
14

A secure concurrency control
protocol for real-time databases

Ravi Mukkamala
Department of Computer Science, Old Dominion University
Norfolk, VA 23529-0162, USA

Sang H. Son
Department of Computer Science, University of Virginia
Charlottesville, VA 22903, USA

Abstract
Database systems for real-time applications must satisfy timing constraints associated
with transactions, in addition to maintaining data consistency. Multilevel security re­
quirements introduce a new dimension to transaction processing in real-time database
systems. In this paper, we propose a novel concurrency control protocol that can meet
the real-time, security, and serializability conditions using a primary copy and a secondary
copy for each data object. First, we discuss the conflicting nature of the requirements and
then present our protocol. We state and prove the properties characterizing our protocol.
The implementation details of the data object representation and the additional pro­
cessing overhead are also discussed. Finally, opportunities for tuning the protocol to suit
different application domains are presented.

1 INTRODUCTION

Database security is concerned with the ability of a database management system to
enforce a security policy governing the disclosure, modification or destruction of infor­
mation. Most secure database systems use an access control mechanism based on the
Bell-LaPadula model (Bell and LaPadula, 1976). This model is stated in terms of sub­
jects and objects. An object is understood to be a data file, record or a field within a
record. A subject is an active process that requests access to objects. Every object is
assigned a classification and every subject a clearance. Classifications and clearances are
collectively referred to as security classes (or levels) and they are partially ordered. The
Bell-LaPadula model imposes the following restrictions on all data accesses:

a) Simple Security Property: A subject is allowed read access to an object only if the
former's clearance is identical to or higher (in the partial order) than the latter's clas­
sification.

D. L. Spooner et al. (eds.), Database Security IX
© IFIP International Federation for Information Processing 1996

216 Part Five Concurrency Control

b) The *-Property: A subject is allowed write access to an object only if the former's
clearance is identical to or lower than the latter's classification.

A real-time database management system (RTDBMS) is a transaction processing sys­
tem where transactions have explicit timing constraints. Typically a timing constraint
is expressed in the form of a deadline, a certain time in the future by which a transac­
tion needs to be completed. In a real-time system, transactions must be scheduled and
processed in such a way that they can be completed before their corresponding deadline
expires. Conventional data models and databases are not adequate for time-critical appli­
cations. They are designed to provide good average performance, while possibly yielding
unacceptable worst-case response times. As advances in multilevel security take place,
MLS/DBMSs are also required to support real-time requirements. As more and more of
such systems are in use, one cannot avoid the need for integrating real-time transaction
processing techniques into MLS/DBMSs. In (Son 1993 and David 1995), the security
impact on real-time database systems is studied, but to the best of our knowledge, no
work has been reported on developing DBMSs that are multilevel secure and that support
real-time requirements.

While the Bell-LaPadula model prevents direct flow of information from a higher access
class to a lower access class, the conditions are not sufficient to ensure that security is not
violated indirectly through what are known as covert channels (Lampson 1973). A covert
channel allows indirect transfer of information from a subject at a higher access class to a
subject at a lower access class. Especially, in the context of databases where concurrency
control is used to manage the concurrent execution of operations by different subjects on
the same data object, a covert channel arises when a resource or object in the database
is shared between subjects with different access classes. The requirements of maintaining
database consistency and the need to allow aborting a low-priority transaction when a
high-priority transaction with conflicting data requirements arrives, have a potential to
create a covert channel. For a more detailed description of the problem of concurrency
control in secure databases, the reader is referred to (David and Son 1993, David et al.
1995). In this paper, we concern ourselves with concurrency control mechanisms that have
to satisfy both security and real-time requirements. In particular, we deal with database
security that allows read-down (Simple security property) but does not allow write-up
(Ammann et al. 1992). In other words,

(1) A transaction T cannot read a data object d unless level(T);:::level(d).
(2) Transaction T cannot write a data object d unless level(T)=level(d).

The main objective of this paper is to present a concurrency control protocol that
satisfies the data security, the data consistency, and the real-time requirements without
introducing covert channels. Our protocol is based on the basic two-phase locking (2PL)
and supports the following. properties:

(1) All committed transactions are serializable.

A secure concurrency control protocol for real-time databases 217

(2) A low-level * transaction is neither delayed (delay security) nor otherwise affected
(value security) due to data contention with high-level transactions.

(3) A high-priority transaction is neither blocked nor aborted by low-priority transactions
due to data contention on low-level data.

(4) It is possible to trade-off serializability and non-interference for improved capability in
meeting transaction deadlines.

The paper is organized as follows. In Section 2, we discuss the correctness issues for
secure schedulers. The interaction between security and real-time system requirements
is discussed in Section 3. The impact of the basic two-phase locking on both real-time
and secure systems is illustrated in Section 4. In Section 5, we describe the database
and transaction model adopted in the paper. Section 6 has the details of the proposed
protocol, referred to as SRT-2PL. We state and prove some of the important properties of
our protocol in Section 7. The system trade-offs stated in objective (4) above are discussed
in Section 8. Finally, Section 9 summarizes the results and future work.

