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Abstract 
In this paper, we focus on techniques for incremental constraint-based configuration with 
discrete and continuous variables. We show how to formalize constraint knowledge us­
ing compatibility and activity constraints (Mittall990) and how this knowledge is used 
for reasoning within an intelligent CAD system. Most technical (as opposed to spatial) 
constraint configuration systems nowadays use algorithms for solving discrete problems 
(Haselboeck 1994) We claim that configuration is both discrete and continuous in nature 
and that new methods for handling both constraints in a unified way must be integrated 
in configuration systems. Visualization of the globally consistent configuration problem 
space allows a systematic and exhaustive exploration of the space in an interactive fashion 
(Haroud 1995). 

Knowledge maintenance in configuration systems must be simplified, because configura­
tion knowledge of todays products evolves over the whole product life cycle. The knowledge 
representation in deductive rule-based systems as often used in intelligent CAD systems 
on the other hand will always be context dependent; maintenance problems resulting 
from this context dependency are often insurmountable. We have identified the context 
independence of constraint-based knowledge representation as an important feature for 
facilitating the incremental development and maintenance of large evolving knowledge 
bases (Weigel1992). 
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1 INTRODUCTION 

In recent years, manufacturing trends have changed from pure mass-production to a more 
customer oriented one-of-a-kind production. The main reason for this change is that to­
day's customers have very specific and individual requirements, which can no longer be 
satisfied by mass-products. The one-of-a-kind production of many consumer and invest­
ment products requires powerful modeling techniques and representation methods com­
bined with features which facilitate maintenance and extendability. We claim that the 
framework of incremental constraint satisfaction offers these features. 

Knowledge formalization: The advantage of using constraints to formalize design knowl­
edge is that relations between design parameters can be stated without explicitly men­
tioning of the context in which these relations hold. In section 2 we will show how 
context-independent knowledge representation of constraint systems facilitates knowledge 
engineering and maintenance of configuration system during the whole life-cycle of the 
product. In section 3 we present our framework for dynamic constraints over discrete and 
continuous variables. In the framework of incremental constraint satisfaction of Mittal 
(1990) one can reason about the introduction and retraction of variables respectively con­
straints during problem solving. This modeling technique is, for reasons of modularity 
and efficiency, especially useful when large amount of constraints must be handled. 

Interactivity: Often configuration systems work in a batch-like manner which means 
that the customer requirements must all be known a priori and are then fed into the 
configurator to generate for example the bill-of-material of the product. The interactivity 
in our system leads the user from a rough to a more detailed specification. There is no 
need to specify all "input" parameters at once. Furthermore, since we based the reasoning 
within the system on global consistency of the constraints, we can guarantee that the user 
cannot move into regions of the search space without solution. Although global consistency 
is computationally expensive, it is especially useful in interactive systems when working 
with continuous constraints where an enumeration of the single feasible solutions is no 
longer possible. In section 4 we will describe using a small example how global consistency 
is integrated in framework of incremental constraint satisfaction. 

2 MAINTAINING CONFIGURATION KNOWLEDGE 

Todays products evolve during their whole life-cycle. This implies that new knowledge 
must be integrated and old knowledge must be removed constantly from the configuration 
system. By using a small example we will show that building and maintaining a constraint 
knowledge base is much easier than building and maintaining a rule-base. Our fictive car 
company decided to develop a new funcar variant of its product line. The effects of adding 
this new knowledge to a rule-base respectively to a constraint-base will be studied and 
analysed. 

Rules are described in the format "IF variablel = value THEN variable2 = value" and 
a simple forward chainer will be used for reasoning. Constraints are represented using 
tables and the search could be done by a standard backtracking algorithm. Rules and 
constraints are shown in Figure 1. The marketing department of the company decides 
to introduce a new funcar type its is the task of the knowledge engineer to enter rules 
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Rt IF Package • Deluxe 
and Frame - convertible 
THEN Engine • A 

