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Abstract 
Database systems for real-time applications must satisfy timing constraints associated 
with transactions, in addition to maintaining data consistency. Multilevel security re­
quirements introduce a new dimension to transaction processing in real-time database 
systems. In this paper, we propose a novel concurrency control protocol that can meet 
the real-time, security, and serializability conditions using a primary copy and a secondary 
copy for each data object. First, we discuss the conflicting nature of the requirements and 
then present our protocol. We state and prove the properties characterizing our protocol. 
The implementation details of the data object representation and the additional pro­
cessing overhead are also discussed. Finally, opportunities for tuning the protocol to suit 
different application domains are presented. 

1 INTRODUCTION 

Database security is concerned with the ability of a database management system to 
enforce a security policy governing the disclosure, modification or destruction of infor­
mation. Most secure database systems use an access control mechanism based on the 
Bell-LaPadula model (Bell and LaPadula, 1976). This model is stated in terms of sub­
jects and objects. An object is understood to be a data file, record or a field within a 
record. A subject is an active process that requests access to objects. Every object is 
assigned a classification and every subject a clearance. Classifications and clearances are 
collectively referred to as security classes (or levels) and they are partially ordered. The 
Bell-LaPadula model imposes the following restrictions on all data accesses: 

a) Simple Security Property: A subject is allowed read access to an object only if the 
former's clearance is identical to or higher (in the partial order) than the latter's clas­
sification. 
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b) The *-Property: A subject is allowed write access to an object only if the former's 
clearance is identical to or lower than the latter's classification. 

A real-time database management system (RTDBMS) is a transaction processing sys­
tem where transactions have explicit timing constraints. Typically a timing constraint 
is expressed in the form of a deadline, a certain time in the future by which a transac­
tion needs to be completed. In a real-time system, transactions must be scheduled and 
processed in such a way that they can be completed before their corresponding deadline 
expires. Conventional data models and databases are not adequate for time-critical appli­
cations. They are designed to provide good average performance, while possibly yielding 
unacceptable worst-case response times. As advances in multilevel security take place, 
MLS/DBMSs are also required to support real-time requirements. As more and more of 
such systems are in use, one cannot avoid the need for integrating real-time transaction 
processing techniques into MLS/DBMSs. In (Son 1993 and David 1995), the security 
impact on real-time database systems is studied, but to the best of our knowledge, no 
work has been reported on developing DBMSs that are multilevel secure and that support 
real-time requirements. 

While the Bell-LaPadula model prevents direct flow of information from a higher access 
class to a lower access class, the conditions are not sufficient to ensure that security is not 
violated indirectly through what are known as covert channels (Lampson 1973). A covert 
channel allows indirect transfer of information from a subject at a higher access class to a 
subject at a lower access class. Especially, in the context of databases where concurrency 
control is used to manage the concurrent execution of operations by different subjects on 
the same data object, a covert channel arises when a resource or object in the database 
is shared between subjects with different access classes. The requirements of maintaining 
database consistency and the need to allow aborting a low-priority transaction when a 
high-priority transaction with conflicting data requirements arrives, have a potential to 
create a covert channel. For a more detailed description of the problem of concurrency 
control in secure databases, the reader is referred to (David and Son 1993, David et al. 
1995). In this paper, we concern ourselves with concurrency control mechanisms that have 
to satisfy both security and real-time requirements. In particular, we deal with database 
security that allows read-down (Simple security property) but does not allow write-up 
(Ammann et al. 1992). In other words, 

(1) A transaction T cannot read a data object d unless level(T);:::level(d). 
(2) Transaction T cannot write a data object d unless level(T)=level(d). 

The main objective of this paper is to present a concurrency control protocol that 
satisfies the data security, the data consistency, and the real-time requirements without 
introducing covert channels. Our protocol is based on the basic two-phase locking (2PL) 
and supports the following. properties: 

(1) All committed transactions are serializable. 
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(2) A low-level * transaction is neither delayed (delay security) nor otherwise affected 
(value security) due to data contention with high-level transactions. 

(3) A high-priority transaction is neither blocked nor aborted by low-priority transactions 
due to data contention on low-level data. 

( 4) It is possible to trade-off serializability and non-interference for improved capability in 
meeting transaction deadlines. 

The paper is organized as follows. In Section 2, we discuss the correctness issues for 
secure schedulers. The interaction between security and real-time system requirements 
is discussed in Section 3. The impact of the basic two-phase locking on both real-time 
and secure systems is illustrated in Section 4. In Section 5, we describe the database 
and transaction model adopted in the paper. Section 6 has the details of the proposed 
protocol, referred to as SRT-2PL. We state and prove some of the important properties of 
our protocol in Section 7. The system trade-offs stated in objective (4) above are discussed 
in Section 8. Finally, Section 9 summarizes the results and future work. 