2 CORRECTNESS OF SECURE SCHEDULERS

Covert channel analysis and removal is the single most important issue in multilevel secure
concurrency control. The notion of non-interference has been proposed as a simple and
intuitively satisfying definition of what it means for a system to be secure (Goguen and
J. Meseguer 1982). The property of non-interference states that the output as seen by a
subject must be unaffected by the inputs of another subject at a higher-level. This means
that a subject at a lower-level class should not be able to distinguish between the outputs
from the system in response to an input sequence including actions from a higher level
subject and an input sequence in which all inputs at a higher level have been removed
(Keefe et al. 1990).

An extensive analysis of the possible covert channels in a secure concurrency con­
trol mechanism and the necessary and sufficient conditions for a secure, interference-free
scheduler are given in (Keefe et al. 1990). Three of these properties are of relevance to
the real-time secure two phase locking protocol discussed in this paper. For the following
definitions, given a schedule s and an access level l, purge(s, l) is the schedule with all
actions at a level> l removed from s.

1) Value Security: A scheduler satisfies this property if values read by a subject are
not affected by actions with higher subject classification levels. Stated formally, for an
input schedule p, the output schedule s is said to be value secure if purge(s, l) is view
equivalent to the output schedule produced for purge(p, 1).
2} Delay Security: This property ensures that the delay experienced by an action is
not affected by the actions of a subject at a higher classification level. For an input
schedule p and an output schedule s, a scheduler is delay secure if for all levels l in
p, each of the actions a1 in purge(p, l} is delayed in the output schedule produced for
purge(p, l} if and only if it is delayed in purge(s, 1}.

*Here, the term level is used to refer to the security classification and priority to refer to the real-time
classification.

218 Part Five Concurrency Control

3) Recovery Security: A set of transactions is in a deadlock state when every transaction
in the set is waiting for an event that can only be caused by another transaction in
the set (such as release of a lock). Deadlock is a problem unique to locking protocols
and is not an issue in timestamp schedulers and optimistic concurrency control. Even
these schedulers, however, can reach a state from which they cannot continue without
aborting one or more transactions. For simplicity, these two conditions are lumped
together and called as deadlock (Keefe et al. 1990).

The concurrency control protocol discussed in this paper satisfies all the three proper­
ties. The details are presented in Section 7.

3 SECURITY AND REAL-TIME REQUIREMENTS

The property of non-interference has the unfortunate effect of degrading performance for
transactions at a higher level. In a secure environment, a transaction at a higher level:

• cannot cause the aborting of a transaction at a lower level. If it is allowed to do so, it
is possible that it can control the number of times a lower level transaction is aborted,
thereby opening a covert channel.

e cannot conflict with a transaction at a lower access class. If such a conflict does occur,
the higher level transaction has to be blocked or aborted, not the low level transaction.

• cannot be granted greater priority of execution over a transaction at a lower access
class.

There have been a number of papers in the real-time databases literature that have
explored priority based scheduling approaches with respect to conventional databases
(Abbot and Garcia-Molina 1992, Sha et al. 1990, Son et al. 1992). The priority usually
reflects how close the transaction is to missing its deadline. Priority-based scheduling of
real-time transactions, however, interacts with the property of non-interference which has
to be satisfied by secure schedulers (Keefe et al. 1990). For example, take the sequence of
transactions input to a scheduler as shown (the transactions arrived in the T1 , T2, T3, T4
order):

T1 (SECRET)
T2 (UNCLASSIFIED)
T3 (UNCLASSIFIED)
T4 (UNCLASSIFIED)

R(X)
W(X)

W(X)
R(X)

Assume that Tt, T2 , T3 and T4 have priorities 5, 7, 10 and 12 respectively and the
priority assignment scheme is such that if priority(T2) > priority(T1), then T2 has greater
criticalness and has to be scheduled ahead of T1• In the above example, T2 and T3 are
initially blocked by T1 when they arrive. When T1 completes execution, T3 is scheduled
ahead of T2 , since it has a greater priority than T2 and the transaction execution order
would be Tt,T3,T2,T4. However, if the transaction T1 is removed, the execution order would
be T2,T3,T4 because T2 would have been scheduled as soon as it had arrived. The presence
of the SECRET transaction T1 thus changes the value read by the UNCLASSIFIED

A secure concurrency control protocol for real-time databases 219

transaction T4 , which is a violation of value security. Delay security is also violated, since
the presence of T1 delays both T2 and T3.

Therefore, to satisfy the correctness properties discussed in Section 2 (to close all covert
channels), we see that a very high performance penalty is being paid. The proposed concur­
rency control provides mechanisms by which both security and real-time system require­
ments can be met by the system, and thereby avoiding the security violation conditions
discussed above.

4 IMPACT OF TWO-PHASE LOCKING ON REAL-TIME AND
SECURE SYSTEMS

Two-phase locking (2PL) is the most widely used concurrency control in database systems.
Here, the current lock holder is never aborted due to a conflicting request from another
transaction. The new request is blocked until the current holders release their locks. In
some cases, the requesting transaction is aborted, and regenerated after some delay.

