
13

Object Oriented information storage for
the design of injection moulds

R. Willems, D. Lecluse, J.P. Kruth
Dept. of Mech. Eng., Division PMA, K. U.Leuven
Celestijnenlaan 300B B-3001 Heverlee Belgium
Tel.: (+32)16 32 24 80, Fax.: (+32)16 32 29 87

Abstract
This paper describes the various levels of information within an intelligent support system for
the design of injection moulds. The design system integrates CAD/CAM, database and expert
system tools. It allows the designer to define an injection mould in terms of high level objects
and features that match his conceptual way of thinking. The data of standard mould
components, that are available from a number of suppliers, is stored in a relational database.
The generated information on geometry, technology and functionality is stored in a feature
based, object oriented model, the so called mould model. The design expertise, that is of a
more changing nature, is represented in IF-THEN type rules which are gathered in different
knowledge sources.

Keywords
CAD/CAM, Injection mould design, Object Orientation, Rule Based system

1 INTRODUCTION

The efficiency of commercial CAD/CAM systems depends upon the existence of modules
that are tailored to the specific needs of the user. Because the design of injection moulds is a
complex process that requires a lot of experience, specific CAD/CAM software to support
this design process is not widely available. 'Mould libraries' that support the designer with
the selection and drawing of the various standard components contributed to a more effective
use of CAD/CAM systems in mould making industry (Kruth and Kesteloot, 1989; Schwarz,
1985). However, design tasks related to the selection of standard components require only
very little expertise. The main difficulties are encountered in the design of so called "forming
parts", such as inserts and slides which are not standard because they are closely related to the
particular shape of the plastic product to be moulded. Moreover, present day systems usually
provide only two-dimensional engineering drawings, representing the mould in terms of low
level entities such as points, lines and circles. This type of representation is not convenient for
further support during the design and manufacturing process of injection moulds.

T. Tomiyama et al. (eds.), Knowledge Intensive CAD
© IFIP International Federation for Information Processing 1996

Object oriented informntion storage 189

In the framework of the BRITE-EURAM project PROMISES (project no. 3148) a
prototype of an intelligent support system for the design of injection moulds has been
developed (Kruth and Willems, 1994). This system, integrating CAD/CAM, database and
expert system tools (Figure 1), allows the designer to define an injection mould in terms of
high level objects and features that match his conceptional way of thinking. To achieve a
straightforward integration with various existing CAD/CAM systems a neutral CAD
programming interface was used. This interface, developed under the BRITE-project
MODEST! (project no. 1391), comprises a number of standardised C-routines. By
implementing this limited amount of EM-functions (BM stands for BRITE-MODEST!) the
application software becomes portable to another CAD-system.

Figure 1 The integration of CAD/CAM, database and expert system tools.

2 LEVELS OF INFORMATION AND KNOWLEDGE

Intelligence has been usefully described as an amalgam of many information­
representation and information-processing talents and this certainly applies to computer
intelligence (Winston, 1984). The way the information is represented and stored, clearly has a
great effect on the convenience of making computers acting like intelligent design support
tools. As used in this article, information is only one part of a more general knowledge
hierarchy that has been described by Giarratano and Riley (1989). Data and information
constitute the lower levels in this general knowledge pyramid, having expertise as the next
higher level and metaknowledge on top of the hierarchy. Data is defined as the whole of
items of potential interest, while information is processed data of particular interest.
Metaknowledge is knowledge about knowledge.

190 Part Six Product Modeling

This article describes the various levels of information within the PROMISES design
support system. The next section shortly discusses the database of standard components,
storing the whole of items of potential interest to any mould design. Section 4 describes more
thoroughly the mould model, storing all processed data of particular interest for a specific
mould design. Finally, section 5 demonstrates the representation of know ledge or expertise in
rules. Since the prototype software relies on a simplified blackboard concept for the
management of the various knowledge sources, the system even incorporates a kind of
rudimentary metaknowledge.