R2 IF Package • Deluxe 
and Frame • hatchback 
THEN Engine '"" B 

R3 IF PaCkage • Std 
and Frame • convertible 
THEN Engine • A 

R4 IF Engine • A 
THEN Transmission • manual 

R5 IF Engine • B 
THEN Transmission • automatic 

R6 IF Type • Sportscar 
THEN Frame = convertible 

R7 IF Type • Familycar 
THEN Frame • sedan 

RS IF Type • Sportscar 
THEN Transmission • manual 

Package 
Deluxe 
Deluxe 

Engine Transmission 
A. manual 
B automatic 
A hal~-automatic 

Type Frame 
Sportscar convertible 
Familycar sedan 

Type Transmission 
Sportscar manual 
Familycar half-automatic 
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Figure 1 Left: Rules for Car Configuration. Right: Constraints for Car Configuration 

RiO IF Type = Funcar 
THEN Frame = convertible 

R11 IF Type = Funcar 
THEN Transmission = bali-automatic 

Figure 2 New rules to be added to the rule base 

Rll and R12 shown in Figure 2 into the rule-base. Simply adding these two rules will 
render the rule base inconsistent. This can be seen when configuring a funcar deluxe. The 
rule sequence R10, R1, R4 and R11leads to the conflict that the transmission should be 
manual and half-automatic at the same time. Therefore one needs to modify the rule-base 
as shown in Figure3 left. 

Comparison: Constraints and rules must be interpreted differently. Consider for exam­
ple the allowed tuple (A manual) in the constraint between engine and transmission. The 
constraint must be interpreted as follows: "engine A is compatible with manual trans­
mission" while the interpretation of rule 4 is "every car with engine A will get a manual 
transmission". The scope of the constraints is local in the sense that new knowledge 
about funcars for example can not invalidate the constraint knowledge. The scope of the 
deductive rule on the other hand is global and new knowledge can invalidate the rule as 
described above. 

In systems built using deductive rules, in particular expert systems, the context-dependence 
results in severe problems of maintenance of knowledge in the face of a dynamic world. 
Even minute changes of technology or changes in the marketing policy require revision of 
the entire rule set, which can be very costly. In the rule-based approach, adding a new car-
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Step 1 removing Rule 4 
IF Engine = A 
TIIEN 
Transmission = manual 

Step 2 adding Rule 4a 
IF Engine • A and 
Type = Funcar 
TIIEN 
Transmission = hal£-automatic 

Step 3 adding Rule 4b 
IF Engine = A and 
Type • Sportcar or Familycar 
TIIEN 
Transmission = manual 

Packa e Frame Engine 
Deluxe convertible A 
Deluxe hatchback B 

Engine Transmission 
A manual 
B automatic 
A hal~-automatic 

Type Frame 
Sportscar convertible 
Familycar sedan 
Funcar convertible 

Type Transmission 
Sportscar manual 
Familycar hal£-automatic 
Funcar hal£-automatic 

Figure 3 Left: steps to make the rule base consistent. Right: Constraints for the extended 
Car Configuration 

type forced us to create a new relation between engine, type and transmission. Expressing 
knowledge without looking at the context is one of the major advantages of constraint 
based reasoning. No relation between engine, type and transmission is necessary. 

One must furthermore realize, that assigning a single source (e.g. marketing regulations) 
to the rules 4a and 4b is not possible. Rules from different sources * are mixed together in 
new rules only to get a consistent chaining behaviour. These new rules can be considered 
as "interface rules" between knowledge sources and they are artificial in the sense that 
only the chaining behaviour is responsible for their existence. Proving the correctness of 
those rules becomes cumbersome. The problem of systems built using deductive rules is 
therefore not only the revision of the rules, which can be very costly. The revisions itself 
will make the maintenance of the rule-base even more difficult, leading to systems which 
are no longer manageable. 

Mechanising the knowledge engineering process is straightforward within the constraint­
based framework, because whenever a relation between variables is "established", the 
knowledge engineer must enter all valid variable-value combinations for that relation. 
Knowledge engineering in the rule-based framework on the other hand resembles a more 
hand-crafted approach, since it is possible to delay the engineering of rules until they are 
needed for a specific configuration. Consider the relation between engine and transmission 
in the above examples, where the tuple (A half-automatic) in the constraint-based system 
was "valid" from the very first moment. In the rule-based system on the other hand one 
could find this piece of knowledge only in "decoded" form within rule 4b, which was added 
after a contradiction was detected. 