The basic two-phase locking, however, does not work for secure databases because a
transaction at a lower access class (say T,) cannot be blocked due to a conflicting lock held
by a transaction at a higher access class (Th)· If T, were somehow allowed to continue with
its execution in spite of the conflict, then non-interference would be satisfied. The basic
principle behind the secure two-phase locking protocol is to try to simulate execution
of Basic 2PL without blocking the lower access class transactions by higher access class
transactions. Consider the transactions T1 and T2 in the above example. Since T1 arrived
first and obtained a read-lock on x, T2 would be blocked waiting for T1 to commit and
release read-lock on x. Such an action has a potential for covert channel, and hence
unacceptable in a secure environment. For example, if a high-level user intends to pass
information to a low-level user, in violation of the *-property, the two users could adopt
the following protocol:

(i) The high-level user generates a HIGH transaction and the low-level user generates a
LOW transaction, each consisting of just one operation on a data object x at low-level.

(ii) At time t, the HIGH transaction submits a read on x when it wants to send bit 1,
and submits none if it wants to send bit 0. Shortly thereafter, the LOW transaction
submits a write on x.

(iii) In the absence of other transactions contending for x, when HIGH has read-locked
x, LOW is either blocked or aborted. When HIGH has not submitted any lock re­
quest, LOW is granted the lock immediately. In this way, high-user can covertly send
information to low-user due to the violation of the delay security.

Suppose we were to modify the basic 2PL for a real-time environment where meeting
the deadlines is the main objective. In this case, whenever a high-priority job (probably
with a closer deadline) has a conflicting lock request with a low-priority lock holder, the
current holder is aborted and the lock is reassigned to the high-priority job. Once again,
there is a potential for a covert channel.

(i) The high-level user generates a HIGH transaction at high-priority and the low-level user

220 Part Five Concurrency Control

generates a LOW transaction at a low-priority, each consisting of just one operation
on a data object x at low-level.

(ii) At time t, the LOW transaction submits a write on x. Shortly thereafter, the HIGH
transaction submits a read on x if it wants to send bit 1; submits none if it wants to
send bit 0.

(iii) In the absence of other transactions contending for x, a. write-lock would be initially
granted to LOW. However, on the arrival of HIGH's request, LOW is aborted. When
HIGH has not submitted a. lock request, and in the absence of other high-priority
contentions for x, LOW completes its transaction. In this way, a. high-user can covertly
send information to low-user.

The proposed concurrency control protocol is intended to avoid both these situations.

5 DATABASE SYSTEM MODEL

Our model of the database system has three components: (i) Transaction manager (ii)
Resource Scheduler, and (iii) Data. manager.

5.1 Transaction Manager (TM)

All user transactions arrive at the transaction manager. It is responsible for

1. Requesting and obtaining all required locks for each transaction from the lock manager
prior to the beginning of transaction execution (no new lock requests are generated by
a. transaction during its execution),

2. Requesting the scheduler for execution of individual operations of a. transaction, and
3. Committing or aborting a. transaction, and requesting for the release of the locks held

by the transaction.

The lock manager component of TM is responsible for managing the locks. Here we
assume that a. lock status is: unlock, read-lock, or write-lock. In addition, the usual lock
conflict rules are applied: (i) If a. data. object is unlocked, either read/write lock can be
granted. (ii) If a. data. object is read-locked then only read-lock requests can be granted;
write-locks will be blocked (or denied); (iii) If a. data. object is write-locked then both read
and write lock requests are blocked (or denied).

The other functions of the transaction manager include obtaining resources from the
resource scheduler during transaction execution. In order to enforce the three types of
security discussed in Section 2, it is necessary that the transaction manager be a. trusted
component.

5.2 Resource Scheduler (RS)

Once a. transaction has procured all the required locks, it can start its execution. Now it
needs to do the actual read/write accesses to the database as well as obtain CPU and 1/0
time for the operations. The resource scheduler is responsible for these allocations. In par­
ticular, it should take the timing requirements (e.g., deadlines) of individual transactions

A secure concurrency control protocol for real-time databases 221

into consideration while allocating the resources. Once again, the resource scheduler is to
take into account both the real-time requirements and the non-interference properties of
database security. For this reason, this component is assumed to be trusted.

5.3 Data Manager (DM)

The data manager is responsible for managing (i.e., providing the read and write op­
erations) the data objects. To provide for non-interference between the high-level and
low-level transaction requests, the data manager maintains a primary and a secondary
copy for each data object. While the primary copy is used for read/write accesses by
transactions that are at the same security level as the object, the secondary copy is used
for read accesses by higher level transactions. For example, a data object X created by
a confidential user will have the primary copy made available for read/write access by
the confidential users. The secondary copy of X is used for read-only access by the se­
cret and top-secret users. Accordingly, a read/write access on the primary copy is never
blocked due to the presence of readers on the secondary copy. Similarly, a high-priority
read-access operation on the secondary copy is never blocked due to low-priority writers
on the primary copy.

6 SRT-2PL: SECURE REAL-TIME TWO-PHASE LOCKING
PROTOCOL

As stated earlier, the proposed concurrency protocol only resolves the security and real­
time system problems arising due to data contention. Accordingly, we concentrate only
on these problems, and let the other resource allocation problems (i.e., CPU and 1/0
scheduling) be handled using existing methods (Kao and Garcia-Molina 1994, Rajkumar
et al. 1995).