3 DATA STORAGE: STANDARD COMPONENT DATABASE

Most moulds today are built up of standard components such as plates, screws, bushes, etc.
which allows the designer to concentrate on the unique elements in the mould. These
standard mould components are available from a number of suppliers, like HASCO, DME
and EOC to name only a few. Information about these standard components is clearly of
potential interest for any injection mould design. The designer must be able to access the
contents of these catalogues so as to insert components into the mould. The data for these
catalogues is stored in a relational database that is laid out as a series of tables. The amount of
data stored is minimised by implementing a set of tables for each component type, one of
which contains the fixed data and the other containing the selectable data. The database is
accessed with the standard SQL query language which ensures that the software can work
with different commercial database systems.

4 INFORMATION STORAGE: MOULD MODEL

Conventional CAD systems are not giving sufficient support to the designer because they
mainly work with primitive geometric objects such as lines, points and surfaces, while a
designer mostly thinks and works with high level design-oriented objects. Moreover, it has
been realised that traditional CAD databases are not the best vehicle to provide sufficient
information to the downstream applications of CAPP and CAM (Kusiak et al., 1991; Wierda,
1991). Therefore we developed a secondary representation to hold high level design
information outside the CAD system, independent from the data structure of the used CAD
system. While the user designs a mould, all the generated information on geometry,
technology and functionality is stored in a feature based, object oriented model, the so called
mould model (Figure 1 and Figure 2). As a result, the prototype system supports two models
in parallel: one being the CAD representation in terms of low level graphic entities, the other
being the mould model.

4.1 Object oriented

While this is not the right place to contribute to the discussion of the object oriented
paradigm, we give just a short outline of the basic concepts of object orientation. Object
orientation is based on the object-concept. An object can be defined as any collection of
abstract data. However, an object not only consists of a set of data or attributes, it also

Object oriented information storage 191

incorporates a set of methods which can operate on that data. This integration of data and
methods is called encapsulation. Encapsulation is a specific form of information hiding,
namely the hiding of a data structure and the implementation of its associated operations
within the same module.

Objects can represent real world objects such as plates, screws and ejector pins as well as
more abstract entities such as processes, organisations and conditions. In object oriented
analysis the world is considered as a number of objects and a first step is the identification of
the interrelated classes of objects in the application area. Classes constitute groups of objects
that are all characterised by common properties and behaviour and so share the same set of
attributes and methods. It is important to see the difference between a class and an instance of
that class; an instance is a particular entity whereas the class is an abstraction. A basic point
to mention also is that there is an important difference in using an object oriented
programming language and using an object oriented programming style. If the term object
oriented language means anything it must mean a programming language that provides
mechanisms that support the object oriented style of programming (applying information
hiding, data abstraction, inheritance, generic classes, etc.) (Meyer, 1988).

The advantages of object oriented programming are well documented and include
reusability, extensibility and fast prototyping, (Stroustrup, 1988). Moreover, object oriented
programming is argued to be well suited for engineering applications such as CAD/CAM,
because the design methodology and the think process to develop such programs are almost
identical to those that users follow to analyse the application (Zeid, 1991).

The mould model is implemented in USP-FLA VORS. USP is a well known AI-language
but, as such, is not an object oriented language. FLAVORS (a predecessor to CLOS) is an
object oriented shell on top of USP (comparable with other object oriented extensions like
C++, Object PASCAL, etc.).

4.2 Object classification and taxonomy

As stated before, object oriented analysis tries to identify interrelated classes of objects. The
classification of objects results in a hierarchical class structure with base classes and
subclasses (Figure 2). A subclass is a specialisation of its base class and inherits all the
attributes and methods. However, subclasses may have overriding or additional methods and
attributes of their own. A clamping plate, for instance, is a special kind of plate with
characteristics and behaviour similar to any arbitrary plate in the world (length, width and
thickness) but with some additional features because of its specific function (clamping
purpose) in a mould assembly.