2 CORRECTNESS OF SECURE SCHEDULERS 

Covert channel analysis and removal is the single most important issue in multilevel secure 
concurrency control. The notion of non-interference has been proposed as a simple and 
intuitively satisfying definition of what it means for a system to be secure (Goguen and 
J. Meseguer 1982). The property of non-interference states that the output as seen by a 
subject must be unaffected by the inputs of another subject at a higher-level. This means 
that a subject at a lower-level class should not be able to distinguish between the outputs 
from the system in response to an input sequence including actions from a higher level 
subject and an input sequence in which all inputs at a higher level have been removed 
(Keefe et al. 1990). 

An extensive analysis of the possible covert channels in a secure concurrency con­
trol mechanism and the necessary and sufficient conditions for a secure, interference-free 
scheduler are given in (Keefe et al. 1990). Three of these properties are of relevance to 
the real-time secure two phase locking protocol discussed in this paper. For the following 
definitions, given a schedule s and an access level l, purge( s, l) is the schedule with all 
actions at a level> l removed from s. 

1) Value Security: A scheduler satisfies this property if values read by a subject are 
not affected by actions with higher subject classification levels. Stated formally, for an 
input schedule p, the output schedule s is said to be value secure if purge( s, l) is view 
equivalent to the output schedule produced for purge(p, 1). 
2} Delay Security: This property ensures that the delay experienced by an action is 
not affected by the actions of a subject at a higher classification level. For an input 
schedule p and an output schedule s, a scheduler is delay secure if for all levels l in 
p, each of the actions a1 in purge(p, l} is delayed in the output schedule produced for 
purge(p, l} if and only if it is delayed in purge(s, 1}. 

*Here, the term level is used to refer to the security classification and priority to refer to the real-time 
classification. 
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3) Recovery Security: A set of transactions is in a deadlock state when every transaction 
in the set is waiting for an event that can only be caused by another transaction in 
the set (such as release of a lock). Deadlock is a problem unique to locking protocols 
and is not an issue in timestamp schedulers and optimistic concurrency control. Even 
these schedulers, however, can reach a state from which they cannot continue without 
aborting one or more transactions. For simplicity, these two conditions are lumped 
together and called as deadlock (Keefe et al. 1990). 

The concurrency control protocol discussed in this paper satisfies all the three proper­
ties. The details are presented in Section 7. 

3 SECURITY AND REAL-TIME REQUIREMENTS 

The property of non-interference has the unfortunate effect of degrading performance for 
transactions at a higher level. In a secure environment, a transaction at a higher level: 

• cannot cause the aborting of a transaction at a lower level. If it is allowed to do so, it 
is possible that it can control the number of times a lower level transaction is aborted, 
thereby opening a covert channel. 

e cannot conflict with a transaction at a lower access class. If such a conflict does occur, 
the higher level transaction has to be blocked or aborted, not the low level transaction. 

• cannot be granted greater priority of execution over a transaction at a lower access 
class. 

There have been a number of papers in the real-time databases literature that have 
explored priority based scheduling approaches with respect to conventional databases 
(Abbot and Garcia-Molina 1992, Sha et al. 1990, Son et al. 1992). The priority usually 
reflects how close the transaction is to missing its deadline. Priority-based scheduling of 
real-time transactions, however, interacts with the property of non-interference which has 
to be satisfied by secure schedulers (Keefe et al. 1990). For example, take the sequence of 
transactions input to a scheduler as shown (the transactions arrived in the T1 , T2, T3, T4 
order): 

T1 (SECRET) 
T2 (UNCLASSIFIED) 
T3 (UNCLASSIFIED) 
T4 (UNCLASSIFIED) 

R(X) 
W(X) 

W(X) 
R(X) 

Assume that Tt, T2 , T3 and T4 have priorities 5, 7, 10 and 12 respectively and the 
priority assignment scheme is such that if priority(T2) > priority(T1 ), then T2 has greater 
criticalness and has to be scheduled ahead of T1• In the above example, T2 and T3 are 
initially blocked by T1 when they arrive. When T1 completes execution, T3 is scheduled 
ahead of T2 , since it has a greater priority than T2 and the transaction execution order 
would be Tt,T3,T2,T4. However, if the transaction T1 is removed, the execution order would 
be T2,T3,T4 because T2 would have been scheduled as soon as it had arrived. The presence 
of the SECRET transaction T1 thus changes the value read by the UNCLASSIFIED 
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transaction T4 , which is a violation of value security. Delay security is also violated, since 
the presence of T1 delays both T2 and T3. 