6.1 Data Object Representation

A key aspect of our protocol is the method used to represent the data objects so as to
meet objectives (1)-(4) stated in Section 1. We describe the proposed representation here.

• Each data object has a primary and a secondary copy.
• The primary copy P., of an object xis maintained as a normal data object. It is accessed

(read/write) by transactions at the same security level as the object. (Since we do not
allow write-up operations, it can only be updated by transactions at the same level.)

• The secondary copy is accessed (read) by transactions at a security level higher than
the data object (i.e., for read-down operations). It is maintained as two data structures:

(i) A normal data object, S.,, and
(ii) a single queue of updates, Q.,.

The queue Q., contains updates that have been performed (in that order) on the primary
copy (P.,) but yet to be performed on the secondary copy (S.,). Each update entry in

222 Part Five Concurrency Control

Q.,, say Q.,[j], has a set of transaction identifiers (IDs) associated with it. We refer to
the set as T I D.,[j].

In other words, the primary copy of a data object is read and updated by transactions
at the same security level as the data object. The secondary copy, however, is accessed
by transactions at higher security levels than the data object itself, and only for read
operations. The management of secondary copies is the responsibility of the data manager.

The details of the maintenance of these data structures is explained below.

6.2 The Protocol

Here, we describe our protocol for concurrency control. The rules according to which our
protocol manages its locks and operations are as follows:

• Each transaction needs to procure all the required locks before starting its execution.
In other words, strict static locking is assumed in the protocol. While this requirement
may seem unduly restrictive, it is necessary to obtain strict 1-copy serializability. In
environments where the strict serializability condition may be relaxed, the static lock
requirement also may be relaxed. But in this paper, we do not deal with such extensions.

• The locking rules of the basic 2PL are followed on per copy basis. In other words, the
primary and secondary copies of an object are treated independently for the purpose of
resolving lock-conflicts. A read-lock request at the level of a data object is only blocked
when the primary copy P., is write-locked. Similarly, a write-lock request at this level
is blocked only when the primary copy is read-locked or write-locked. Especially, it
should be noted that a write-lock request on a primary copy is never blocked due to
the presence of read-locks on the secondary copy. Obviously, the read-lock requests on
the primary copy are never blocked due to the read-locks on the secondary.
The locking rule at the primary copy can, however, be changed to meet the real-time
requirements as follows: "Abort the current holder if the requester's priority is higher."
It should be observed that when lock conflicts arise on the primary copy, both the
current lock holder and the requester are at the same security level as that of the object.
Hence, such aborts, if necessary will not result in interference or covert channels.

• Since the secondary copy is only accessed for read by high-level transactions, there are
no data conflicts among high-level transactions. In other words, a high-level transaction
is never blocked on its request for a read-lock on a secondary copy.

• Though the queue of updates Q., is modified (indirectly) by transactions at the same
level, these transactions are not required (in fact, not allowed) to obtain write-locks on
the secondary copy. As described below, the updates are in fact placed in Q., by the
data manager. Since, eventually the updates need to be carried out on S.,, there may
be an interval of time during which a. high-level read operation (not a. lock request) is
temporarily blocked while S., is being modified. While this does not violate the non­
interference property, it may violate the real-time requirements of a. high-priority high­
level reader. We avoid this problem by a. clever data. structure management discussed
below.

We now discuss the details of the database operations under our protocol.

A secure concurrency control protocol for real-time databases 223

• Read-lock request rl;[x] from transaction T;: Two cases arise:

- Level(x)= Level(T;): Check the status of the primary copy of x. If it is unlock or
readlock, then grant the lock. (Some complex real-time concurrency protocols such
as OMP (Rajkumar et al. 1995) make further checks prior to granting the lock to
T;.) If the status is writelock, then enqueue the request, abort the request, or abort
the current holder depending on the real-time scheduling policy. (For example, if
T; has an earlier deadline than the current holder or if it is more critical than the
holder, then the current holder may be aborted.) As stated above, since all affected
transactions are at the same level as x and T;, no security interference is caused by
any of these options.

- Level(x)< Level(T;): This is a high-level lock request for the secondary copy. Since
the actual read operation may take place at a later time, and since it is possible that
a secondary copy be updated during this interval, the current state of the secondary
copy is marked by sending the current position of Q., along with the lock grant to
the TM. In addition, if the current size of Q., is j, then the requester's transaction
ID is added toT I D.,[j]. For example, if the update queue currently has three entries,
then the third entry is marked and its identification returned to T;. In addition, the
ID of T; is added to T I D.,[3]. Since there is no blocking due to data contention,
there is no security violation due to interference.

• Write-lock request wl;[x] from transaction T;: Obviously, both x and T; are at
the same level and hence the operation is on the primary copy. IT the primary copy
of x is unlocked, then grant the lock to T;. (As before, some real-time policies may
deny lock to T; if they anticipate a higher-priority request to be arriving soon. This
is especially relevant when aborting a current holder is disallowed.) If x is read/write
locked, then as before, enqueue the request, abort the request, or abort the holder(s)
(i.e. the readers or the writer) depending on the real-time scheduling policy.