Figure 2 shows that the base class of the mould model is the MOULD_OBJECT class. This
class incorporates any collection of abstract data that is relevant for the design of an injection
mould. Since a mould basically is a 3D assembly of components and features, any
MOULD_OBJECT is considered to be a MOULD_COMPONENT or a MOULD_FEATURE. The
MOULD_COMPONENT class represents all the physical objects in a mould such as plates,
screws, slides, inserts, ejector pins, etc. The MOULD_FEATURE class represents all the other
mould objects. A hole is a typical example of a feature being related to another component; a
hole does not exist on its own but is always 'made in' another physical component.

192 Part Six Product Modeling

cito!l._runner 1. fu!Lr;in:_ruaner I
semi_ciro_nmaer

r{ runner)(
b'lpOZOidol_1111111110r y norm._lnp_IIIIUIU

H illiealoo_poial I mod_lnp...,..,..

lrt ran_,.. I
lr{ andortut

I lri. 6l!IU'IIt

r{mould_feMure] H](-{ sabmarule_£11e l
H e<IF..£11e

,'--{ c.avlly l(ovodap_£11e l
\Lf foed_oy~~em I [1 llper<d....bole

hole I'" COUIIIerbolod_bolo

\j tapped_hole

c:oolin&.clwllld

oomp~ex_~oco~_insen I
locol_insen cm:ulor_locol_insen l

[n>ould_objecl \---4 rectqulorJocol_iluen l rl insert X
globol_insen q re<W&W•...JioboUasen l

r{IOCMin&..<leeve ciJadw_alobal...inoen I

r(guide.,Jlilbr sp;goue<~_guide_pl~>r 1
H ll'Jide_bwb sp;ped.,.auide_bwb 1 slce•-e_ejcctor I

H SUJIIXXI...Pilbr J form...peo I oilt>Wvjocl« st!'l'l'ed-ejcctor I

r(oimple_pen rje<1or k ftaLejcctor I
rl qxue_boisb I qle_pen l t~n_ejea« I

I,-(sprue..JlUUer I sh_cap_saew

L{ rnoold_component ~ sc:mo p....s=w .. w_grub....s=w 1
:-;,_dilc 1 ifLCOIIIItemlllk..>=w)

~ stop_pin J
"""-slide I

<liding_spUt -yi local_siJ!llit)(L....{ s~...am<~e_strips 1 0001'icz....nde l
L-(apllt K '--l glabol_sl_split l

L{ localn&..rina 1 anai<Jift_opjt)(J
pen_lifUplll l

oompl""-.hn...spltt I
L{qle.Jill...danlpl

Lf q~e_lift...auide 1 f circulll_pllle 1 ,--{ roct_rellioer_pla aucifomt...retainer...P~-e I
1,--{ -..riler...PI* aucifonn...risor_plMe I
',--{ rect_ejcctor_pllle aucifomt...ejcctor_piMe l

L{ plOie

lr{ roct_insul~ ~ fi.lutcUnoulMiag_plllel

1.{ roctangulor_piMe
mov_roct_insalolin&..IJII

l\.....{ roct_support_pllle ~ ~ ... i
'1 mov __roct_l1!ppOI\.,JIIJI

H -...clampiD,c_pllle K ~-t:IJmpUJa_plaiD l
mov__roct_~ l

-...cav~~J...pllle . r 6x...roct...c:My_p!Me
IIIOV.ftCI_c.avily_pllle l

Figure 2 Overview of the different classes in the mould model.

Object oriented information storage 193

The feature concept originally stems from the research in process planning but was later
extended and introduced in other engineering areas (Salomons et al., 1992). Shah (1990)
defines a feature as any collection of abstract data that aid the design or the communication
between the design and manufacturing or any other engineering application. The attentive
reader will recognise the analogy of this definition with the previously stated definition of an
object. Indeed, the feature based approach may be considered as a logical consequence of the
object oriented approach or vice versa. Subscribing the general feature definition of Shah, the
MOULD_FEATURE class not only contains the traditional manufacturing features used in
process planning (e.g. holes) but also more abstract design features which are of special
interest for injection mould design (e.g. undercuts, injection points, cooling channels and
runners). Mould features match the level of abstraction on which engineers think, they are
objects in engineering reasoning processes (Wierda, 1991).