*The knowledge of rules 4a and 4b stems from the marketing and the engineering department! 
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3 INTERACTIVITY AND SOLUTION SPACES 

Traditionally, configuration tasks have been reduced to the activity of assembling compo­
nents of predefined dimensions (Haselboeck 1994) The number of ways such components 
can be combined is enumerable. The configuration task is thus modeled as a constraint 
satisfaction problem on finite, discrete variables. Most practical tasks, however, include 
objects without predefined ranges of dimensions and continuous variables are needed to 
describe their properties. Consider, for example, the spatial configuration of 3 objects A, 
B and C. The position of the objects are described by continuous variables. 

Example: Configuration with continuous variables Let a;, b;, c; for i = x, y be the x 
respectively y coordinates of the objects A, B and C. We can formulate a set of constraints 
involving a;, b;, c;. 

Cl a;, b;, c; E [0, 10] for i = x, y 
C2 b,. ~ a,2 + 2 
C3 b.,~ 2c., 
C4 a.,3 + 4 ~ c,.b,. 
C5 by~ ay 
C6 ay + by 2 ~ c11 

C7 c,. ~ Cy 

C8 2b11 2 + 2c,. ~ 5b,. 

y 

GJ 
(cx,cy) 

[;] (b~LB I 
(ax,ay) 

~------------------•X 
In order to solve these equations, engineers currently apply a particular sequence of 

calculations, but never consider the entire space of solutions. They will first solve subsets 
of constraints and then try to combine these partial solutions by picking one feasible point 
in a subregion corresponding to a subset of constraints and checking it against the resting 
constraints. 

In constraint-based systems, consistency algorithms are used in order to refine the pos­
sible solution space for each variable. Search then finds single feasible solutions within the 
refined space. Depending on the structure of the problem, applying a certain degree of con­
sistency results in a globally consistent solution space. Global consistency in a constraint 
network ensures that for each variable a value can be found so that all the constraints are 
satisfied. Haroud (1995) has developed an algorithm guaranteeing global consistency for 
continuous constraint satisfaction problems (CCSPs). 

Figure 4 visualizes the solution space for the constraints Cl . .. C4 of the spatial configu­
ration example. In this algorithm, cubes approximate the region defined by each constraint 
in the tree-dimensional space. The algorithm calculates consistent solution spaces by com­
bining these regions. Given a feasible partial solution, an extension to a globally consistent 
solution is guaranteed. Users can interactively restrain the feasible solution space and fo­
cus on regions of interest within. It is now possible for them to explore feasible space for 
preferable solutions. In Figure 4, the solution has been restrained to 6.5 ~ b,. ~ 7.2. All 
the values dependent on b., (a,. and c,) are recalculated with respect to the new value of 
b,.. 
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10 10 ax 

Figure 4 The solution space corresponding to the constraints Cl. .. C4. 

4 INCREMENTAL CONSTRAINT SATISFACTION 

In design and configuration, the problem space is often huge and interaction between 
components very complex. To reduce computational complexity, the task is modeled as 
an incremental constraint satisfaction problem (CSP) defined by a set of variables X, a 
set of constraints C and a set of initial conditions W. W defines the set of variables that 
have to be part of every solution. C consists of two types of constraints: compatibility and 
activity constraints, noted CC respectively AC. Not all the variables need to be part of 
a solution: X only defines the space of potentially active variables. It follows, that not 
all of the constraints will be relevant for one solution. We need to reason on the activity 
of variables and the constraints depending on them. The introduction of new variables 
and constraints depends on activation conditions. This dependency can be formulated as 
a so-called activity constraint t according to the definitions of Mittal (1990). 