• Release read-lock request rrl;[x] from transaction T;: Two cases arise:

- Level(x)= Level(T;): Release the lock on the primary copy of x and check if any
pending write-lock requests can be granted.

- Level(x) < Level(T;): This is an operation on the secondary copy. Accordingly, re­
lease the lock on S., and remove the entry from the corresponding TID., entry. For
example, if T; was informed of entry 3 at the time of lock grant, then the ID of T;
was also added toT I D.,[3]. This entry is now removed. As discussed later, this entry
may no longer be in the third position in Q.,.

• Release write-lock request rwl;[x] from transaction T;: This pertains to the
primary copy. Accordingly, release the lock on the primary copy and check if any
pending requests can be granted a lock.

In addition to the concurrency control-related operations (request/release locks) dis­
cussed above, we need to describe the read/write operations in the context of primary
and secondary copies. Here is a summary of these procedures.

• Read request r;[x] from transaction T;:

224 Part Five Concurrency Control

- Level(x)= Level(T;): The usual read operation is performed on the primary copy.
Scheduling the operation is itself a function of the real-time resource scheduler (not
discussed here).

- Level(x) < Level(T;): The read operation is on the secondary copy. Accordingly,
the corresponding read is executed as if the status of the object is the same as it
was at the time of read-lock request grant. The read is executed as if all updates
up to and including the identified entry (sent to T; at the time of readlock) are
carried out on the data object. In other words, read requests from transactions T;
and Tj, arriving at the same time, may be offered a different object view if they have
obtained locks at different status values of Q"'. As shown later, this is required to
maintain serializability of transactions.

• Write request w;[x] from transaction T;: The primary copy is updated. Simul­
taneously, the latest update entry is added to the update queue Q,. of the secondary
copy. Both these updates are done atomically. However, as discussed below, the current
readers operating on the secondary copy may not be affected by it.

6.3 Design Issues related to the Secondary Copy

Since the secondary copy plays a key role in our protocol, it is important to discuss the
design and implementation issues related to it. Here, we discuss some important issues
and possible solutions.

(i) When should the updates in the queue at a secondary copy be carried out on the data
object? Once a transaction manager has received a grant for a read-lock on a secondary
copy (due to read-down), along with the marked entry, the data manager has to guaran­
tee to the transaction that its view of the object will be unaltered until it is committed
or aborted. At the time the transaction commits or aborts, the guarantee will expire.
As mentioned above, this functionality is implemented using an update queue Q,. and
a set TID., of transaction IDs with each entry in Q,.. If at any time it is determined
that all TID,.[j] sets up to some point k are empty (i.e., Vj 1 $ j $ k TID,.[k] = ¢>)
then these updates (up to j) may be carried out on the secondary version. All updates
that have been carried out are automatically removed. In other words, as high-level
readers commit/abort, the secondary copy is updated, and the updates are removed
from the queue. These activities are coordinated by the data manager in coordination
with the transaction manager.

(ii) How is the superposition of update queue on the secondary copy achieved? A related
concern is the maintenance of the update queue and presenting the data for access
to higher-level transactions. For this we need to know the type of the object under
consideration. Suppose it is a simple data structure such as an integer or a floating­
point variable, then a queue of integers/floating-points is maintained in Q,. and any
read access can directly read its entry in the queue as the value. In fact, the operation
of secondary copy update as discussed above also becomes quite simple. On the other
hand, if is a large file, or a complex data structure such a 3-D image, then the queue
could contain just the updates (in some predetermined format). When a transaction
requires to read the data object with respect to a specific entry in Q,., then somehow
the secondary copy and subsequent updates should be taken into consideration.

A secure concurrency control protocol for real-time databases 225

Depending on the type of data object and the availability of memory, if in fact it is
possible to create temporary images of data objects corresponding to each transaction
(or update), then the problem is much more simplified. There is a trade-off among
storage space, processing overhead, and meeting the real-time deadlines. Clearly, since
the high-level and low-level transactions access different copies, the non-interference
property is still maintained by the scheme.

7 PROPERTIES

In this section, we state and prove some of the important properties of the proposed
concurrency control protocol. For the sake of brevity, the style of the proofs is more
intuitive and less formal.

To prove the correctness properties (i.e., serializability), we use the simple definitions
of history and serialization graph (SG). The formal definitions for these concepts can be
found in (Bernstein et al. 1987). A history is a partial order of operations that represents
the execution of a set of transactions. Any two conflicting operations must be comparable.
Let H denote a history. The serialization graph for H, denoted by SG(H), is a directed
graph whose nodes are committed transactions in H and whose edges are all T; -+ T;
(if:. j) such that one of T;'s operations precedes and conflicts with one of T;'s operations
in H. To prove that SG(H) is serializable, we only have to prove that SG(H) is acyclic
(Bernstein et al. 1987).

First, we focus on transactions executed at a single security level.

Lemma 1 All transactions at a single level are serializable.

Proof: Let the history H contain all transactions committed at level L. All transactions
with read/write operations on data objects at level L (and no read operations at lower
levels) are clearly serializable due to 2PL (Bernstein et al. 1987).

However, when transactions read data at lower levels, then there can be additional
dependencies due to the reads. Whether or not such dependencies due to lower-level
reads, when combined with the dependencies due to operations on primary copies, create
cycles in SG(H) is the question that needs to be resolved here.

