might be detected by a given set of detection objects is a diffi­
cult one and beyond the goals of this paper. (It is related to the set cover problem 
which is NP-complete.) 

4.1 Preserving lndistingalshability and Sensitivity 
Our discussion up to this point has little significance unless we can implement de­
tection objects that preserve indistinguishability and sensitivity. We can implement 
plausibly indistinguishable detection objects by using the types, schema, class defi­
nitions, etc. of the data items we intend to protect. We can further preserve indistin­
guishability by storing plausible values in the detection objects. The conditions that 
a jammer may select on are not limited to stored values from a single system state. 
Other attributes may be used: for example time of last update, a pointer value in the 
representation of the data (e.g. jam all linked list entries where the link value is odd), 
and data item names (e.g. jam all files whose names begin with the letter Q). The 
jammer may also look at more than one state, in order to jam only those data items 
that change rapidly. The closest approximation to complete indistinguishability re­
sults when we create detection objects with values of every attribute chosen using 
the same distribution as the corresponding values in the protected objects. In practi­
cal cases, we can estimate the distributions, since practical jammers that could de­
tect flaws in our estimated distributions would be both difficult to write and also 
relatively large programs. We consider this latter characteristic to be undesirable 
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(from the malefactor's perspective) in malicious software because it significantly in­
creases the likelihood that the malicious software will be detected for some reason 
other than modifying a detection object. 

Preserving sensitivity can be difficult and can conflict with indistinguishability. If 
applications are to leave detection objects alone, then there must be some means for 
the applications to distinguish the detection objects. There are two risks here: first, if 
such an attribute is in use, the jammer may be able to discover it; second, the jam­
mer may be a Trojan horse in an application and may use the application logic to by­
pass the detection objects, without discovering what the distinguishing attribute is. 
Commingled-Object Detection 

One alternative strategy for preserving sensitivity is not to have a distinguishing at­
tribute, that is, only the detection process will be able to determine if a given data 
item is in fact a detection object. With this approach, the detection process installs 
the detection objects in the data structures of the protected system and records 
some attribute of the installed object (such as an address) that the detection process 
can use to identify it later as a detection object. Under these circumstances, a pro­
gram would change the detection objects if those objects were accessed by the pro­
gram. To effectively scan for jamming, the detection process would first reset all of 
the detection objects to the proper state and then run the programs to be scanned. 
The scanned programs would be run using a script which should cause the pro­
grams to set the detection objects to another proper state. If the some of the detec­
tion objects are not in the expected state, then there may be jamming. We call this 
strategy commingled-object detection because it intersperses detection objects with 
protected data items. 

If detection objects are commingled with application or system data, their con­
tents may be returned as part of a query. To prevent this, the detection process can 
provide a service or call that identifies detection objects, such as isDetectionObject(x) 
so that they need not be displayed. We need to restrict this service so that a jammer 
cannot use it to escape detection. Since we only try to detect jamming by having the 
detection process invoke a program against a predefined script, use of the identifica­
tion service can be restricted to processes that are not being invoked to detect jam­
ming. If a process has been invoked for the purpose of scanning it for jammers, then 
the detection process can always return false when asked if an object is a detection 
object. 
Example4 

Suppose we wish to protect an air traffic control system from jamming by using com­
mingled objects. Our protected system has two databases: aircraft-tracks and flight-
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plans, as shown below. Detection objects are shaded; there are two of them in this 
example: 

flight-plans aircraft-tracks 

Flight Origin De tination ETA Flight Course Speed Altitude 

BA282 LHR lAD 0935 BA282 290 1250 40000 
PA73 MSY FRA 1410 PA73 075 625 37000 
'rw37 LHR JFK 0940 TW37 285 595 34000 
QQ99 FRA BWI 1105 QQ99 085 595 33000 