Therefore, to satisfy the correctness properties discussed in Section 2 (to close all covert 
channels), we see that a very high performance penalty is being paid. The proposed concur­
rency control provides mechanisms by which both security and real-time system require­
ments can be met by the system, and thereby avoiding the security violation conditions 
discussed above. 

4 IMPACT OF TWO-PHASE LOCKING ON REAL-TIME AND 
SECURE SYSTEMS 

Two-phase locking (2PL) is the most widely used concurrency control in database systems. 
Here, the current lock holder is never aborted due to a conflicting request from another 
transaction. The new request is blocked until the current holders release their locks. In 
some cases, the requesting transaction is aborted, and regenerated after some delay. 

The basic two-phase locking, however, does not work for secure databases because a 
transaction at a lower access class (say T,) cannot be blocked due to a conflicting lock held 
by a transaction at a higher access class (Th)· If T, were somehow allowed to continue with 
its execution in spite of the conflict, then non-interference would be satisfied. The basic 
principle behind the secure two-phase locking protocol is to try to simulate execution 
of Basic 2PL without blocking the lower access class transactions by higher access class 
transactions. Consider the transactions T1 and T2 in the above example. Since T1 arrived 
first and obtained a read-lock on x, T2 would be blocked waiting for T1 to commit and 
release read-lock on x. Such an action has a potential for covert channel, and hence 
unacceptable in a secure environment. For example, if a high-level user intends to pass 
information to a low-level user, in violation of the *-property, the two users could adopt 
the following protocol: 

(i) The high-level user generates a HIGH transaction and the low-level user generates a 
LOW transaction, each consisting of just one operation on a data object x at low-level. 

(ii) At time t, the HIGH transaction submits a read on x when it wants to send bit 1, 
and submits none if it wants to send bit 0. Shortly thereafter, the LOW transaction 
submits a write on x. 

(iii) In the absence of other transactions contending for x, when HIGH has read-locked 
x, LOW is either blocked or aborted. When HIGH has not submitted any lock re­
quest, LOW is granted the lock immediately. In this way, high-user can covertly send 
information to low-user due to the violation of the delay security. 

Suppose we were to modify the basic 2PL for a real-time environment where meeting 
the deadlines is the main objective. In this case, whenever a high-priority job (probably 
with a closer deadline) has a conflicting lock request with a low-priority lock holder, the 
current holder is aborted and the lock is reassigned to the high-priority job. Once again, 
there is a potential for a covert channel. 

(i) The high-level user generates a HIGH transaction at high-priority and the low-level user 
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generates a LOW transaction at a low-priority, each consisting of just one operation 
on a data object x at low-level. 

(ii) At time t, the LOW transaction submits a write on x. Shortly thereafter, the HIGH 
transaction submits a read on x if it wants to send bit 1; submits none if it wants to 
send bit 0. 

(iii) In the absence of other transactions contending for x, a. write-lock would be initially 
granted to LOW. However, on the arrival of HIGH's request, LOW is aborted. When 
HIGH has not submitted a. lock request, and in the absence of other high-priority 
contentions for x, LOW completes its transaction. In this way, a. high-user can covertly 
send information to low-user. 

The proposed concurrency control protocol is intended to avoid both these situations. 

5 DATABASE SYSTEM MODEL 

Our model of the database system has three components: (i) Transaction manager (ii) 
Resource Scheduler, and (iii) Data. manager. 

5.1 Transaction Manager (TM) 

All user transactions arrive at the transaction manager. It is responsible for 

1. Requesting and obtaining all required locks for each transaction from the lock manager 
prior to the beginning of transaction execution (no new lock requests are generated by 
a. transaction during its execution), 

2. Requesting the scheduler for execution of individual operations of a. transaction, and 
3. Committing or aborting a. transaction, and requesting for the release of the locks held 

by the transaction. 

The lock manager component of TM is responsible for managing the locks. Here we 
assume that a. lock status is: unlock, read-lock, or write-lock. In addition, the usual lock 
conflict rules are applied: (i) If a. data. object is unlocked, either read/write lock can be 
granted. (ii) If a. data. object is read-locked then only read-lock requests can be granted; 
write-locks will be blocked (or denied); (iii) If a. data. object is write-locked then both read 
and write lock requests are blocked (or denied). 

The other functions of the transaction manager include obtaining resources from the 
resource scheduler during transaction execution. In order to enforce the three types of 
security discussed in Section 2, it is necessary that the transaction manager be a. trusted 
component. 

