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Abstract 
This paper proposes knowledge intensive engineering that is a new way of engineering activi­
ties in various product life cycle stages flexibly conducted with more knowledge to create 
more added value. Knowledge representation and modeling issues are discussed and a 
cooperative multiple intelligent agent architecture based on multiple ontology is proposed for 
building a Knowledge Intensive Engineering Framework (KIEF). KIEF can be used as a 
knowledge intensive CAD for knowledge intensive design of knowledge intensive machines. 
This demonstrates the power and usefulness of knowledge intensive engineering. It is also 
discussed that to achieve knowledge intensive engineering, systematization of knowledge is 
an essential process to allow intelligent agents to share accumulated knowledge. 
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INTRODUCTION 

Knowledge intensive engineering is a new style of engineering based on intensive use of var­
ious kinds of engineering knowledge aiming at creating more added value (Tomiyama 1994). 
Concurrent engineering addresses the very same issue of flexibly using various kinds of 
knowledge and aims at improving manufacturing processes by taking, for example, 
production issues into design consideration. Knowledge intensive engineering further 
elaborates this idea, such that having a framework for knowledge intensive engineering al­
lows designers and engineers to create more added value in various stages of product life 
cycle stages including as designing, manufacturing, operations, and maintenance. 

At the University of Tokyo, our group has been studying a wide variety of topics related to 
engineering design. Among other things, developing an intelligent CAD system was a 
primary goal (Veth 1987; Xue et al. 1992). This aims at integrating and making flexible use 
of various kinds of design knowledge and intelligently assisting designers, by giving advises 
and suggestions and by checking errors based on design process knowledge. The Knowledge 
Intensive Engineering Framework (KIEF) is a computational framework for knowledge in­
tensive engineering and is a natural extension of the concept of the intelligent CAD system 
(Tomiyama 1994; Tomiyama et al. 1994; Yoshikawa et al. 1994). 

Note that knowledge intensive engineering is not just a new variation of knowledge engi­
neering, but a new style of engineering based on the recognition that knowledge is the source 
of added value. Since added value can be generated only from knowledge, obviously we need 
more knowledge in various aspects of engineering. KIEF should allow generation and 
flexible exchange of design knowledge and information that will be further used in various 
stages of the life cycle. It is not just another 'knowledge-based design' system that assists 
designers in an intelligent manner. 

The rest of the paper is organized in the following manner. Chapter 2 discusses the concepts 
of knowledge intensive engineering and examples of how knowledge intensive engineering 
can increase added value of various engineering activities. Knowledge intensive engineering 
requests that various kinds of engineering knowledge must be systematically organized and 
installed in a computational framework such as KIEF. To do so, we need to systematize 
engineering knowledge. Chapter 3 examines this issue of knowledge systematization, while 
Chapter 4 deals with the concept of knowledge intensiveness that is the key issue of 
knowledge intensive engineering. Chapter 5 discusses the architecture of KIEF based on the 
ideas of cooperative multiple intelligent agent architecture and its kernel knowledge repre­
sentation and modeling methodQlogies. Chapter 6 concludes the paper. 

2 THE CONCEPTS OF KNOWLEDGE INTENSIVE ENGINEERING 

Engineering design requires a wide variety of knowledge about product life cycle aspects. 
Therefore, an advanced information support infrastructure for engineering design should deal 
with not only design knowledge, i.e., about requirements, functions, physical phenomena, and 
devices, but also knowledge about manufacturing processes, opemtions, diagnosis and 
maintenance, and even disposal and recycling. 

This coincides with the recent trends that product life cycle issues are paid more attention 
due to, first, environmental problems and, second, high-tech products that should be installed, 
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operated, maintained, and recycled exclusively by manufactures. Concurrent engineering 
nowadays addresses not only manufacturability issues but also maintainability, serviceability, 
recycleability, etc. (Tomiyama 1995). This indicates that manufacturing industry is now 
extending its scope from just design and manufacture to the entire life cycle stages of prod­
ucts including marketing, material acquisition, design, production, logistics, installation, 
operation, maintenance, reclamation, recycling, and discarding. The famous Japanese 
'design-in' activity is a supporting evidence of the fact that such intensively collected 
knowledge is more effective than a distributed, independent set of knowledge. 