The MOULD_OBJECT class contains the following attributes:
• cost: stores the cost of the object;
• pos: position is stored as a list of three coordinates (x, y, z);
• dir: the orientation is stored as a list of three rotation angles (rx, ry, rz);
• name: name of the object;
• parent: object to which its position is related;
• children: list of objects that are positioned relative to the object;
• master: object that is the master of this object;
• subordinates: list of objects that are subordinate to this object;
• standard: flag indicating whether this object is standard or not (i.e. whether it can be

bought from a standard component supplier or not).

Besides the common attributes of all objects in a mould, the MOULD_OBJECf class
incorporates the basic functionality (by means of class member functions or methods) of all
mould objects. Most of these basic functions deal with assembly management: find-position­
in-mould, find-position-relative-to, find-local-position, set-pos, set-dir. The meaning of
which is clarified in section 4.4.

The MOULD_COMPONENT class contains the following attributes:
• manufacturer: name of supplier (if component is purchased from a standard component

supplier);
• HOM-code: bill of material code;
• material: material code.

Being the base class of all the physical objects in a mould, the MOULD_COMPONENT class is
also the base class of all the components that may be purchased from standard component
suppliers. Therefore, this class incorporates the general functions for accessing the data of the
standard catalogues. However, the standard attribute is not only applicable to mould
components but to all mould objects. The holes that are present in the standard mould plates
are stored in separate mould features that are marked as standard, in order to prevent them
from being changed by the designer.

194 Part Six Product Modeling

All objects within the mould model contain a certain amount of geometrical information
that is of a higher level then the one that is commonly stored in the CAD database. The
geometrical information for plates for instance is limited to three parameters: length, width
and thickness (Figure 3). The information of the holes is stored separately but the holes are
related to the plate by parent-child relationships (see section 4.3). Each hole has an attribute
purpose, indicating the purpose of the hole, e.g. a counterbored hole could be for a screw
head or for a guide pillar or guide bush. In each of these cases the object is of the same class,
but it performs a different function and so is likely to be machined differently. It may seem
that a subclass is required for this, but then a lot of such subclasses would be required.

Since most of the moulds are built up of similar components, the geometrical parameters
to be stored greatly resemble the various parameters that are also found in the standard
catalogues from HASCO, EOC, DME, etc. The class hierarchy model itself does not
explicitly draws a distinction between standard and nonstandard components, in the sense
that they do not constitute two separate classes. In contrast each object has an attribute
standard. The essential idea is that, when a designer wishes to insert a component, he could
choose data for that component by selecting options from the suppliers catalogue or he could
enter this data himself. The mould design software takes this data, not really caring where it
originated, and creates an object of the appropriate class storing the corresponding
information in the instance's attributes. When the data is chosen from a standard catalogue
the standard attribute is set true. Thereafter, the behaviour of the mould component is
controlled by the definition of the class of which it is an instance. It is worth to mention that
even when the dimensions and holes are taken from the standard component database the
component may be indicated as nonstandard afterwards, because, for a number of reasons, a
designer may decide to manufacture the component himself.

the information of holes is
stored in separate objects

Figure 3 Geometrical attributes of a plate.

Besides the commonly used standard components, there are a number of nonstandard
components mostly located in the vicinity of the cavity. These components are strongly
related to the particular shape of the product and are referred to as forming parts; e.g. slides
and inserts. The geometrical attributes of these forming parts are limited to the product
independent shape of it (Figure 4).

Object oriented information storage 195

form_len .. \ ..
cam_angle ······ ..

