
9

Interactive Configuration based on
Incremental Constraint Satisfaction

E. Gelle and R. Weigel
Swiss Federal Institute of Technology {EPFL}
IN-Ecublens, CH-1015 Lausanne, Switzerland,

E-mail: { ;::;:z} @lia.di.epfl.ch

Abstract
In this paper, we focus on techniques for incremental constraint-based configuration with
discrete and continuous variables. We show how to formalize constraint knowledge us­
ing compatibility and activity constraints (Mittall990) and how this knowledge is used
for reasoning within an intelligent CAD system. Most technical (as opposed to spatial)
constraint configuration systems nowadays use algorithms for solving discrete problems
(Haselboeck 1994) We claim that configuration is both discrete and continuous in nature
and that new methods for handling both constraints in a unified way must be integrated
in configuration systems. Visualization of the globally consistent configuration problem
space allows a systematic and exhaustive exploration of the space in an interactive fashion
(Haroud 1995).

Knowledge maintenance in configuration systems must be simplified, because configura­
tion knowledge of todays products evolves over the whole product life cycle. The knowledge
representation in deductive rule-based systems as often used in intelligent CAD systems
on the other hand will always be context dependent; maintenance problems resulting
from this context dependency are often insurmountable. We have identified the context
independence of constraint-based knowledge representation as an important feature for
facilitating the incremental development and maintenance of large evolving knowledge
bases (Weigel1992).

Keywords
Rule-based vs. constraint-based configuration, incremental constraint satisfaction, inter­
active configuration and design

T. Tomiyama et al. (eds.), Knowledge Intensive CAD
© IFIP International Federation for Information Processing 1996

128 Part Five Constraints

1 INTRODUCTION

In recent years, manufacturing trends have changed from pure mass-production to a more
customer oriented one-of-a-kind production. The main reason for this change is that to­
day's customers have very specific and individual requirements, which can no longer be
satisfied by mass-products. The one-of-a-kind production of many consumer and invest­
ment products requires powerful modeling techniques and representation methods com­
bined with features which facilitate maintenance and extendability. We claim that the
framework of incremental constraint satisfaction offers these features.

Knowledge formalization: The advantage of using constraints to formalize design knowl­
edge is that relations between design parameters can be stated without explicitly men­
tioning of the context in which these relations hold. In section 2 we will show how
context-independent knowledge representation of constraint systems facilitates knowledge
engineering and maintenance of configuration system during the whole life-cycle of the
product. In section 3 we present our framework for dynamic constraints over discrete and
continuous variables. In the framework of incremental constraint satisfaction of Mittal
(1990) one can reason about the introduction and retraction of variables respectively con­
straints during problem solving. This modeling technique is, for reasons of modularity
and efficiency, especially useful when large amount of constraints must be handled.

Interactivity: Often configuration systems work in a batch-like manner which means
that the customer requirements must all be known a priori and are then fed into the
configurator to generate for example the bill-of-material of the product. The interactivity
in our system leads the user from a rough to a more detailed specification. There is no
need to specify all "input" parameters at once. Furthermore, since we based the reasoning
within the system on global consistency of the constraints, we can guarantee that the user
cannot move into regions of the search space without solution. Although global consistency
is computationally expensive, it is especially useful in interactive systems when working
with continuous constraints where an enumeration of the single feasible solutions is no
longer possible. In section 4 we will describe using a small example how global consistency
is integrated in framework of incremental constraint satisfaction.

2 MAINTAINING CONFIGURATION KNOWLEDGE

Todays products evolve during their whole life-cycle. This implies that new knowledge
must be integrated and old knowledge must be removed constantly from the configuration
system. By using a small example we will show that building and maintaining a constraint
knowledge base is much easier than building and maintaining a rule-base. Our fictive car
company decided to develop a new funcar variant of its product line. The effects of adding
this new knowledge to a rule-base respectively to a constraint-base will be studied and
analysed.