AC: C;(Yl) -+ active : Y2 

This activity constraint activates the subset Y2 of variables if the activation condition 
(or precondition) C(Yi) is satisfied. The precondition C; defines a mathematical relation on 
Yi . Compatibility constraints define the relations that must hold between active variables: 

CCI: C;(Y2) 
CC2: C;(Y3)-+ Ci(Y4) 

If all the variables of Y2 are active in CCI, C; has to be satisfied. The constraint C; is a 
mathematical (in)equality on the subset of variables Y2 or, in the discrete case, a relation 
between variables where allowed tuples are enumerated. In CC2, it depends on the values 
of Y3 as well as on the existence of y3 n Y4 if cj is relevant or not. 

tAn activity constraint should not be mistaken for a rule, it defines a constraint on the activity of variables 
in the problem space 
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Figure 5 A sequence of static problems. In problem space Pl, the variables x and yare 
active; in P2, x and z. In the solution space SJ, the set of the constraints explicitly depends 
on the value of y. In S2, the global consistency algorithm finds two separate feasible regions 
satisfying the same set of constraints with C3: y -1/ x 2:: 0, C4: (x- Y? + 2x + 2y- 8 2:: 0, 
C5: y + 1.3x- 4 :=; 0. 

The goal is to find all the solution spaces S so that for each solution s E S: s satisfies 
all the constraints defined on a set of active variables in X and no more variables can be 
activated. 

For reasoning on the surface of the objects in the spatial configuration problem, the 
objects are given additional properties such as shape and dimension. Depending on their 
shape, the variables width, height or radius are relevant and their surface will be calculated 
differently. Initially, W is { shapex,sur facex} , x E {A, B, C} and the constraint set C is 
defined by 

ACl shapex = rectangle--+ lengthx AND widthx 
AC2 shapex = circle --+ radiusx 
CC3 sur facex = radiusx * 7r 

CC4 sur facex = lengthx * widthx 
CC5 R( shape A, shapeB) = (rectangle, circle)( circle, rectangle) 

When shape A= rectangle, the variables sur face A, length A and width A are active and 
sur face A will be calculated according to CC4. ShapeB is restrained to a circle by CC5 
and its surface is calculated according to CC3. 

The process of finding solution spaces involves an activate-propagate cycle: From the 
given set of active variables, all activity constraints are checked in order to activate new 
variables. This step defines the new problem space, i.e. the space of currently active vari­
ables. In the propagate step, the compatibility constraints defined on active variables 
are checked for global consistency. Feasible partial solution spaces, i.e. regions in N-space 
defining value bounds for the variables, are found. At each cycle, the values of currently 
active variables are either refined or an inconsistency is detected. This solution space is 
discarded and the algorithm either backtracks to another solution space or to the next 
problem space not yet treated. It halts when no new problem spaces can be created, i.e. 
all the problem spaces have been searched and no new variables can be activated. The 
final solution spaces are those in the leaves of the problem space tree. 

An incremental CSP can then be viewed as a sequence of static problems (Figure 5): 
Po, ... P .. with Po=< Xo,Co , D >and P; =< X;,C;,D >where C; = C;-1 ± {CJ 



134 Part Five Constraints 

with {C;} C C, X is the set of variables and D the variables' domains. As can be 
seen in figure 5, activity constraints may split up one problem space into several each 
containing different sets of active variables (PI and P2 in Figure 5). Constraints may 
split a solution space further by creating separate regions of consistent values. In Sl, the 
relevant constraints explicitly depend on values of y. In S2, the intersection of C3, C4 and 
C5 create two separate feasible regions. 

4.1 Example in Bridge Configuration 

We would like to show on a small example of bridge configuration how components of 
the configuration product can be added incrementally. Adding components leads to new 
design parameters and values that activate new constraints. 

The aim in bridge configuration is to find bridge designs that satisfy design specifi­
cations as well as building codes and other requirements as described in Haroud and 
Boulanger (1995). Given the section of the valley in which the bridge has to be built, a 
set of initial conditions Wand a set of constraints C, we want to find all solution spaces. 
In the following example, the designer already decided on a beam bridge type. The initial 
conditions W are thus: 

Parameter 
L 
bridge type 

Definition 
length of the valley 
type of the bridge 

Domain 
real number 
{beam,cable-stayed,frame,arch} 

and the constraint set C is defined by: 

Value 
200 
beam 

{ 
nb of spans: [1, 20] } 

ACl bridge type = beam -+ span : v:'!:f opan• {span; : [20, L]} 
maximal span : [20, L] 