We claim that no such cycles are possible due to our static locking policy where a
transaction is required to procure all locks before it starts execution. Hence, if T1 at level
L precedes T2 (also at level L) due to read/write operations at level L, then T2 cannot
precede T1 due to read operations at levels lower than L. This implies that there cannot
be a cycle in SG(H) between T1 and T2• The same argument can be extended even when
we consider more than two transactions. Hence H is serializable. •

Property 1 All committed transactions (independent of their level) are serializable.

Proof: Intuitively, since we have a static locking policy where a transaction is required to
obtain all locks (irrespective of levels) prior to the beginning of its execution, we claim that
it is not possible for any two transactions to have contradicting dependency relationships
at different security levels. Following is a semiformal proof of this argument.

226 Part Five Concurrency Control

Consider levels L and L' where L > L' (i.e., L is HIGH and L' is LOW). Since trans­
actions at each level are serialized (by Lemma 1), let T1 --+ T2 --+ ••• T m-1 --+ T m be the
serialization order at level L and t 1 -+ t2 --+ ••. tn-1 --+ tn be the order at level L' of
committed transactions. (For simplicity, we assume total ordering.)

Suppose, by way of contradiction, there is no serialization order among all these trans­
actions. Then there is a cycle in the corresponding serialization graph such that one of
the following two cases is possible:

Case 1: T; --+ t; --+ tk --+ T;: Since we allow only read-down operations for higher level
transactions on lower level objects, T; --+ t; implies that there is a data object x (at level
L') that was read by T; and later modified by t;. Similarly, tk --+ T; implies that there is a
data object y (at level L') that was written by tk and later read by T;. Since all locks were
obtained by T; at the beginning of its execution, it had obtained locks on the secondary
copies of x and y also at the beginning. Hence,

e T; --+ t; implies that t; was committed after T; started. (Note that the secondary update
queue is atomically updated with the primary.)

e tk --+ T; implies that tk was committed prior to T;'s start.

From the above, we can conclude that tk was committed before t;. However, this con­
tradicts our assumption that t; --+ tk. Thus, it is not possible to have a cycle such that
T; --+ t; --+ tk --+ T;.

Case 2: t; --+ T; --+ Tk --+ t;: t; --+ T; implies that there is a data object x (at level L')
that was modified by t; and later read by T;. Similarly, Tk --+ t; implies that there is a
data object y (at level L') that was read by Tk and later modified by t;. Using the same
argument as above for locking and secondary copy management, we have the following.

• t; --+ T; implies that t; was committed before T; started.
• Tk --+ t; implies that Tk started prior to t;'s commit.

From the above we can conclude that Tk started prior to T;. Once again, since all locks
are obtained at the beginning of a transaction execution, this implies that either Tk and
T; are concurrent or Tk --+ T;. However, this contradicts our assumption that T; --+ Tk.
Thus, it is not possible to have a cycle such that t; --+ T; --+ Tk --+ t;.

Hence, since it is not possible to have a cycle in the serialization graph of committed
transactions at levels L and L', the combined history is also serializable. The same proof
can be extended even when transactions from more than two levels are considered. Thus,
all committed transactions in the system are serializable. •

Property 2 A low-level transaction is neither delayed (delay security) nor otherwise af­
fected (value security) due to data contention with high-level transactions.

Proof: By multilevel security definition, a transaction can read/write lock data objects at
its own level and readlock objects at lower levels. In our protocol, the former is achieved by
locking the primary copy and the latter by locking the secondary copy. Suppose Level(T1)

> Level(T2), the only possible cases of data contention between T1 and T2 are as follows:

A secure concurrency control protocol for real-time databases 227

• T1 and T2 read-down x: This is the case when Level(x) < Level(T2). Since both operate
on the secondary copy of x, and it is a read operation, there is no data contention.

• T1 reads-down and T2 writes x: This is the case when Level(x) == Level(T2). While T1
operates on the secondary copy of x, T2 operates on the primary copy. Hence, there is
no data contention.

• T1 reads-down and T2 reads x: As before, Level(x) == Level(T2). Since both are read
operations, there is no conflict. In addition, since T1 operates on the secondary copy
and T2 on the primary copy, there is no interference.

Since high-level and low-level transactions are never in conflict with each other in regard
to data access, neither delay-security nor value-security violations are possible, due to
data contention. •

Property 3 A high-priority transaction is neither blocked nor aborted by low-priority
transactions due to data contention on low-level data.

Proof. Let T1 and T2 be two transactions such that Priority(TI) > Priority(T2). Three
cases arise here.
Case 1: Level(T1) > Level(T2). Suppose they both access data object x. We need to
consider two subcases.
Case 1a: Suppose Level(x) == Level(T2). Then, T1 is a read-down operation accessing the
secondary copy and T2 accesses the primary copy of x. Even though, the secondary queue
is updated atomically with respect to primary copy updates, a reader on secondary copy
is never blocked by such updates (due to the chosen data structures). Accordingly, T2 can
never block or delay T1 due to data contention.
Case Jb: Suppose Level(x) < Level(T2). Here, both T1 and T2 are read-down operations
on the secondary copy. Clearly, there is no data contention problem between T1 and T2•

However, there may be an interference due to 1/0 or CPU scheduling. But other existing
scheduling algorithms may be used to resolve such problems (Kao and Garcia-Molina
1994, Rajkumar et al. 1995).