Rules are described in the format "IF variablel = value THEN variable2 = value" and
a simple forward chainer will be used for reasoning. Constraints are represented using
tables and the search could be done by a standard backtracking algorithm. Rules and
constraints are shown in Figure 1. The marketing department of the company decides
to introduce a new funcar type its is the task of the knowledge engineer to enter rules

Interactive configuration

Rt IF Package • Deluxe
and Frame - convertible
THEN Engine • A

R2 IF Package • Deluxe
and Frame • hatchback
THEN Engine '"" B

R3 IF PaCkage • Std
and Frame • convertible
THEN Engine • A

R4 IF Engine • A
THEN Transmission • manual

R5 IF Engine • B
THEN Transmission • automatic

R6 IF Type • Sportscar
THEN Frame = convertible

R7 IF Type • Familycar
THEN Frame • sedan

RS IF Type • Sportscar
THEN Transmission • manual

Package
Deluxe
Deluxe

Engine Transmission
A. manual
B automatic
A hal~-automatic

Type Frame
Sportscar convertible
Familycar sedan

Type Transmission
Sportscar manual
Familycar half-automatic

129

Figure 1 Left: Rules for Car Configuration. Right: Constraints for Car Configuration

RiO IF Type = Funcar
THEN Frame = convertible

R11 IF Type = Funcar
THEN Transmission = bali-automatic

Figure 2 New rules to be added to the rule base

Rll and R12 shown in Figure 2 into the rule-base. Simply adding these two rules will
render the rule base inconsistent. This can be seen when configuring a funcar deluxe. The
rule sequence R10, R1, R4 and R11leads to the conflict that the transmission should be
manual and half-automatic at the same time. Therefore one needs to modify the rule-base
as shown in Figure3 left.

Comparison: Constraints and rules must be interpreted differently. Consider for exam­
ple the allowed tuple (A manual) in the constraint between engine and transmission. The
constraint must be interpreted as follows: "engine A is compatible with manual trans­
mission" while the interpretation of rule 4 is "every car with engine A will get a manual
transmission". The scope of the constraints is local in the sense that new knowledge
about funcars for example can not invalidate the constraint knowledge. The scope of the
deductive rule on the other hand is global and new knowledge can invalidate the rule as
described above.

In systems built using deductive rules, in particular expert systems, the context-dependence
results in severe problems of maintenance of knowledge in the face of a dynamic world.
Even minute changes of technology or changes in the marketing policy require revision of
the entire rule set, which can be very costly. In the rule-based approach, adding a new car-

130 Part Five Constraints

Step 1 removing Rule 4
IF Engine = A
TIIEN
Transmission = manual

Step 2 adding Rule 4a
IF Engine • A and
Type = Funcar
TIIEN
Transmission = hal£-automatic

Step 3 adding Rule 4b
IF Engine = A and
Type • Sportcar or Familycar
TIIEN
Transmission = manual

Packa e Frame Engine
Deluxe convertible A
Deluxe hatchback B

Engine Transmission
A manual
B automatic
A hal~-automatic

Type Frame
Sportscar convertible
Familycar sedan
Funcar convertible

Type Transmission
Sportscar manual
Familycar hal£-automatic
Funcar hal£-automatic

Figure 3 Left: steps to make the rule base consistent. Right: Constraints for the extended
Car Configuration

type forced us to create a new relation between engine, type and transmission. Expressing
knowledge without looking at the context is one of the major advantages of constraint
based reasoning. No relation between engine, type and transmission is necessary.

One must furthermore realize, that assigning a single source (e.g. marketing regulations)
to the rules 4a and 4b is not possible. Rules from different sources * are mixed together in
new rules only to get a consistent chaining behaviour. These new rules can be considered
as "interface rules" between knowledge sources and they are artificial in the sense that
only the chaining behaviour is responsible for their existence. Proving the correctness of
those rules becomes cumbersome. The problem of systems built using deductive rules is
therefore not only the revision of the rules, which can be very costly. The revisions itself
will make the maintenance of the rule-base even more difficult, leading to systems which
are no longer manageable.

Mechanising the knowledge engineering process is straightforward within the constraint­
based framework, because whenever a relation between variables is "established", the
knowledge engineer must enter all valid variable-value combinations for that relation.
Knowledge engineering in the rule-based framework on the other hand resembles a more
hand-crafted approach, since it is possible to delay the engineering of rules until they are
needed for a specific configuration. Consider the relation between engine and transmission
in the above examples, where the tuple (A half-automatic) in the constraint-based system
was "valid" from the very first moment. In the rule-based system on the other hand one
could find this piece of knowledge only in "decoded" form within rule 4b, which was added
after a contradiction was detected.

*The knowledge of rules 4a and 4b stems from the marketing and the engineering department!