5.2 Resource Scheduler (RS) 

Once a. transaction has procured all the required locks, it can start its execution. Now it 
needs to do the actual read/write accesses to the database as well as obtain CPU and 1/0 
time for the operations. The resource scheduler is responsible for these allocations. In par­
ticular, it should take the timing requirements (e.g., deadlines) of individual transactions 
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into consideration while allocating the resources. Once again, the resource scheduler is to 
take into account both the real-time requirements and the non-interference properties of 
database security. For this reason, this component is assumed to be trusted. 

5.3 Data Manager (DM) 

The data manager is responsible for managing (i.e., providing the read and write op­
erations) the data objects. To provide for non-interference between the high-level and 
low-level transaction requests, the data manager maintains a primary and a secondary 
copy for each data object. While the primary copy is used for read/write accesses by 
transactions that are at the same security level as the object, the secondary copy is used 
for read accesses by higher level transactions. For example, a data object X created by 
a confidential user will have the primary copy made available for read/write access by 
the confidential users. The secondary copy of X is used for read-only access by the se­
cret and top-secret users. Accordingly, a read/write access on the primary copy is never 
blocked due to the presence of readers on the secondary copy. Similarly, a high-priority 
read-access operation on the secondary copy is never blocked due to low-priority writers 
on the primary copy. 

6 SRT-2PL: SECURE REAL-TIME TWO-PHASE LOCKING 
PROTOCOL 

As stated earlier, the proposed concurrency protocol only resolves the security and real­
time system problems arising due to data contention. Accordingly, we concentrate only 
on these problems, and let the other resource allocation problems (i.e., CPU and 1/0 
scheduling) be handled using existing methods (Kao and Garcia-Molina 1994, Rajkumar 
et al. 1995). 

6.1 Data Object Representation 

A key aspect of our protocol is the method used to represent the data objects so as to 
meet objectives (1)-(4) stated in Section 1. We describe the proposed representation here. 

• Each data object has a primary and a secondary copy. 
• The primary copy P., of an object xis maintained as a normal data object. It is accessed 

(read/write) by transactions at the same security level as the object. (Since we do not 
allow write-up operations, it can only be updated by transactions at the same level.) 

• The secondary copy is accessed (read) by transactions at a security level higher than 
the data object (i.e., for read-down operations). It is maintained as two data structures: 

(i) A normal data object, S.,, and 
(ii) a single queue of updates, Q.,. 

The queue Q., contains updates that have been performed (in that order) on the primary 
copy (P.,) but yet to be performed on the secondary copy (S.,). Each update entry in 
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Q.,, say Q.,[j], has a set of transaction identifiers (IDs) associated with it. We refer to 
the set as T I D.,[j]. 

In other words, the primary copy of a data object is read and updated by transactions 
at the same security level as the data object. The secondary copy, however, is accessed 
by transactions at higher security levels than the data object itself, and only for read 
operations. The management of secondary copies is the responsibility of the data manager. 

The details of the maintenance of these data structures is explained below. 

6.2 The Protocol 

Here, we describe our protocol for concurrency control. The rules according to which our 
protocol manages its locks and operations are as follows: 

• Each transaction needs to procure all the required locks before starting its execution. 
In other words, strict static locking is assumed in the protocol. While this requirement 
may seem unduly restrictive, it is necessary to obtain strict 1-copy serializability. In 
environments where the strict serializability condition may be relaxed, the static lock 
requirement also may be relaxed. But in this paper, we do not deal with such extensions. 

• The locking rules of the basic 2PL are followed on per copy basis. In other words, the 
primary and secondary copies of an object are treated independently for the purpose of 
resolving lock-conflicts. A read-lock request at the level of a data object is only blocked 
when the primary copy P., is write-locked. Similarly, a write-lock request at this level 
is blocked only when the primary copy is read-locked or write-locked. Especially, it 
should be noted that a write-lock request on a primary copy is never blocked due to 
the presence of read-locks on the secondary copy. Obviously, the read-lock requests on 
the primary copy are never blocked due to the read-locks on the secondary. 
The locking rule at the primary copy can, however, be changed to meet the real-time 
requirements as follows: "Abort the current holder if the requester's priority is higher." 
It should be observed that when lock conflicts arise on the primary copy, both the 
current lock holder and the requester are at the same security level as that of the object. 
Hence, such aborts, if necessary will not result in interference or covert channels. 

• Since the secondary copy is only accessed for read by high-level transactions, there are 
no data conflicts among high-level transactions. In other words, a high-level transaction 
is never blocked on its request for a read-lock on a secondary copy. 