Figure 1 Commingled-object detection 

The detection process could identify the detection objects in flight-plans and flight­
tracks as the fourth object in each table. To check or scan the software that manages 
flight-plans, the detection process could execute an update that setflight-plans.eta 
to Ill 0 where flight-plans.jlight was QQ99. Before executing this test command via 
a script, the detection process would set the fourth record in flight-plans to the 
known state shown above and also set the fourth record in aircraft-tracks to the 
known state shown above. The detection process would then run the command to 
update QQ99 in flight-plans. After running the command, it would check both the 
fourth record inflight-plans and the fourth record inflight-tracks. If the altitude for 
QQ99 was 37 000 instead of 33 000, the detection process would indicate probable 
jamming to the system security officer. If the jamming software changed the altitude 
of1W37, this would not be picked up by the detection process. Also, if the altitude of 
QQ99 was changed by a radar sensor update, the detection process would either 
have to resolve the change or raise a false alarm. 

Commingled-object detection is suitable for protecting data that does not change 
frequently. If there are lots of updates taking place, these updates may interfere with 
the scanning. A detection object may be changed by a program that is not being 
scanned. This interference would require the detection process to log and monitor all 
updates in order to resolve possible problems. Commingled-object detection is also 
less effective against slow jammers that may decide not to jam on every program in­
vocation. 
QuarWltine Approaches 
Another alternative for preserving sensitivity is to have the distinguishing attribute 
be implicit and not available to potential jammers. This strategy can be carried out 
in three ways: quarWltine systems, quarWltine subsystems, and quarWltine applica­
tions. The quarantine system approach is the easiest to explain and also the most 
powerful detection mechanism. A quarantine system is a copy of the system to be 
protected. It has all of the programs that run on the protected system. All of the data 
in the quarantine system is put there by a script that leaves the quarantine system 
in a predetermined state at all times. The script uses exactly the same data defini­
tions, metadata, class definitions, etc. as the system to be protected. No users are 
accessing the quarantine system and it is not connected to any operational system. 
The script can be designed to loop continuously so that the quarantine system is al­
ways active and under a plausible load. All of the data in the system can be checked 
quickly by the background detection process because the data is in a predetermined 
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state that is known to the detection process. In a quarantine system. the set of pro­
tected data items ~ is empty and the set of potentially modified detection objects DJ 
has 100% of the data items in J, for any januner J. The quarantine system protects 
any operational system that has precisely the same software installed. To the extent 
that the operational system has other software installed, it is unprotected. It might 
be possible for a januner to avoid detection by only activating itself on certain instal­
lation specific parameters such as memory size or number ofi/0 buffers configured. 
To allow for this. the script can be run against the quarantine system under an ap­
propriate variety of installation parameters. 

A quarantine system does not have to be at the same location as the system it 
protects. A complete copy of a new or upgraded system can be set up and run before 
copies of it are sent out to operational sites. After the copies of the system are run­
ning at the operational site, the quarantine system can continue to run in parallel, to 
protect against jammers that use a delay mechanism. This approach could also be 
used to save time, by doing some quarantine processing before operational use. but 
completing the processing while systems were in operation. The quarantine system 
does not have to be as large or complete as the operational systems it protects. It 
only needs to be able to run all of the software under the same installation parame­
ters as the protected systems. 

ExampleS 
Suppose we set up a quarantine system to protect our air traffic control system. On 
a separate hardware platform, we install the air traffic control software, with simu­
lated inputs controlled by the detection process. Our two databases have the same 
format as before but every record in the database is a detection object. 

Flight-Plans Aircraft-Tracks 

Flight Origin Destination ETA Flight Course Speed Altitude 

QQ37 utR JFK 0940 QQ37 285 595 34000 
QQ99 FRA BWI 1105 QQ99 085 595 33000 

Figure 2 Quarantine-system detection objects 

Now the detection process can run a command that should setjlight-plans.eta to 
1110 where jlight-plansjlight was QQ99. There is no need to preset any data and 
there is no possibility of interference from an application or system process. Also, 
the detection process is much simpler because it does not need to distinguish detec­
tion objects from protected data items. After the update, the detection process can 
detect any bogus change to any part of each table. For instance, if the jammer swaps 
aircraft-tracksjlightvalues while it is supposed to be updatingjlight-plans. then it 
will be detected. Quarantine systems will detect slow januners, random bit-level bar­
rage januners, spot januners. programs that jam by changing data outside their own 
application, and programs that jam by deliberately writing incorrect values. 