Interactive configuration 131

3 INTERACTIVITY AND SOLUTION SPACES

Traditionally, configuration tasks have been reduced to the activity of assembling compo­
nents of predefined dimensions (Haselboeck 1994) The number of ways such components
can be combined is enumerable. The configuration task is thus modeled as a constraint
satisfaction problem on finite, discrete variables. Most practical tasks, however, include
objects without predefined ranges of dimensions and continuous variables are needed to
describe their properties. Consider, for example, the spatial configuration of 3 objects A,
B and C. The position of the objects are described by continuous variables.

Example: Configuration with continuous variables Let a;, b;, c; for i = x, y be the x
respectively y coordinates of the objects A, B and C. We can formulate a set of constraints
involving a;, b;, c;.

Cl a;, b;, c; E [0, 10] for i = x, y
C2 b,. ~ a,2 + 2
C3 b.,~ 2c.,
C4 a.,3 + 4 ~ c,.b,.
C5 by~ ay
C6 ay + by 2 ~ c11

C7 c,. ~ Cy

C8 2b11 2 + 2c,. ~ 5b,.

y

GJ
(cx,cy)

[;] (b~LB I
(ax,ay)

~------------------•X
In order to solve these equations, engineers currently apply a particular sequence of

calculations, but never consider the entire space of solutions. They will first solve subsets
of constraints and then try to combine these partial solutions by picking one feasible point
in a subregion corresponding to a subset of constraints and checking it against the resting
constraints.

In constraint-based systems, consistency algorithms are used in order to refine the pos­
sible solution space for each variable. Search then finds single feasible solutions within the
refined space. Depending on the structure of the problem, applying a certain degree of con­
sistency results in a globally consistent solution space. Global consistency in a constraint
network ensures that for each variable a value can be found so that all the constraints are
satisfied. Haroud (1995) has developed an algorithm guaranteeing global consistency for
continuous constraint satisfaction problems (CCSPs).

Figure 4 visualizes the solution space for the constraints Cl . .. C4 of the spatial configu­
ration example. In this algorithm, cubes approximate the region defined by each constraint
in the tree-dimensional space. The algorithm calculates consistent solution spaces by com­
bining these regions. Given a feasible partial solution, an extension to a globally consistent
solution is guaranteed. Users can interactively restrain the feasible solution space and fo­
cus on regions of interest within. It is now possible for them to explore feasible space for
preferable solutions. In Figure 4, the solution has been restrained to 6.5 ~ b,. ~ 7.2. All
the values dependent on b., (a,. and c,) are recalculated with respect to the new value of
b,..

132 Part Five Constraints

10 10 ax

Figure 4 The solution space corresponding to the constraints Cl. .. C4.

4 INCREMENTAL CONSTRAINT SATISFACTION

In design and configuration, the problem space is often huge and interaction between
components very complex. To reduce computational complexity, the task is modeled as
an incremental constraint satisfaction problem (CSP) defined by a set of variables X, a
set of constraints C and a set of initial conditions W. W defines the set of variables that
have to be part of every solution. C consists of two types of constraints: compatibility and
activity constraints, noted CC respectively AC. Not all the variables need to be part of
a solution: X only defines the space of potentially active variables. It follows, that not
all of the constraints will be relevant for one solution. We need to reason on the activity
of variables and the constraints depending on them. The introduction of new variables
and constraints depends on activation conditions. This dependency can be formulated as
a so-called activity constraint t according to the definitions of Mittal (1990).

AC: C;(Yl) -+ active : Y2

This activity constraint activates the subset Y2 of variables if the activation condition
(or precondition) C(Yi) is satisfied. The precondition C; defines a mathematical relation on
Yi . Compatibility constraints define the relations that must hold between active variables:

CCI: C;(Y2)
CC2: C;(Y3)-+ Ci(Y4)

If all the variables of Y2 are active in CCI, C; has to be satisfied. The constraint C; is a
mathematical (in)equality on the subset of variables Y2 or, in the discrete case, a relation
between variables where allowed tuples are enumerated. In CC2, it depends on the values
of Y3 as well as on the existence of y3 n Y4 if cj is relevant or not.

tAn activity constraint should not be mistaken for a rule, it defines a constraint on the activity of variables
in the problem space

Interactive configuration 133

Figure 5 A sequence of static problems. In problem space Pl, the variables x and yare
active; in P2, x and z. In the solution space SJ, the set of the constraints explicitly depends
on the value of y. In S2, the global consistency algorithm finds two separate feasible regions
satisfying the same set of constraints with C3: y -1/ x 2:: 0, C4: (x- Y? + 2x + 2y- 8 2:: 0,
C5: y + 1.3x- 4 :=; 0.