Thus, Case 1 cannot result in blocking or delay of T1 by T2.

Case !!: Level(T1) == Level(T2). Suppose they both access data object x. Here, we need to
consider only the case where Level(x) < Level(T2). Clearly, both T1 and T2 are read-down
operations and the nonblocking is argued the same way as in Case 1 b above.
Case 3: Level(T1) < Level(T2). If they both access a data object x, we have two subcases
to consider.
Case 3a: Suppose Level(x) == Level(TI). Then, T2 is a read-down operation accessing
the secondary copy and T1 accesses the primary copy of x. Since the low-level read/write
operations are never blocked due to read-down on secondary, T1 is never blocked by T2

due to data contention.
Case 3b: Suppose Level(x) < Level(TI)· Here, both T1 and T2 are read-down operations
on the secondary copy. This is similar to Case lb.

Since cases 1-3 cover all possibilities, and under each case, the high-priority transaction
is never blocked or delayed due to data contention on lower data, the property is always
valid. •

228 Part Five Concurrency Control

8 REAL-TIME AND SECURITY TRADE-OFFS

As discussed previously, the requirements of real-time systems and the multilevel secu­
rity systems combined with the restrictions imposed by the serializability criterion as
correctness pose several design and implementation challenges. While real-time systems
consider meeting the deadlines and hence giving importance to high-priority transactions,
multilevel secure systems consider the non-interference with the low-level transactions as
critical. The basic two-phase locking (where a requester waits until the conflicting lock
holder releases the lock) with correctness condition of serializability, in fact, gets in the
way of achieving both the above objectives.

As discussed ea.rlier, and formally proved in Section 7, the proposed concurrency control
achieves these objectives. However, it is not without additional cost. In order to enforce
the non-interference property for multilevel security, we have implemented each object as
a primary copy and a secondary copy pair. Due to the choice of the data structure for the
secondary copy (once again dictated by the non-interference and serializability criterion),
the operations on the secondary copy are much more expensive. Each read on this copy
requires the superposition of update queue (Q(x) entries on to the secondary data object
copy (S.,) and presenting it to the high-level readers.

Real-time system designers generally argue that all operations should have predictable
execution times. But the read-down operation is certainly not predictable in time since
its execution time depends on the type of the object and the length of the update queue.
In fact, in our protocol, no guaranteed bounds can be placed on the size of the secondary
queue.

However, this does not mean that the protocol is not suitable for real-time systems.
Instead, the implication is that we need to make trade-offs in terms of serializability, pre­
dictability, la.rger memory, and some interference to meet the needs of specific applications.
Here are a few suggestions for such trade-offs.

• When meeting the real-time requirements is more important, and when it is semanti­
cally acceptable for a specific high-level (and high-priority) transaction to directly read
the secondary copy, ignore the entries in the update queue, then let the transaction
read S:r: directly. The additional overhead and non-deterministic execution problems
can thus be overcome to meet the high-priority transaction deadlines.

• When meeting the real-time deadlines of a critical high-level transaction is important
and when it is also necessary that the transaction read the most up-to-date value,
then let the high-level transaction read the primary copy directly, thereby reducing
the overhead for read-downs. However, this is at the cost of interference and a possible
covert-channel.

• The trade-off between real-time and basic 2PL arises when a high-priority transaction
(requester) has a. data conflict with a low-priority transaction (current lock holder).
While the basic 2PL lets the requester wait until the lock is released, it is an unac­
ceptable solution for real-time systems. For this reason, alternate versions of 2PL such
as Hybrid 2PL (Son et al. 1992) have been suggested to handle the problem. However,
to avoid the possibility of covert channels, such alternates should be adopted only in a
controlled manner.

• Incorporate alternate correctness criteria such as the one in (Jajodia and Atluri 1992)
and thereby more efficiently meeting the real-time and noninterference conditions.

A secure concurrency control protocol for real-time databases 229

While the above list is by no means exhaustive, it provides ideas of where certain types
of trade-offs can be made and how the protocol can be implemented.

9 CONCLUSION

In this paper, we proposed a novel concurrency control protocol for multilevel secure real­
time database systems. While the two-phase locking is the underlying concurrency control
mechanism, we have introduced non-interference property by having a secondary copy for
read-down operations. In addition, it is possible to include several existing scheduling
algorithms for both data conflict resolution and other resource allocations within the
protocol.

One of the main features of the protocol is its ability to be tuned to specific require­
ments. Trade-offs can be made in terms of serializability, limited interference, and limited
missed deadlines. In fact, the fine tuning can be made by on-line monitoring of the dead­
line missing rate of important (.bigh-level) transactions, and making dynamic decisions
as to the read-down operations anc other abort/commit decisions. This is similar to a
feedback loop in a control system.

We are currently in the process of simulating the protocol and observing its behavior
quantitatively. We plan to look at different trade-off situations under different application
domains.