• Though the queue of updates Q., is modified (indirectly) by transactions at the same 
level, these transactions are not required (in fact, not allowed) to obtain write-locks on 
the secondary copy. As described below, the updates are in fact placed in Q., by the 
data manager. Since, eventually the updates need to be carried out on S.,, there may 
be an interval of time during which a. high-level read operation (not a. lock request) is 
temporarily blocked while S., is being modified. While this does not violate the non­
interference property, it may violate the real-time requirements of a. high-priority high­
level reader. We avoid this problem by a. clever data. structure management discussed 
below. 

We now discuss the details of the database operations under our protocol. 
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• Read-lock request rl;[x] from transaction T;: Two cases arise: 

- Level( x )= Level(T;): Check the status of the primary copy of x. If it is unlock or 
readlock, then grant the lock. (Some complex real-time concurrency protocols such 
as OMP (Rajkumar et al. 1995) make further checks prior to granting the lock to 
T;.) If the status is writelock, then enqueue the request, abort the request, or abort 
the current holder depending on the real-time scheduling policy. (For example, if 
T; has an earlier deadline than the current holder or if it is more critical than the 
holder, then the current holder may be aborted.) As stated above, since all affected 
transactions are at the same level as x and T;, no security interference is caused by 
any of these options. 

- Level(x)< Level(T;): This is a high-level lock request for the secondary copy. Since 
the actual read operation may take place at a later time, and since it is possible that 
a secondary copy be updated during this interval, the current state of the secondary 
copy is marked by sending the current position of Q., along with the lock grant to 
the TM. In addition, if the current size of Q., is j, then the requester's transaction 
ID is added toT I D.,[j]. For example, if the update queue currently has three entries, 
then the third entry is marked and its identification returned to T;. In addition, the 
ID of T; is added to T I D.,[3]. Since there is no blocking due to data contention, 
there is no security violation due to interference. 

• Write-lock request wl;[x] from transaction T;: Obviously, both x and T; are at 
the same level and hence the operation is on the primary copy. IT the primary copy 
of x is unlocked, then grant the lock to T;. (As before, some real-time policies may 
deny lock to T; if they anticipate a higher-priority request to be arriving soon. This 
is especially relevant when aborting a current holder is disallowed.) If x is read/write 
locked, then as before, enqueue the request, abort the request, or abort the holder(s) 
(i.e. the readers or the writer) depending on the real-time scheduling policy. 

• Release read-lock request rrl;[x] from transaction T;: Two cases arise: 

- Level(x)= Level(T;): Release the lock on the primary copy of x and check if any 
pending write-lock requests can be granted. 

- Level(x) < Level(T;): This is an operation on the secondary copy. Accordingly, re­
lease the lock on S., and remove the entry from the corresponding TID., entry. For 
example, if T; was informed of entry 3 at the time of lock grant, then the ID of T; 
was also added toT I D.,[3]. This entry is now removed. As discussed later, this entry 
may no longer be in the third position in Q.,. 

• Release write-lock request rwl;[x] from transaction T;: This pertains to the 
primary copy. Accordingly, release the lock on the primary copy and check if any 
pending requests can be granted a lock. 

In addition to the concurrency control-related operations (request/release locks) dis­
cussed above, we need to describe the read/write operations in the context of primary 
and secondary copies. Here is a summary of these procedures. 

• Read request r;[x] from transaction T;: 
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- Level(x)= Level(T;): The usual read operation is performed on the primary copy. 
Scheduling the operation is itself a function of the real-time resource scheduler (not 
discussed here). 

- Level(x) < Level(T;): The read operation is on the secondary copy. Accordingly, 
the corresponding read is executed as if the status of the object is the same as it 
was at the time of read-lock request grant. The read is executed as if all updates 
up to and including the identified entry (sent to T; at the time of readlock) are 
carried out on the data object. In other words, read requests from transactions T; 
and Tj, arriving at the same time, may be offered a different object view if they have 
obtained locks at different status values of Q"'. As shown later, this is required to 
maintain serializability of transactions. 

• Write request w;[x] from transaction T;: The primary copy is updated. Simul­
taneously, the latest update entry is added to the update queue Q,. of the secondary 
copy. Both these updates are done atomically. However, as discussed below, the current 
readers operating on the secondary copy may not be affected by it. 

6.3 Design Issues related to the Secondary Copy 

Since the secondary copy plays a key role in our protocol, it is important to discuss the 
design and implementation issues related to it. Here, we discuss some important issues 
and possible solutions. 