The goal is to find all the solution spaces S so that for each solution s E S: s satisfies
all the constraints defined on a set of active variables in X and no more variables can be
activated.

For reasoning on the surface of the objects in the spatial configuration problem, the
objects are given additional properties such as shape and dimension. Depending on their
shape, the variables width, height or radius are relevant and their surface will be calculated
differently. Initially, W is { shapex,sur facex} , x E {A, B, C} and the constraint set C is
defined by

ACl shapex = rectangle--+ lengthx AND widthx
AC2 shapex = circle --+ radiusx
CC3 sur facex = radiusx * 7r

CC4 sur facex = lengthx * widthx
CC5 R(shape A, shapeB) = (rectangle, circle)(circle, rectangle)

When shape A= rectangle, the variables sur face A, length A and width A are active and
sur face A will be calculated according to CC4. ShapeB is restrained to a circle by CC5
and its surface is calculated according to CC3.

The process of finding solution spaces involves an activate-propagate cycle: From the
given set of active variables, all activity constraints are checked in order to activate new
variables. This step defines the new problem space, i.e. the space of currently active vari­
ables. In the propagate step, the compatibility constraints defined on active variables
are checked for global consistency. Feasible partial solution spaces, i.e. regions in N-space
defining value bounds for the variables, are found. At each cycle, the values of currently
active variables are either refined or an inconsistency is detected. This solution space is
discarded and the algorithm either backtracks to another solution space or to the next
problem space not yet treated. It halts when no new problem spaces can be created, i.e.
all the problem spaces have been searched and no new variables can be activated. The
final solution spaces are those in the leaves of the problem space tree.

An incremental CSP can then be viewed as a sequence of static problems (Figure 5):
Po, ... P .. with Po=< Xo,Co , D >and P; =< X;,C;,D >where C; = C;-1 ± {CJ

134 Part Five Constraints

with {C;} C C, X is the set of variables and D the variables' domains. As can be
seen in figure 5, activity constraints may split up one problem space into several each
containing different sets of active variables (PI and P2 in Figure 5). Constraints may
split a solution space further by creating separate regions of consistent values. In Sl, the
relevant constraints explicitly depend on values of y. In S2, the intersection of C3, C4 and
C5 create two separate feasible regions.

4.1 Example in Bridge Configuration

We would like to show on a small example of bridge configuration how components of
the configuration product can be added incrementally. Adding components leads to new
design parameters and values that activate new constraints.

The aim in bridge configuration is to find bridge designs that satisfy design specifi­
cations as well as building codes and other requirements as described in Haroud and
Boulanger (1995). Given the section of the valley in which the bridge has to be built, a
set of initial conditions Wand a set of constraints C, we want to find all solution spaces.
In the following example, the designer already decided on a beam bridge type. The initial
conditions W are thus:

Parameter
L
bridge type

Definition
length of the valley
type of the bridge

Domain
real number
{beam,cable-stayed,frame,arch}

and the constraint set C is defined by:

Value
200
beam

{
nb of spans: [1, 20] }

ACl bridge type = beam -+ span : v:'!:f opan• {span; : [20, L]}
maximal span : [20, L]

AC2 maximal span > 80 -+ beam type : {variable height, constant height}
CCI beam type = variable height
Cc b f > 4 unbofspans{ L } 2 n o spans _ -+ v i=l span; = nb of opan•

{ span1, spannb of •pans < nb o/opan• - 10 ± 10% }
CC3 nb of spans< 4-+ '\f)_bof span•-l{s an· L 20 ± 10%}

•=2 P ' > nbof spans + 0

CC4 I:?!:' spans span; = L
CC5 maximal span = max;=l...nb of opan8Span;

The activity constraints in this example show how new components are added (AC2)
and how the structure of the artifact is built (ACl). We simplified the structure by
representing beams and piers by the unique notion of spanst.

Starting with bridge type = beam and L = 200 the ACl is activated and the variables
nb of spans = [1, 10], span = [20, L], maximal span = [20, L] are added. The constraints
CC2, CC3, CC4 and CC5 are propagated. They split the solution space into two spaces
Sl and S2: Sl with nb of spans < 4 and S2 with nb of spans 2:: 4. In Sl, the constraints
CC3, CC4 and CC5 are considered. In S2, CC2, CC4 and CC5 are propagated. In
the second cycle, a new problem space P2 is created by adding the variable beam type

t A span is the distance between two adjacent piers.