1 •) Craft society 

Manufacturing 
Industry 

(h) Industrialized society 1r) Knowledge intensive society 

Figure 1 Craft society, industrialized society, and knowledge intensive society. 

Thus, it is necessary to use and develop advanced computer tools for facilitating mutual 
communications among those involved in every stage of the product life cycle. Figure I 
depicts how manufacturing industry extended its scope over product life cycle in its history 
and will extend in the near future (Tomiyama and Baba 1993). 

This idea resulted in the concept of knowledge intensive engineering which is a new way 
of engineering activities in various product life cycle stages conducted with more knowledge 
in a flexible manner to create more added value. It is crucial to share and reuse various kinds 
of knowledge involved in the product life cycle. Technically speaking, in case of, e.g., 
knowledge intensive design, this boils down to integration and management of various kinds 
of models to synthesize an artifact, to analyze its properties, and to evaluate its performance 
against requirements under certain circumstances. These models are not simply connected to 
each other but integrated, so that mutual data exchange and model sharing are possible. 

Knowledge intensive engineering has another goal to increase added value of engineering 
activities. Recently, we see various kinds of advanced mechatronics machines emerge and 
intelligence is becoming an indispensable part of innovative products and manufacturing 
processes. One of the bottlenecks in developing such 'smart machines' is software de­
velopment. If KIEF can provide a software engineer with design information including func­
tional and behavioral requirements, device control information, and physical constraints re­
garding sensors and actuators, the software development can be greatly assisted or even au­
tomated (Shimomura eta/. 1993). We might call this process knowledge intensive software 
development. 

Operation tasks require different models from design, such as a control model, sensory data 
models, etc., so do maintenance tasks. For instance, knowledge intensive maintenance is a 
process in which various kinds of models for maintenance are used to diagnose a target rna-
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chine more accurately and correctly than traditional association based diagnosis expert sys­
tems and to generate more useful information such as inspection instructions and repair plans. 
Information obtained through operation and maintenance should be further fed back to relia­
bility design. In this way, KIEF can serve also as a basis for knowledge intensive operation 
and maintenance. Figure 2 illustrates how knowledge intensive engineering is useful in a 
product life cycle. 

This can be further extended to the knowledge intensive enterprise concept which is based 
on a smooth flow of design knowledge from the design department to the production, sales, 
and other departments and even to products themselves as embedded intelligence. For 
instance, we have developed self-maintenance photocopiers that are typical examples of such 
innovative, knowledge intensive machines of which intelligence comes directly from design 
knowledge (Umeda et al. 1992; Umeda et at. 1994b ) . 

.--------!Knowledge Intensive Engineering Framework 

Engineering Activities 

.. ~ 

I I 

Figure 2 Product life cycle and knowledge intensive engineering. 

3 KNOWLEDGE SYSTEMATIZATION 

Knowledge intensive engineering requests that various kinds of engineering knowledge must 
be systematically organized and installed in KIEF. To do so, we have been conducting 
various projects to collect design knowledge (Kiriyama et al. 1992; Tomiyama et al. 1994). 
The most significant result of these knowledge collection projects is that, if knowledge is 
systematized, the task boils down to a matter of actual collection. Otherwise, it is extremely 
difficult even to collect knowledge (Tomiyama et at. 1992). 

3.1 Classification of knowledge 

We consider that knowledge systematization consists of the following processes, viz., setting 
up a view, articulation, codification, crystallization, verification, and reusing and sharing of 
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knowledge. Before we examine these in detail, we illustrate our general view about knowl­
edge. 

Generally speaking, knowledge has two forms, i.e., recognized knowledge and unrecog­
nized knowledge. Another dimension of knowledge is tacit knowledge and codified 
knowledge. Tacit knowledge is a form of knowledge that is explicitly or implicitly recognized 
by human and used for reasoning but very difficult to describe. Codified knowledge is a form 
of knowledge that is described in any human-recognizable form. This means that there are 
three kinds of knowledge as combinations of these two dimensions (Figure 3); recognized 
and codified, recognized and tacit, and unrecognized and tacit. Unrecognized and codified 
knowledge is meaningless. 