(i) When should the updates in the queue at a secondary copy be carried out on the data 
object? Once a transaction manager has received a grant for a read-lock on a secondary 
copy (due to read-down), along with the marked entry, the data manager has to guaran­
tee to the transaction that its view of the object will be unaltered until it is committed 
or aborted. At the time the transaction commits or aborts, the guarantee will expire. 
As mentioned above, this functionality is implemented using an update queue Q,. and 
a set TID., of transaction IDs with each entry in Q,.. If at any time it is determined 
that all TID,.[j] sets up to some point k are empty (i.e., Vj 1 $ j $ k TID,.[k] = ¢>) 
then these updates (up to j) may be carried out on the secondary version. All updates 
that have been carried out are automatically removed. In other words, as high-level 
readers commit/abort, the secondary copy is updated, and the updates are removed 
from the queue. These activities are coordinated by the data manager in coordination 
with the transaction manager. 

(ii) How is the superposition of update queue on the secondary copy achieved? A related 
concern is the maintenance of the update queue and presenting the data for access 
to higher-level transactions. For this we need to know the type of the object under 
consideration. Suppose it is a simple data structure such as an integer or a floating­
point variable, then a queue of integers/floating-points is maintained in Q,. and any 
read access can directly read its entry in the queue as the value. In fact, the operation 
of secondary copy update as discussed above also becomes quite simple. On the other 
hand, if is a large file, or a complex data structure such a 3-D image, then the queue 
could contain just the updates (in some predetermined format). When a transaction 
requires to read the data object with respect to a specific entry in Q,., then somehow 
the secondary copy and subsequent updates should be taken into consideration. 
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Depending on the type of data object and the availability of memory, if in fact it is 
possible to create temporary images of data objects corresponding to each transaction 
(or update), then the problem is much more simplified. There is a trade-off among 
storage space, processing overhead, and meeting the real-time deadlines. Clearly, since 
the high-level and low-level transactions access different copies, the non-interference 
property is still maintained by the scheme. 

7 PROPERTIES 

In this section, we state and prove some of the important properties of the proposed 
concurrency control protocol. For the sake of brevity, the style of the proofs is more 
intuitive and less formal. 

To prove the correctness properties (i.e., serializability), we use the simple definitions 
of history and serialization graph (SG). The formal definitions for these concepts can be 
found in (Bernstein et al. 1987). A history is a partial order of operations that represents 
the execution of a set of transactions. Any two conflicting operations must be comparable. 
Let H denote a history. The serialization graph for H, denoted by SG(H), is a directed 
graph whose nodes are committed transactions in H and whose edges are all T; -+ T; 
(if:. j) such that one of T;'s operations precedes and conflicts with one of T;'s operations 
in H. To prove that SG(H) is serializable, we only have to prove that SG(H) is acyclic 
(Bernstein et al. 1987). 

First, we focus on transactions executed at a single security level. 

Lemma 1 All transactions at a single level are serializable. 

Proof: Let the history H contain all transactions committed at level L. All transactions 
with read/write operations on data objects at level L (and no read operations at lower 
levels) are clearly serializable due to 2PL (Bernstein et al. 1987). 

However, when transactions read data at lower levels, then there can be additional 
dependencies due to the reads. Whether or not such dependencies due to lower-level 
reads, when combined with the dependencies due to operations on primary copies, create 
cycles in SG(H) is the question that needs to be resolved here. 

We claim that no such cycles are possible due to our static locking policy where a 
transaction is required to procure all locks before it starts execution. Hence, if T1 at level 
L precedes T2 (also at level L) due to read/write operations at level L, then T2 cannot 
precede T1 due to read operations at levels lower than L. This implies that there cannot 
be a cycle in SG(H) between T1 and T2• The same argument can be extended even when 
we consider more than two transactions. Hence H is serializable. • 

Property 1 All committed transactions (independent of their level) are serializable. 

Proof: Intuitively, since we have a static locking policy where a transaction is required to 
obtain all locks (irrespective of levels) prior to the beginning of its execution, we claim that 
it is not possible for any two transactions to have contradicting dependency relationships 
at different security levels. Following is a semiformal proof of this argument. 
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Consider levels L and L' where L > L' (i.e., L is HIGH and L' is LOW). Since trans­
actions at each level are serialized (by Lemma 1), let T1 --+ T2 --+ ••• T m-1 --+ T m be the 
serialization order at level L and t 1 -+ t2 --+ ••. tn-1 --+ tn be the order at level L' of 
committed transactions. (For simplicity, we assume total ordering.) 