Interactive configuration

w
L:200
bridge type = beam

l
P1 nb of spans = [1 1 0]

span = [20 L] ...)
maximal span = [20 L]

~ ---------...
51 nbofSpans = [1 3]

span= ([51.03 62.37] [77.94 95.62] ..)
maximal span = [77.94 95.62]

activation of the I
variable beamType ~

P2 nb of spans
span
beam type = {v•iable haight, constant height}

54 nbofSpans = [1 3]
spans = ([51.03 60] [80 95.62] ..)
maximaiSpan = 1ao 95.62]
beamType = var able height

i l

52 nbotspans = [410]
span = 1120 50] ..)
maximal span = [20 50]

53 nbotspans = [1 3]
spans = ([60 62.37] [77.94 80] ..)
maximaiSpan = 77.94 80]

135

Figure 6 A preliminary bridge design with two problem spaces and different solution
spaces.

according to the activity constraint AC2. Within P2, the constraint CCl is propagated
adding a new component to the bridge.

This is an example of how configuration can be formalised as an incremental process
of adding new components and checking relevant constraints. Inconsistencies and splits
in the solution space are detected during constraint propagation (solution spaces in Pl).
After each constraint propagation the user has the possibility of interactively restricting
values. In Sl, for example, the user could set nb of spans to 3.

Our implementation is based on a forward chaining rule engine for activating con­
straints, a justification-based truth maintenance system (JTMS) and currently a low-level
constraint satisfaction algorithm for checking consistency. During constraint propagation,
new feasible regions inferred are justified by a JTMS-labellinking design variables and
constraints. Each constraint has a JTMS-label as well. Reasoning on the relevancy of a
constraint can so be made explicit. After each cycle, the partial result is visualized in
ICAD, an intelligent CAD system. It provides the user-interface with graphical represen­
tation and a product model of the bridge. New components are incrementally added in
the ICAD structure corresponding to our algorithm.

136 Part Five Constraints

5 CONCLUSION

We have shown how configuration problems can be modeled in the framework of incre­
mental constraint satisfaction problems with discrete and continuous variables. This is an
extension of the purely discrete framework of Mittal(1990) and allows us to attack a broad
range of configuration problems, which couldn't be solved with discrete variables only.
Furthermore, we can guarantee maintenance and ~xtendability of the system within this
framework. We have based reasoning on algorithms of global consistency in the constraint
network. Although this is computationally expensive, this gives the users the possibility
to concentrate on the "solution spaces" of the problems P; after each propagation step.
They are able to explore different partial solutions instead of searching in regions where
no solutions can be found. The integration of algorithms for incremental constraint satis­
faction into an intelligent CAD system, like ICAD, has shown to be very promising since
the user can interact with the system by working with the graphical representations of
the configuration objects instead of manipulating alpha-numeric symbols.

ACKNOWLEDGMENTS

Funding for this research was provided by the Swiss National Science Foundation. The
authors would like to thank Boi Faltings, Ian Smith, Djamila Haroud, LIA, EPFL, and
Sylvie Boulanger, ICOM, EPFL, for useful discussions.

REFERENCES

Mittal, S. and Falkenhainer, B. (1990) Dynamic Constraint Satisfaction Problems. Proc.
of AAAI-90, 25-32

Faltings, B. and Weigel, R. (1994) Constraint-based knowledge representation for config­
uration systems. Technical Report TR-94/95, LIA-DI, EPFL, Lausanne, CH

Haroud, D. (1995) Global Consistency for Continuous Constraints. Phd thesis, LIA-DI,
EPFL, Lausanne, CH

Haroud, D., Boulanger, S., Gelle, E. and Smith, I. (1995) Strategies for Conflict Manage­
ment in Preliminary Engineering Design. A/EDAM Special Issue on Conflict Manage­
ment in Design, 313--323

Stumptner, M., Haselbock, A. and Friedrich, G. (1994) COCOS, A Tool for Constraint­
Based, Dynamic Configuration. Proc. of the 10th IEEE Conference on AI Applications,
373-380

Mackworth, A.K. and Freuder, E. C. (1985) The Complexity of some Polynomial Network­
Consistency Algorithms for Constraint-Satisfaction Problems. Artificial Intelligence,
25, 65-73

Mohr, R. and Henderson, T (1986) Arc and Path Consistency Revisited. Artificial Intel­
ligence, 28, 225-233