A quarantine subsystem is like a quarantine system that runs on the same hard­
ware as the operational system it protects. The quarantine subsystem is set up as a 
protected subsystem that runs the same software and uses the same data defini­
tions. metadata. etc. as the protected system. Predefined scripts exercise the soft-
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ware arid always leave the data in a predetermined state. Once again, the set Fj is 
empty and the set l)_j has 100% of the data items in J, for any jammer j. In this case, 
the operational software is protected to the extent that potential jammers are unable 
to determine that they are currently executing against the quarantine subsystem. 
Example6 
Suppose we decide to protect our air traffic control system with a quarantine sub­
system. Now we have four databases, as shown below: 

Flight-Plans-1 Alrcraft-Tracks-1 

Flight Origin Destination ETA Flight Course Speed Altitude 

Flight-Plans-2 Aircraft-Tracks-2 

Flight Origin Destination ETA Flight Course Speed Altitude 

BA282 LHR lAD 0935 BA282 290 1250 40000 
PA73 MSY FRA 1410 PA73 075 625 37000 
TW37 LHR JFK 0940 TW37 285 595 34000 

Figure 3 Quarantine-subsystem detection objects 

In this case, jlight-pl.ans-1 and aircraft-tracks-1 form the quarantine subsystem. 
The databasesjlight-plans-2 and aircraft-tracks-2 form the operational air traffic con­
trol system. All four tables are on the same platform. The detection process exercises 
the operational software againstjlight-plans-1 and aircraft-tracks-1 . All of the values 
injlight-plans-1 and aircraft-tracks-1 are put there by the detection process, so the 
detection process is as simple as the quarantine subsystem but able to detect the 
same wide range of jamming behaviors. 

A quarantine application is like a partial quarantine subsystem. Instead of using 
all of the programs and data definitions of the operational system, a quarantine ap­
plication runs a script against the programs, data definitions, metadata, etc. of a 
single application. 
4.2 Detection Objects in the System Ufe Cycle 
The efficacy of a detection object defense is significantly influenced by the way it is 
included in the system life cycle. Some parts of a detection object defense should be 
deferred until late in the development process, or even until after the system has 
been installed. Choice of the actual detection objects and the scripts used by the de­
tection process should be deferred until the system is in its final form and no new 
code is likely to be introduced. It might be preferable to have the detection objects 
and the corresponding scripts developed by the system security officer, or by a sepa­
rate development team. The critical point is that the indistinguishability of the detec­
tion objects depends on the assumption that the person designing the jamming 
software does not know the specification of the detection objects, or the scripts that 
will be run against them. It should be easier to achieve this if the specific detection 
object design is done after the software and firmware for a system has been put in 
place. 
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On the other hand, the background detection process should have an open design 
that is carefully integrated with the system it protects. It should be a high-assurance 
component that is shown to scan correctly, protect itself from tampering, and protect 
the identity of the detection objects and their associated scripts. The ability to pro­
tect itself from tampering must be relatively high assurance, since it is intended to 
function in a an environment where random modification of data is taking place. The 
best means for doing this is probably something like an assured pipeline or extended 
trusted path. In any case, the background detection process should be included in 
the early phases of the system life cycle. 

4.3 Scanning Detection Objects 
The overall efficiency of a detection-object defense depends on not only careful man­
agement of storage for detection objects but also on low overhead for the scanning 
process. It should be possible to compare the actual value of the detection object 
with the expected value stored by the background detection process with relatively 
few machine cycles. 