Suppose, by way of contradiction, there is no serialization order among all these trans­
actions. Then there is a cycle in the corresponding serialization graph such that one of 
the following two cases is possible: 

Case 1: T; --+ t; --+ tk --+ T;: Since we allow only read-down operations for higher level 
transactions on lower level objects, T; --+ t; implies that there is a data object x (at level 
L') that was read by T; and later modified by t;. Similarly, tk --+ T; implies that there is a 
data object y (at level L') that was written by tk and later read by T;. Since all locks were 
obtained by T; at the beginning of its execution, it had obtained locks on the secondary 
copies of x and y also at the beginning. Hence, 

e T; --+ t; implies that t; was committed after T; started. (Note that the secondary update 
queue is atomically updated with the primary.) 

e tk --+ T; implies that tk was committed prior to T;'s start. 

From the above, we can conclude that tk was committed before t;. However, this con­
tradicts our assumption that t; --+ tk. Thus, it is not possible to have a cycle such that 
T; --+ t; --+ tk --+ T;. 

Case 2: t; --+ T; --+ Tk --+ t;: t; --+ T; implies that there is a data object x (at level L') 
that was modified by t; and later read by T;. Similarly, Tk --+ t; implies that there is a 
data object y (at level L') that was read by Tk and later modified by t;. Using the same 
argument as above for locking and secondary copy management, we have the following. 

• t; --+ T; implies that t; was committed before T; started. 
• Tk --+ t; implies that Tk started prior to t;'s commit. 

From the above we can conclude that Tk started prior to T;. Once again, since all locks 
are obtained at the beginning of a transaction execution, this implies that either Tk and 
T; are concurrent or Tk --+ T;. However, this contradicts our assumption that T; --+ Tk. 
Thus, it is not possible to have a cycle such that t; --+ T; --+ Tk --+ t;. 

Hence, since it is not possible to have a cycle in the serialization graph of committed 
transactions at levels L and L', the combined history is also serializable. The same proof 
can be extended even when transactions from more than two levels are considered. Thus, 
all committed transactions in the system are serializable. • 

Property 2 A low-level transaction is neither delayed (delay security) nor otherwise af­
fected (value security) due to data contention with high-level transactions. 

Proof: By multilevel security definition, a transaction can read/write lock data objects at 
its own level and readlock objects at lower levels. In our protocol, the former is achieved by 
locking the primary copy and the latter by locking the secondary copy. Suppose Level(T1) 

> Level(T2), the only possible cases of data contention between T1 and T2 are as follows: 
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• T1 and T2 read-down x: This is the case when Level(x) < Level(T2). Since both operate 
on the secondary copy of x, and it is a read operation, there is no data contention. 

• T1 reads-down and T2 writes x: This is the case when Level(x) == Level(T2). While T1 
operates on the secondary copy of x, T2 operates on the primary copy. Hence, there is 
no data contention. 

• T1 reads-down and T2 reads x: As before, Level(x) == Level(T2). Since both are read 
operations, there is no conflict. In addition, since T1 operates on the secondary copy 
and T2 on the primary copy, there is no interference. 

Since high-level and low-level transactions are never in conflict with each other in regard 
to data access, neither delay-security nor value-security violations are possible, due to 
data contention. • 

Property 3 A high-priority transaction is neither blocked nor aborted by low-priority 
transactions due to data contention on low-level data. 

Proof. Let T1 and T2 be two transactions such that Priority(TI) > Priority(T2). Three 
cases arise here. 
Case 1: Level(T1) > Level(T2). Suppose they both access data object x. We need to 
consider two subcases. 
Case 1a: Suppose Level(x) == Level(T2). Then, T1 is a read-down operation accessing the 
secondary copy and T2 accesses the primary copy of x. Even though, the secondary queue 
is updated atomically with respect to primary copy updates, a reader on secondary copy 
is never blocked by such updates (due to the chosen data structures). Accordingly, T2 can 
never block or delay T1 due to data contention. 
Case Jb: Suppose Level(x) < Level(T2). Here, both T1 and T2 are read-down operations 
on the secondary copy. Clearly, there is no data contention problem between T1 and T2• 

However, there may be an interference due to 1/0 or CPU scheduling. But other existing 
scheduling algorithms may be used to resolve such problems (Kao and Garcia-Molina 
1994, Rajkumar et al. 1995). 

Thus, Case 1 cannot result in blocking or delay of T1 by T2. 