10 REFERENCES

Abbott, R. K. and Garcia-Molina, H. (1992) Scheduling Real-Time Transactions: A Per­
formance Evaluation. ACM Transactions on Database Systems, 17, 513-60.
Ammann, P. and Jajodia, S. (1992) A Timestamp Ordering Algorithm for Secure, Single­
version, Multi-level Databases. in Database Security, V: Status and Prospects, (ed. C.E.
Landwehr and S. Ja.jodia.), Elsevier Science Publishers B.V., 191-202.
Bell, D.E. and La.Pa.dula., L.J. (1976) Secure Computer Systems: Unified Exposition and
Multics Interpretation. The Mitre Corp. Bernstein, P.A., Hadzila.cos, V., and Goodman, N.
(1987) Concurrency Control and Recovery in Database Systems. Addison-Wesley, Read­
ing, MA.
David, R. and Son, S.H. (1993) A Secure Two Phase Locking Protocol. Proc. the 12th
Symposium on Reliable Distributed Systems, Princeton, NJ.
David, R., Son, S.H., and Mukkamala, R. (1995) Supporting Security Requirements in
Multilevel Real-time Databases. Proc. 1995 IEEE Symp. Security and Privacy, 199-210,
Oakland, California.
Goguen, J.A. and Meseguer, J. (1982) Security Policy and Security Models. Proc. the
IEEE Symposium on Security and Privacy, 11-20.
Jajodia, S. and Atluri, V. (1992) Alternative Correctness Criteria. for Concurrent Exe­
cution of Transactions in Multilevel Secure Databases. Proc. the IEEE Symposium on
Security and Privacy, Oakland, CA, May 1992.
Kao, B. and Garcia-Molina, H. (1994) An Overview of Real-Time Database Systems, in
Real-Time Computing, (eds: W.A. Halang and A.D. Stoyenko) NATO ASI Series F, 127,
Springer-Verlag, 261-82.

230 Part Five Concurrency Control

Keefe, T.F., Tsai, W.T., and Srivastava, J. (1990) Multilevel Secure Database Concur­
rency Control. Proc. the Sixth International Conference on Data Engineering, 337-44, Los
Angeles, CA. Lampson, B.W. (1973) A Note on the Confinement Problem. Communica­
tions of the ACM, 16, 613-5.
Lee, J. and Son, S.H. (1995) Concurrency Control Algorithms for Real-Time Database
Systems, in Performance of Concurrency Control Mechanisms in Centralized Database
Systems (ed. Vijay Kumar), Prentice Hall, 429-60.
Rajkumar, R., Sha, L., Lehoczky, J.P., and Ramamritham, K. (1995) An Optimal Prior­
ity Inheritance Policy for Synchronization, in Advances in Real-Time Systems, (ed. S.H.
Son), Prentice-Hall, 249-71.
Sha, L., Rajkumar, R., and Lehoczky, J.P. (1990) Priority Inheritance Protocol: An Ap­
proach to Real-time Synchronization. IEEE Trans. Computers, 1175-85.
Son, S.H., Lee, J., and Lin, Y. (1992) Hybrid Protocols Using Dynamic Adjustment of
Serialization Order for Real-Time Concurrency Control. Real-Time Systems Journal, 4,
269-76.
Son, S.H. and Thuraisingham, B. (1993) Towards a Multilevel Secure Database Manage­
ment System for Real-Time Applications. Proc. IEEE Workshop on Real-Time Applica­
tions, New York, NY.

11 BIOGRAPHY

Ravi Mukkamala is an Associate Professor in the Department of Computer Science
at the Old Dominion University. He received the B.S. degree in electronics and telecom­
munications engineering from Osmania University in 1976, and the M.Tech. degree in
computer systems from Indian Institute of Technology, Kanpur in 1978. He earned the
Ph.D. in computer science from the University of Iowa in 1987. Before moving to an aca­
demic environment, he worked as a systems analyst at Telco-Pune, India, from 1978-81
and as a systems consultant at ACCI-Hyderabad, India, from 1981-83.

Dr. Mukkamala's research interests include distributed database systems, data security,
high-speed data communications, and performance analysis. He has published over 75
technical papers in conference proceedings and journals in these areas.
Sang Hyuk Son is an Associate Professor in the Department of Computer Science at the
University of Virginia. He received the B.S. degree in electronics engineering from Seoul
National University in 1976, and the M.S. degree in electrical engineering from Korea
Advanced Institute of Science and Technology (KAIST) in 1978. He earned the Ph.D. in
computer science form University of Maryland, College Park in 1986. He was a Visiting
Professor at KAIST during 1994-1995.

His research interests include real-time computing, database systems, distributed sys­
tems, and database security. He has served on numerous program committees of interna­
tional conferences on those areas, and published over 100 papers in journals and conference
proceedings. He was an ACM National Lecturer for 1991-1993. He served as the Program
Chair of the lOth IEEE Workshop on Real-Time Operating Systems and Software, and
the General Chair of the same workshop in 1994. He is serving as the Program Chair for
Workshop on Research Issues and Applications of Real-Time Database Systems, to be
held in 1996. He also edited the book "Advances in Real-Time Systems," published by
Prentice-Hall in 1995. Dr. Son is a member of the IEEE Computer Society and the ACM.