The primary goal of knowledge systematization is to convert recognized and tacit knowl­
edge to recognized and codified knowledge. However, there can be various degrees of codi­
fication. For instance, information stored in a database is computable. Textbooks can be ma­
chine-readable, but might not be computable. Since our ultimate goal is the development of 
KIEF, computable knowledge is the best form of knowledge. For obtaining computable 
knowledge, we need further treatment. 

Science in general is an effort to create recognized and codified knowledge from tacit 
knowledge. While science sometimes focuses on even unrecognized knowledge, systemati­
zation of knowledge does not. On the other hand, science does not necessarily aim at creating 
computable knowledge. 

In this paper, we discuss conversions from recognized and tacit knowledge to recognized 
and codified, and preferably, further to computable knowledge as a working definition of sys­
tematization. Figure 4 depicts the knowledge systematization process. 

Figure 3 Classification of knowledge. Figure 4 Knowledge systematization process. 

3.2 Setting up a view 

In order to convert recognized and tacit knowledge to codified, first we need to set up a view. 
This can be best explained by how modeling works (Tomiyama et al. 1990). In science and 
engineering, a model is created by observing a phenomenon based on a theory (Figure 5). A 
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kinematic model is generated based on kinematics, using only the vocabulary and concepts of 
kinematics. In this regard, modeling is a kind of filtering through observation, such that a 
generated model becomes complete as far as the theory is concerned. 

There can be many different models for a single phenomenon. This implies that, when con­
verting tacit knowledge into codified knowledge, we need to have a pre-described set of 
concepts. This set is called a view and often associated with a well-defined theory that de­
scribes relationships among those concepts. Systematization of knowledge, thus, begins with 
defining such a view. 

r-::--~yS«:alpheno""'non ) 
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---w-:E-oo tho Thoaty .-/ --....... 
I• Conc.rned l model _) 

Figure 5 Modeling. 

3.3 Articulation 

Once we set a view together with a background theory associated with the view, we try to 
identify instances of concepts that belong to the view in the observed phenomenon. This 
process is called articulation in which unorganized instances of concepts are given represen­
tations chosen from the vocabulary. Knowledge after articulation is thus recognized knowl­
edge, or knowledge before articulation is tacit knowledge. 

3.4 Codification 

After articulation, we have a set of instances that were given representations. Since in the pro­
cess of setting up a view we also have a background theory that defines relationships among 
these instances, this set of instances can now be organized and given structure. In artificial 
intelligence, structure is often represented by entities and relationships among entities, and at­
tributes of entities and relationships. At this stage, the phenomenon is codified and our 
knowledge about the world can increase through knowledge collection. However, codified 
knowledge is only a collection of facts observed in the phenomenon. A fact is a (partial) 
account of the phenomenon within the theory. Rules obtained in a knowledge acquisition 
process are examples of such codified knowledge. 

3.5 Crystallization 

Codification process generates only pieces of factual knowledge. This type of knowledge is 
extremely useful when massively stored in a database system. However, such knowledge can 
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result in hard-fail. A knowledge based system can hard-fail, when it encounters a situation 
that is not described in the knowledge base. In other words, any knowledge base has its 
limitations and lacks robustness. An approach to removing this limitation is either to broaden 
the range that the knowledge base covers or to generalize the knowledge. Projects to 
construct a large scale knowledge base, such as Cyc (Lenat 1995; Lenat and Guha 1989), are 
examples of the former approach. The latter is achieved by two ways: one is to use deeper 
knowledge and the other is to use a general, abstract knowledge. Crystallization is a process 
to generate general and abstract knowledge from purely factual knowledge in an organized 
manner. Such general, abstract knowledge is called a theory. This theory is different from the 
background theory in that it is backed up by observed facts. 

An important lesson that we learnt from our project to build a large scale knowledge base is 
that crystallization is needed to organize the codified knowledge (Tomiyama et al. 1994). 
This implies that a brute force approach to collect knowledge eventually fails. Knowledge 
collection must be done in a systematic and organized way. 