Case !!: Level(T1) == Level(T2). Suppose they both access data object x. Here, we need to 
consider only the case where Level(x) < Level(T2). Clearly, both T1 and T2 are read-down 
operations and the nonblocking is argued the same way as in Case 1 b above. 
Case 3: Level(T1) < Level(T2). If they both access a data object x, we have two subcases 
to consider. 
Case 3a: Suppose Level(x) == Level(TI). Then, T2 is a read-down operation accessing 
the secondary copy and T1 accesses the primary copy of x. Since the low-level read/write 
operations are never blocked due to read-down on secondary, T1 is never blocked by T2 

due to data contention. 
Case 3b: Suppose Level(x) < Level(TI)· Here, both T1 and T2 are read-down operations 
on the secondary copy. This is similar to Case lb. 

Since cases 1-3 cover all possibilities, and under each case, the high-priority transaction 
is never blocked or delayed due to data contention on lower data, the property is always 
valid. • 
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8 REAL-TIME AND SECURITY TRADE-OFFS 

As discussed previously, the requirements of real-time systems and the multilevel secu­
rity systems combined with the restrictions imposed by the serializability criterion as 
correctness pose several design and implementation challenges. While real-time systems 
consider meeting the deadlines and hence giving importance to high-priority transactions, 
multilevel secure systems consider the non-interference with the low-level transactions as 
critical. The basic two-phase locking (where a requester waits until the conflicting lock 
holder releases the lock) with correctness condition of serializability, in fact, gets in the 
way of achieving both the above objectives. 

As discussed ea.rlier, and formally proved in Section 7, the proposed concurrency control 
achieves these objectives. However, it is not without additional cost. In order to enforce 
the non-interference property for multilevel security, we have implemented each object as 
a primary copy and a secondary copy pair. Due to the choice of the data structure for the 
secondary copy (once again dictated by the non-interference and serializability criterion), 
the operations on the secondary copy are much more expensive. Each read on this copy 
requires the superposition of update queue (Q(x) entries on to the secondary data object 
copy (S.,) and presenting it to the high-level readers. 

Real-time system designers generally argue that all operations should have predictable 
execution times. But the read-down operation is certainly not predictable in time since 
its execution time depends on the type of the object and the length of the update queue. 
In fact, in our protocol, no guaranteed bounds can be placed on the size of the secondary 
queue. 

However, this does not mean that the protocol is not suitable for real-time systems. 
Instead, the implication is that we need to make trade-offs in terms of serializability, pre­
dictability, la.rger memory, and some interference to meet the needs of specific applications. 
Here are a few suggestions for such trade-offs. 

• When meeting the real-time requirements is more important, and when it is semanti­
cally acceptable for a specific high-level (and high-priority) transaction to directly read 
the secondary copy, ignore the entries in the update queue, then let the transaction 
read S:r: directly. The additional overhead and non-deterministic execution problems 
can thus be overcome to meet the high-priority transaction deadlines. 

• When meeting the real-time deadlines of a critical high-level transaction is important 
and when it is also necessary that the transaction read the most up-to-date value, 
then let the high-level transaction read the primary copy directly, thereby reducing 
the overhead for read-downs. However, this is at the cost of interference and a possible 
covert-channel. 

• The trade-off between real-time and basic 2PL arises when a high-priority transaction 
(requester) has a. data conflict with a low-priority transaction (current lock holder). 
While the basic 2PL lets the requester wait until the lock is released, it is an unac­
ceptable solution for real-time systems. For this reason, alternate versions of 2PL such 
as Hybrid 2PL (Son et al. 1992) have been suggested to handle the problem. However, 
to avoid the possibility of covert channels, such alternates should be adopted only in a 
controlled manner. 

• Incorporate alternate correctness criteria such as the one in (Jajodia and Atluri 1992) 
and thereby more efficiently meeting the real-time and noninterference conditions. 
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While the above list is by no means exhaustive, it provides ideas of where certain types 
of trade-offs can be made and how the protocol can be implemented. 

9 CONCLUSION 

In this paper, we proposed a novel concurrency control protocol for multilevel secure real­
time database systems. While the two-phase locking is the underlying concurrency control 
mechanism, we have introduced non-interference property by having a secondary copy for 
read-down operations. In addition, it is possible to include several existing scheduling 
algorithms for both data conflict resolution and other resource allocations within the 
protocol. 

One of the main features of the protocol is its ability to be tuned to specific require­
ments. Trade-offs can be made in terms of serializability, limited interference, and limited 
missed deadlines. In fact, the fine tuning can be made by on-line monitoring of the dead­
line missing rate of important (.bigh-level) transactions, and making dynamic decisions 
as to the read-down operations anc other abort/commit decisions. This is similar to a 
feedback loop in a control system. 

We are currently in the process of simulating the protocol and observing its behavior 
quantitatively. We plan to look at different trade-off situations under different application 
domains. 
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