The granularity of the checks is significant. If we are only interested in detecting a 
change to our current set of detection objects, then a simple checksum over the en­
tire set via a polynomial code will suffice. We probably want to do more than that. 
Locating the precise changes made by a jammer will help us to locate not only the 
jammer but any possible damage it may have done to our operational data. There­
fore, we want to be able to compare individual detection objects with their expected 
values. Unfortunately, to do this we have to store the expected bit-level representa­
tion of each detection object, along with any access structures it may be embedded 
in. This problem becomes even harder when we maintain a plausible history for our 
detection objects. The size of the store we need to maintain is a function of the length 
of the cycle we want our history to run through; if we have d detection objects of size 
1 and we want to change the state of all detection objects twice in our plausible his­
tory, then we need a minimum of 3d units of storage to be able to compare each de­
tection object to its expected value. We can mitigate this problem by using data 
compression and off-line storage. We can also develop a hierarchy of checksums. 
Each set of detection objects can be partitioned, with checksums for each block of 
the partition. This partitioning can be repeated until the desired granularity of 
checking is reached. 

Large-granularity detection objects need fewer distinguishing attributes to main­
tain sensitivity; sets of detection objects look more like the real thing. This is one of 
the merits of the quarantine systems approach over the commingle-object approach. 
It is easier to construct an initial checksum that covers all detection objects. 

Scripts that are used for jamming detection must satisfy the same properties as 
the detection objects. The commands in the scripts must be indistinguishable from 
plausible application or system commands that might be run against the data items 
to be protected. The scripts must, for each state transition, leave all of the detection 
objects in the predefined state expected by the detection process. Additionally, the 
commands of the script must not allow other processes to modify detection objects. 
Finally. the scripts themselves must be inaccessible to jammers. A jammer could in­
spect the scripts so as to avoid jamming against the detection system. 
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4.4 Assurance 

An effective detection object system should have assurance that it satisfies the two 
properties of indistinguishability and sensitivity. It should also have assurance that 
the protected subsystem cannot be tampered with or observed. 

5 Summary 

The real-world operations of modern organizations can be disrupted by storage jam­
ming of their supporting information systems. The objective of the jammer is to re­
duce data quality without being discovered and there are many ways to accomplish 
this. 

Storage jammers can be described in terms of the condition they use to select 
data items to jam and the condition they use to chose bogus values. This paper has 
shown eleven aspects of storage jamming strategy. A system's vulnerability to stor­
age jamming may be measured in terms ofinterceptibility, accessibility, and suscep­
tibility. Our concern has been to reduce susceptibility. Susceptibility can be reduced 
by first following certain general system engineering practices and then adopting 
specific anti-jamming techniques. There are several security-oriented data integrity 
approaches that do have anti-jamming properties, but they all depend on showing 
partial correctness in all application and system software. In this paper we show 
how only a small subsystem needs to be trusted in order to provide significant anti­
jamming protection. The most promising mechanism is a background detection pro­
cess that can detect jamming in a timely fashion because data has been organized to 
allow this. Three possible data organization approaches are specialized data integrity 
constraints, multi-process multi-domain transactions, and detection objects. 

A detection object is an abstract mechanism that overcomes the difficulty of 
checking computation by always remaining in a predictable state. If a detection ob­
ject is not in its expected state, then jamming is probably taking place. Detection ob­
jects must satisfy two properties: indistinguishability ijammers cannot distinguish 
detection objects from other data) and sensitivity (high probability that an unexpect­
ed detection object state indicates jamming). Possible implementations of detection 
objects include the commingled-object, quarantine system, quarantine subsystem, 
and quarantine application approaches. Design and implementation of detection ob­
jects and their associated scripts should be deferred until late in a·system's life cy­
cle. On the other hand, the design and integration of the background detection 
process should be started as early as possible in a system's life cycle. A detection ob­
ject system should be able to quickly scan its detection objects, a function best per­
formed by a checksum computed over many objects. Additional scanning techniques 
should be used to allow the detection object system to pinpoint the jammed data. 