3.6 Verification of knowledge 

The next step is to verify the collected knowledge with any known theories. Self-verification 
is a test of the codified knowledge or the crystallized theory against the background theory, 
while other kind of verification is a test against any other known theories. If there found any 
contradiction, we need to modify, improve, or adjust the background theory or the articulation 
scope, or to redo the codification or crystallization processes. · 

3. 7 Reusing and sharing of knowledge 

Knowledge intensive engineering requires reusing and sharing of knowledge that are the 
eventual goal of knowledge systematization. In order to reuse and share knowledge, we need 
not only knowledge representation techniques but also a common knowledge description 
format such as KIF (Genesereth and Fikes 1990). Systematization of knowledge cannot be 
accomplished without such a method. However, we do not discuss this issue here. 

4 KNOWLEDGE INTENSIVENESS 

4.1 Large scale knowledge bases 

Systematization of knowledge is achieved by conversions from recognized and tacit knowl­
edge to recognized and codified knowledge. There can be various types of knowledge ac­
cording to the degree of systematization, which include for example: 

e factual database; 
e large scale knowledge base; 
e domain dependent, object level theory; 
e computable knowledge. 
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It is often advocated that large scale knowledge bases are useful for engineering applica­
tions including design, manufacturing, operations, and maintenance, because these activities 
require an extremely huge amount of and various kinds of knowledge. Similarly, a 
considerable body of current AI research centers on the approach of very large-scale 
knowledge bases (VLKB), such as Cyc. These projects aim at building powerful AI systems, 
first by collecting a large number of knowledge chunks from ontological, fundamental 
common knowledge to domain dependent specific knowledge, and second by providing 
mechanisms for reusing and sharing knowledge (Neches et al. 1991). The KIF Project 
advocates the idea of knowledge standard for exchanging knowledge. Obviously, VLKB 
should go hand in hand with knowledge standards. 

4.2 Knowledge intensiveness 

Not only quantity of knowledge but also quality of knowledge in terms of sharability and 
reusability of knowledge is crucial, because knowledge intensive engineering aims at both 
amount and flexibility of knowledge. Knowledge must be well organized and can be flexibly 
applied to different kinds of applications. Figure 6 schematically depicts measures of the 
knowledge intensiveness concept. Certainly, knowledge intensiveness refers to the amount in 
a chunk of knowledge. Abstractness is an index of generality or universality of a chunk of 
knowledge. Width here shows the domain that is covered by a chunk of knowledge. Intensity 
means how knowledge is well systematized within a chunk. 

We view that knowledge intensiveness comes not only from the amount of knowledge but 
also from the way in which knowledge is distributed among cooperative intelligent agents. 
Flexibility in Figure 6 means ease of using a chunk in combination with others. 

Abstraction 

Intensity -· ~---~ 
Inter-operability = Flexibility 

--------...,.W...,.i...,.dt_h ______ Fields 

Figure 6 Knowledge intensiveness. 

4.3 Knowledge sharing and reuse 

Figure 7 compares three different types of knowledge sharing architecture. Figure 7 (a) de­
picts a situation with independent (and probably irrelevant) knowledge bases as a result of 
collecting independent 'micro theories.' In this case, the strength of knowledge is just a sum 
of each of independent knowledge bases. Integrated knowledge bases can be represented in 
Figure 7 (b) in which knowledge bases can be applied to various situations and the strength of 
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knowledge is maximum. However, this requires to have a platform with a uniform language. 
The Cyc project is an example of this approach. In Figure 7 (c), independent knowledge bases 
can communicate and form an inter-operable situation, although the strength of knowledge 
might be weaker than that in Figure 7 (b). The entire knowledge base is a federation or a set 
of loosely coupled intelligent agents. For instance, the PACT project employs this strategy 
(Cutkosky et al. 1993). As a platform, they use KIF and Ontolingua (Gruber 1993). 

The second architecture can suffer from the lack of uniform knowledge representation. 
Unless carefully designed, the platform language cannot cover everything. The alternative 
third approach may have less problem in this regard, if the framework is enough abstract to 
incorporate different types of ontology each agent talks about. However, it does not mean that 
we can completely avoid the problem, because communication among agents requires at least 
to understand what other agents are talking about. 