AC2 maximal span > 80 -+ beam type : {variable height, constant height} 
CCI beam type = variable height 
Cc b f > 4 unbofspans{ L } 2 n o spans _ -+ v i=l span; = nb of opan• 

{ span1, spannb of •pans < nb o/opan• - 10 ± 10% } 
CC3 nb of spans< 4-+ '\f)_bof span•-l{s an· L 20 ± 10%} 

•=2 P ' > nbof spans + 0 

CC4 I:?!:' spans span; = L 
CC5 maximal span = max;=l...nb of opan8Span; 

The activity constraints in this example show how new components are added (AC2) 
and how the structure of the artifact is built (ACl). We simplified the structure by 
representing beams and piers by the unique notion of spanst. 

Starting with bridge type = beam and L = 200 the ACl is activated and the variables 
nb of spans = [1, 10], span = [20, L], maximal span = [20, L] are added. The constraints 
CC2, CC3, CC4 and CC5 are propagated. They split the solution space into two spaces 
Sl and S2: Sl with nb of spans < 4 and S2 with nb of spans 2:: 4. In Sl, the constraints 
CC3, CC4 and CC5 are considered. In S2, CC2, CC4 and CC5 are propagated. In 
the second cycle, a new problem space P2 is created by adding the variable beam type 

t A span is the distance between two adjacent piers. 
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w 
L:200 
bridge type = beam 

l 
P1 nb of spans = [1 1 0] 

span = [20 L] ... ) 
maximal span = [20 L] 

~ ---------... 
51 nbofSpans = [1 3] 

span= ([51.03 62.37] [77.94 95.62] .. ) 
maximal span = [77.94 95.62] 

activation of the I 
variable beamType ~ 

P2 nb of spans 
span 
beam type = {v•iable haight, constant height} 

54 nbofSpans = [1 3] 
spans = ( [51.03 60] [80 95.62] .. ) 
maximaiSpan = 1ao 95.62] 
beamType = var able height 

i l 

52 nbotspans = [410] 
span = 1120 50] .. ) 
maximal span = [20 50] 

53 nbotspans = [1 3] 
spans = ( [60 62.37] [77.94 80] .. ) 
maximaiSpan = 77.94 80] 
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Figure 6 A preliminary bridge design with two problem spaces and different solution 
spaces. 

according to the activity constraint AC2. Within P2, the constraint CCl is propagated 
adding a new component to the bridge. 

This is an example of how configuration can be formalised as an incremental process 
of adding new components and checking relevant constraints. Inconsistencies and splits 
in the solution space are detected during constraint propagation (solution spaces in Pl). 
After each constraint propagation the user has the possibility of interactively restricting 
values. In Sl, for example, the user could set nb of spans to 3. 

Our implementation is based on a forward chaining rule engine for activating con­
straints, a justification-based truth maintenance system ( JTMS) and currently a low-level 
constraint satisfaction algorithm for checking consistency. During constraint propagation, 
new feasible regions inferred are justified by a JTMS-labellinking design variables and 
constraints. Each constraint has a JTMS-label as well. Reasoning on the relevancy of a 
constraint can so be made explicit. After each cycle, the partial result is visualized in 
ICAD, an intelligent CAD system. It provides the user-interface with graphical represen­
tation and a product model of the bridge. New components are incrementally added in 
the ICAD structure corresponding to our algorithm. 
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5 CONCLUSION 

We have shown how configuration problems can be modeled in the framework of incre­
mental constraint satisfaction problems with discrete and continuous variables. This is an 
extension of the purely discrete framework of Mittal(1990) and allows us to attack a broad 
range of configuration problems, which couldn't be solved with discrete variables only. 
Furthermore, we can guarantee maintenance and ~xtendability of the system within this 
framework. We have based reasoning on algorithms of global consistency in the constraint 
network. Although this is computationally expensive, this gives the users the possibility 
to concentrate on the "solution spaces" of the problems P; after each propagation step. 
They are able to explore different partial solutions instead of searching in regions where 
no solutions can be found. The integration of algorithms for incremental constraint satis­
faction into an intelligent CAD system, like ICAD, has shown to be very promising since 
the user can interact with the system by working with the graphical representations of 
the configuration objects instead of manipulating alpha-numeric symbols. 
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