It is not clear that our proposed anti-jamming mechanisms would be effective in 
preventing fraud. Fraud is most likely to be carried out by causing improper se­
quences of correct commands, with an eye to moving assets outside the system. 
These sequences are improper because the humans initiating them are initiating 
them with improper input. Furthermore, the human who wishes to receive the as­
sets diverted by computer fraud does not want degraded system operation, but cor-
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rect allocation of resources to the wrong destination. It may be possible to define 
certain kinds of fraud that would be detected by our mechanism, but we believe that 
more specific measures that enforce separation of duties on users or roles are more 
appropriate. In many cases, the jamming detection software would not detect the 
fraud because the improper sequences of commands might not do anything to a de­
tection object. 

6 References 

Boebert, W.E. And Kain, R.Y. (1985) A practical alternative to hierarchical integrity 
policies, in Proceedings of the 8th National Computer Security Conference (Gaithers­
burg, Maryland). 18-28. 

Clark, D.D. and Wilson, D.R. (1987) A comparison of commercial and military com­
puter security policies, in Proceedings of the IEEE Symposium on Securi.iy and Priva­
cy (Oakland, California). 184-194. 

Defense Science Board. ( 1994) Report of the Summer Study Task Force on Information 
Architecture for the Battlefield, December 20, 1994. 

Hinke, T. ( 1988} DBMS technology vs. threats, in Database Security: Status and Pros­
pects, ed. C. Landwehr, North-Holland, Amsterdam, 57-87. 

Katzke, S.W. and Ruthberg, Z.G. (editors). (1989} Report of the Invitational Workshop 
on Integrity Policy in Computer Information Systems (WIPICS), NIST, Special Publica­
tion 500-160. 

Ruthberg, Z.G. and Polk, W.T. (editors). (1989} Report of the Invitational Workshop on 
Data Integrity. NIST, Special Publication 500-168. 

Sandhu, R.S. (1988) The schematic protection model: its definition and analysis for 
acyclic attenuating schemes. JACM 35, 2. 404-432. 

Sandhu, R.S. (1989} Terminology, criteria and system architectures for data integri­
ty. In Report of the Invitational Workshop on Data Integrity (Ruthberg, Z.G. and Polk, 
W.T. editors}, NIST, Special Publication 500-168. 

Sandhu, R.S. (1991) Separation of duties in computerized information systems. In 
Database Security W: Status and Prospects (Jajodia, S. and Landwehr. C.E .. edi­
tors). North-Holland, 179-189. 

Sandhu, R.S. and Jajodia, S. (1990) Integrity mechanisms in database management 
systems, in Proceedings of the 13th NIST-NCSC National Computer Security Confer­
ence (Washington, DC). 526-540. 

Thomsen, D.J. and Haigh, J.T. (1990} A comparison of type enforcement and Unix 
setuid implementation of well-formed transactions, in Proceedings of Sixth Annual 
Computer Security Applications Conference (Tucson, Arizona). 304-312. 

Wiseman, S., Terry, P., Wood, A., and Harrold, C. (1988) The trusted path between 
SMITE and the user, in Proceedings of the IEEE Symposium on Security and Privacy 
(Oakland, California}. 147-155. 

Wiseman, S. (1991) The control of integrity in databases, in Database Security W: 
Status and Prospects, (JAJODIA, S. and LANDWEHR. C.E., editors). North-Holland, 
191-203. 



Storage jamming 381 

7 BIOGRAPHIES 

John McDermott has been active in computer security research since 1987. Here­
ceived his Ph.D. from George Mason University in 1994. His current interests in­
clude computer security, database systems, and distributed systems. David 
Goldschlag has been active in computer security research and formal methods since 
1986. He received his Ph.D. from the University ofTexas at Austin in 1992. His cur­
rent interests include computer security, intelligent agents, and formal methods. 