From our previous experiences with building a large scale knowledge base, we have found 
out that reasoning based on single ontology is less flexible and that describing everything in a 
single ontology is extremely difficult. This single ontology situation corresponds to Figure 7 
(b). Instead, we need to have a system that allows reasoning based on multiple ontology in a 
cooperative multiple intelligent agent architecture depicted in Figure 7 (c). 

00 
00 

Figure 7 Knowledge sharing architectures. 
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Figure 8 Knowledge representation, modeling, and agents. 

4.4 Cooperative multiple intelligent agents 

Figure 8 depicts how we can build a cooperative architecture composed of communicating 
intelligent agents based on multiple ontology. Intelligent agents are computer systems or 
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human agents of any kind including knowledge based systems (in most ordinary sense), 
database systems, simulation systems, and specific purpose computational tools. The simplest 
one could be a program that performs arithmetic. 

At the bottom of the architecture, i.e., the syntax level, there is a system for knowledge 
representation, which is less critical than the knowledge modeling level that describes 
'ontology.' While the knowledge representation level is more concerned with how, the 
knowledge modeling level represents what to be modeled and defines the basis of 
communication for intelligent agents. Knowledge modeling refers to such techniques as 
model based reasoning, qualitative physics, etc. We call this level ontology. The ontology at 
this intermediate level might include (but not necessarily be limited to) causality, spatial and 
temporal relationships, and actions in many cases. 
The ontology level describes concepts with fixed sets of concepts. These sets define 

'terminology.' Terminology is a network of conceptual relationships (or a dictionary), and at 
this moment, there are six categories of terminology, i.e., entity, relation, attribute, physical 
property, physical phenomenon, and function. 

Anything undefined in this level should be resolved by agents that provide problem solving 
capabilities. Each agent, therefore, has its own ontology (or problem solving mechanism) 
inside it and does not have to understand detailed knowledge and algorithms with which other 
specialized agents perform their tasks. This is an advantage of this approach when compared 
with, e.g., the integrated knowledge representation approach in Figure 7 (b). 

The intermediate layer should also contain information about what other agents know 
about. This includes information about the input-output relationships of an agent and in­
formation about concepts that an agent knows, although some details can and should be 
omitted. 

5 A COMPUTATIONAL FRAMEWORK FOR KNOWLEDGE 
INTENSIVE ENGINEERING 

Based on the ideas discussed in the previous chapters, our group at the University of Tokyo is 
currently developing KIEF. Its overall architecture is depicted in Figure 9. The framework is 
developed on Objectworks\Smalltalk (from ParcPiace Systems, Inc.). 

5.1 Metamodel mechanism 

At the core of the system, we have the metamodel mechanism with VLKB of engineering 
knowledge (Ishii et al. 1995; Kiriyama et al. 1991; Kiriyama eta/. 1992; Tomiyama et al. 
1990; Tomiyama et al. 1994; Tomiyama eta/. 1992; Yoshikawa eta/. 1994). Database 
management is done by an object oriented database system (VERSANT from Versant 
Technology, Inc.). Intelligent agents are models of an object to be modeled for various en­
gineering activities. 

The metamodel mechanism is based on common ontology and terminology for model 
management to allow intelligent agents to communicate each other. It is called metamodel, 
because it models various kinds of models. The metamodel mechanism integrates various 
kinds of models through the concept network dynamically created by envisioning. As a result 
of envisioning, suppose that we know a physical phenomenon may qualitatively happen. To 
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evaluate this, we need to generate a dedicated qualitative model concerned about that phe­
nomenon and may further need to generate a quantitative model. The metamodel mechanism 
feeds information necessary to do so and automatically generates required models (Kiriyama 
et at. 1991). These generated models can share and exchange knowledge and information 
through the concept network. This is a substantially different approach from, e.g., product 
data exchange technology such as STEP (ISO 1990). 

Figure 9 Architecture of the knowledge intensive engineering framework. 

5.2 Kernel knowledge representation 

The knowledge modeling of the metamodel mechanism is based on multiple ontology but a 
single terminology. Currently, there are four different types of ontology either implemented 
or planned. The first type is causality based on Qualitative Process Theory (QPT) (Forbus 
1984). The second type is temporal ontology in addition to temporal notions used by a quali­
tative reasoning system based on QPT. The third type of ontology is spatial. These two types 
of ontology, temporal and spatial, allow reasoning with dedicated reasoning systems. We plan 
to incorporate the fourth type of ontology that is about action. We call these four types of 
ontology CATS (Causality, Action, Time, and Space) ontology. 

In Figure 9 showing the architecture of KIEF, VLKB stores fundamental engineering 
knowledge based on the ontology described above. There are fundamental concepts that are 
commonly used within the system. These are called terminology and include concepts about 
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entities, relations, attributes, physical properties, physical phenomena, and function. Each of 
these concepts is separately categorized and forms a static conceptual network. 

Entity 
An entity represents an atomic, physical object in our representation and corresponds to an 
'individual' in QPT. Entities are organized in an abstract-concrete hierarchy. The hierarchy 
allows multiple inheritance, so that an entity can be categorized into more than one class; for 
example, a spur gear can be a subclass of the mechanical rotational part and of the metallic 
object. 

Relation 
A relation represents a relationship among entities, such as 'on,' 'above,' 'below,' 'support,' 
and 'connection.' In other words, it defines structure among entities. Relations work exactly 
in the same way as predicates in predicate logic. Relations can be hierarchically defined. 

Relations are one method to introduce the spatial and temporal ontology into the system. 
For instance, a relation 'on' between two entities, A and B, does not have any meaning, 
unless there is a system that can verify that A is actually on B. This is a sort of symbol 
grounding problem and can be solved only by introducing an external reasoning system that 
can confirm if this relation holds. 

Attribute and physical property 
An attribute is a concept attached to entities and takes a value to indicate the state of entities, 
such as 'position,' 'temperature,' and 'mass.' A physical property is a concept that describes 
generic characteristic of entities, such as 'elastic' and 'magnetized.' A physical property is as­
sociated with a set of attributes that indicate degree of the physical property. For example, 
Young's modulus indicates elasticity. The knowledge base also has knowledge about 
differential relations between attributes, and 'has' relations between entities and physical 
properties. 

Physical phenomenon 
A physical phenomenon designates physical laws or rules that govern behaviors of the object 
and corresponds to a view of QPT. Figure 10 shows a screen hardcopy of the physical phe­
nomenon browser defining a physical phenomenon in which a spring is reacting to external 
force. A physical phenomenon is defined by the following slots: 

e Name of the physical phenomenon. 
e Super (or abstract) physical phenomena. 
e Prerequisites for the physical phenomenon to become activated in terms of entities 

together with their attribute definitions, relations, and physical properties. Entities are 
specified as pointers to link instances of entities for delegation when building physical 
features. 

e Physical rules that define relationships among the parameters and define influences that 
can happen when the physical phenomenon is activated. 

Physical laws 
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The physical Jaw knowledge base contains two types of knowledge. One is the physical rule 
knowledge base that stores the unique names of physical laws and the attribute concepts used 
in the laws. The names of physical laws keep track of the same physical law represented in 
different design object models. The other is the model libraries that store typical model 
fragments of a design object model that relate physical concepts (such as entities, relations, 
physical phenomena, etc .) and design object models. For example, an equation 

f=ma 

is a fragment of a dynamics equation model that describes Newton's second law. These 
fragments are used as building blocks to generate design object models. The parameters used 
in a fragment corresponds to attribute concepts, so that, after a design object model is 
generated, the metamodel mechanism can maintain relationships among the attribute concepts 
in the metamodel and the parameters in design object models for sharing information. 

Figure ll is a screen hardcopy of the physical rule browser that defines Newton's second 
law of motion. 
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Figure 10 The physical phenomenon browser. Figure 11 Physical rule browser. 

Physical features 
A physical feature describes a situation in which something happens. Figure 12 shows 
representation of a physical feature that includes the physical phenomenon of gear 
transmission. A physical feature is represented by a network of physical phenomena, entities, 
and relations. Links between a physical phenomenon and entities represent that the particular 
physical phenomenon occurs to a set of particular entities. Links among physical phenomena 
represent causal dependencies, which means that activation of one of the physical phenomena 
causes activation of others. In this sense, a physical feature is a sort of scenario of the 
situation; a set of causally related physical phenomena happening simultaneously or 
sequentially states, e.g., a situation that 'fuel bums, generates heat, and warms up air.' Links 
between a relation and entities represent that the entities have the relation. 

Figure 13 illustrates how the knowledge of gear transmission can be represented in KIEF. 
We can use 'rotational transmission' instead of 'gear transmission.' The functional relations 
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of gear's velocity are described in various representations in the model libraries. The 
qualitative reasoning system based on QPT takes physical features as an input and reasons 
about all feasible behaviors of the object. Its output is a concept network of relevant entities, 
relations, attributes, etc., and a sequence of state transitions that represents a set of feasible 
behaviors. This concept network is used to identify relevant physical phenomena that might 
occur to the design object and that are useful information for, e.g., building models and 
maintaining consistency among them. 
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Figure 12 A physical feature representing gear transmission. 
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Figure 13 Description of gear transmission. 

5.3 Function 

In the context of knowledge intensive engineering activities, functional knowledge plays a 
fundamental role. For example, in engineering design, function is the requirement to be sat-
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isfied by the design solution. We employ the FBS (Function-Behavior-State) modeling 
(Umeda et al. 1990) as the basis for function modeling. 

We define a function as a subject description of a behavior, while a behavior is defined as a 
set of state transitions. A function is represented in the form of 'to do something.' Behaviors 
and state transitions are reasoned out by the qualitative reasoning system as described in the 
previous section. A function prototype defines how this function can be hierarchically 
decomposed into sub functions or which behaviors (as a sequence of state transitions) can 
realize this function (called F-B relationship). The function hierarchy is composed of either 
abstract-concrete relations or whole-part relations. An example of decomposition into sub 
functions is that a super function 'to move table ' can be decomposed into three sub functions, 
namely, 'to stop table,' 'to move table by motor,' and 'to stop table.' Figure 14 shows a 
complete FBS model of the contactor (an electric relay). 

Figure 14 The FBS modeler. 

5.4 Pluggable metamodel mechanism 

Models used for different engineering activities can have different kinds of problem solving 
mechanisms and different scales of scope, aspect, granularity, and abstraction. For instance, a 
geometric modeling system has precise geometric information based on algebraic geometry, 
while some other subsystem may require only topological (or connectivity) information. To 
absorb differences in the abstraction levels, the framework has a pluggable metamodel 
mechanism through which existing external modelers can be plugged into KIEF (Yoshioka et 
a!. 1993) (Figure 9). Since different types of information cannot be integrated easily, we need 
information describing conceptual relationships between different types of information. 
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So far, we have incorporated the following agents and modelers into the framework in 
addition to the qualitative physics based model which is dealt with by the qualitative reason­
ing system. 

e The FBS modeler for functional modeling. This system can be used for functional 
design including innovative design for high reliable machines based on the idea of 
function redundancy (Tomiyama eta/. 1993; Umeda eta/. 1992; Umeda et at .. 1994 ). 

e A geometric modeling system (DESIGNBASE from Ricoh, Co.). 
e An FEM system (MODIFY developed by Ohtsubo et al. (1993)). 
e A 2-D spatial reasoning system to symbolically deal with the spatial ontology. 
e A tool for Quality Function Deployment (QFD) which in collaboration with the FBS 

modeler incorporates the QFD method into conceptual design (Yoshioka e1 a/. 1995). 
e A symbolic math system, Mathematica, to be used for building various kinds of engi­

neering models. This resulted in useful applications, because many of simple engi­
neering models, such as a Bond Graph modeler to evaluate dynamic behavior of design 
obJects (Ishii eta/. 1995) and a beam model to evaluate strength and deformation 
(Yoshioka eta/. 1993). 

e QPAS (Qualitative Process Abduction System) for supporting synthesis that can gen­
erate behaviors and states from functional information (Ishii et a/. 1994 ). This system 
can be used for functional design in which behaviors and states of a design solution 
must be reasoned out from functional specifications. 

e A system for generating sequence control software for mechatronics machines 
(Shimomura eta/. 1993; Tomiyama eta/. 1993). This system takes functional informa­
tion about a mechatronics machine and generates qualitative behavioral information 
using QPAS. Then, this qualitative control sequence is augmented with quantitative 
data, such as sensor layout and part dimensions, obtained through the metamodel 
mechanism from a geometric modeler, etc. 

e Systems for total maintenance. First, there is a model based fault diagnostic system. The 
metamodel system can convert an object model, described according to QPT in the 
metamodel, to a device oriented one for the confluence type qualitative reasoning 
system. This device oriented model can be used for repair planning, since it can repre­
sent faulty states and a normal state. This resulted in the development of a self-main­
tenance machine. Also, tools for reliability design, including Fault Tree Analysis and 
evaluation of reliability are incorporated. 

e A Petri net simulator for discrete event simulation. This can be used for simulating, for 
instance, manufacturing processes and control logic of mechatronics systems. 

6 CONCLUSIONS 

This paper proposed and discussed the concept of knowledge intensive engineering that is a 
new way of engineering activities in various product life cycle stages conducted with more 
knowledge in a flexible manner to create more added value. It also described a computational 
framework for knowledge intensive engineering called KIEF we are currently developing. 

Knowledge intensive engineering requests that various kinds of engineering knowledge 
must be systematically organized and installed in a computational framework such as KIEF. 
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The architecture of KIEF should be the cooperative multiple intelligent agent architecture. A 
critical issue here is knowledge systematization that includes setting up a view, articulation, 
codification, verification, crystallization, and reusing and sharing. This can be achieved by 
having not only a common knowledge description format but also terminological, taxonomi­
cal, and ontological level standardization. The net result includes not only sharable 
knowledge but also a knowledge standard. In Chapter 5, we discussed the kernel knowledge 
representation and modeling methodologies of KIEF. Its architecture allows to plug in 
external intelligent agents. 

Knowledge intensive design on the framework does not only mean advanced automation of 
design but also allows designers to arrive at creative, innovative design. The design of self­
maintenance machines demonstrates that knowledge intensive engineering can lead to more 
creative, innovative design with increased added value, which is a knowledge intensive ma­
chine and knowledge intensive maintenance. 

Although practical use of KIEF is yet to be carried out, the system receive9 promising re­
sponses from designers and engineers who participated experimental trials (Ranta eta/. 1995; 
Umeda et a/. 1994a). One of the advantages of designing on KIEF is that it is a truly in­
tegrated computer-aided engineering framework that allows smart model management. 
However, to do so, we need to prepare all the concepts (i.e., entities, relations, physical 
phenomena, etc.) needed in the models and these concepts are clearly understood by the 
designers who have to maintain correspondences among concepts. Unfortunately this 
preparatory knowledge acquisition process is laborious. Models can be almost automatically 
generated and maintained, only after such concepts are ready in the knowledge base. This im­
plies that commonsense reasoning based on VLKB should be considered to reduce the effort. 
Perhaps, the most comparable work to KIEF is the PACT project. Their ontology is based on 
Ontolingua and the knowledge is represented in KIF. However, they put more emphasis on 
providing a computational collaborative concurrent engineering environment and do not solve 
the knowledge acquisition problem, either. 

Another advantage of KIEF is that it integrates functional knowledge in a comprehensive 
manner, which is truly unique among other systems developed more or less in the same 
philosophy. For instance, de Vries developed the MAX system aiming at a mechatronic 
model building environment (de Vries 1994). The primary ontology of this system is the 
Bond Graph methodology, which is used for the Schemebuilder system developed by Oh et 
at. (1994). The FBS modeling is more general than these systems based on Bond Graphs. 

Future work includes further plugging-in external modelers, expanding the knowledge base, 
and applications and evaluation of KIEF in a practical context. 
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