L- body width .. ··.
Joc.._angle · · · · · ·.. - ...

foot_ height

foot_len ···
',. body_len

\ body-width

Figure 4 Geometrical attributes of a complex sliding split

4.3 Assembly representation

We have previously stated that a mould is a topological 3D assembly of components and
features. The configuration of these components in space is important design information that
must be stored. The simplest way to represent an assembly is by specifying the location and
orientation of each object with respect to the global coordinate system of the assembly. The
location and orientation can be specified by means of a 4x4 homogeneous transformation
matrix that transforms the local coordinates of the geometric entities of the part to the global
coordinate system of the assembly:

(1)

Xcomp is the position of a point relative to the local components coordinate system and Xm

is the position of the point relative to the mould coordinate system. Each vector is given by:

X=[x y z tf (2)

The matrix T is the homogeneous transformation matrix. It is a 4x4 matrix given by:

(3)

R is the rotation matrix that defines the orientation of the local coordinate system to the
assembly coordinate system. P is the position vector that describes the origin of the local
coordinate system relative to the assembly coordinate system. The columns of R are given by
the direction cosines of the unit vectors of the local coordinate system relative to the mould
coordinate system.

196 Part Six Product Modeling

Rather than storing the entire transformation matrix it is preferable to store the position
and direction of each object separately. The position of an arbitrary object in space is fully
determined by six parameters: xc, yc, zc, rx, ry, rz (six degrees of freedom). Therefore we
store the position as an attribute pas (xc yc zc), i.e. a list of the three linear degrees of
freedom and the orientation as an attribute dir (rx ry rz), i.e. a list of the three rotational
degrees of freedom.

Location of an object is a relative property. This implies that the position of one object is
always related to the coordinate system of another (reference) object. The mould, having its
own coordinate system, is the basic reference for all the components in the mould assembly.
However, it is not always useful to refer a component's position directly to the mould
assembly. A hole for instance is likely to be positioned relative to a plate while the plate on
its tum is positioned relative to the assembly. In this case, successive transformations will
yield a component's absolute position in the mould coordinate system. The reference
information is indicated by a parent-child relation, e.g. when the position of a hole is relative
to a plate; the plate is the parent of the hole, the hole is a child of the plate. Working with
relative positioning is very easy when some displacements have to be done. The translation of
a plate for instance, requires the position to be changed but since all the holes in the plate are
positioned relative to the plate, these holes are automatically displaced without changing any
of their (relative) positions.

Because of the similarity in the structural built up of injection moulds, considerable
'intelligence' is implemented on the level of this assembly management. The system is able
to position a lot of components automatically, based on their functionality and their relation
to other components. A slide, for instance, is able to infer its position out of the position of
the related undercuts. However, the system always allows the user to adapt the parent-child
relations and the position of every single object.

4.4 Relations between components and features

In section 4.2 it was shown that the mould model contains high level geometrical
information. It is known that an approach based on geometrical information only, does not
satisfy the demands posed to a modem design support system. Therefore the mould model
also stores a great deal of technological information such as material codes, BOM codes,
costs, suppliers, etc. Moreover, it stores a number of different relationships between the
various objects (components and features) in a mould.

Parent-child relation
As discussed in previous section, the parent-child relation is important for the relative
positioning of the different objects in the mould assembly. The parent-child relation is a 'one­
to-many' relation; each object can only have one parent but every parent can have different
children. The various parent-child relations provide a kind of topological tree (or location
graph) of the mould. This topological tree is not to be mixed up with the class hierarchical
model. Figure 5 shows the default parent-child relations that are established by the system
between objects of the various classes. Because positions may be referring to different
objects, it is essential to compare only those positions that are related to the same reference
coordinate system. Therefore, it is sometimes required to transform one of the positions to
another reference by means of successive coordinate transformations. The basic functions for

Object oriented infomwtion storage 197

searching in the location graph and applying the corresponding coordinate transformations are
incorporated in the MOULD_OBJEcr class (find-position-in-mould, find-position-relative-to,
find-local-position, find-all-children).

CAD-modelspace coordinate system

feedsystem

I
runner

I
I

cavity

I
gate product

I
mould

I
I

plates

I
screws

I
I

holes

ejector slide undercut insert injection point

Figure 5 Topological tree of a mould.

Master-subordinate relation
The master-subordinate relation indicates which components are derived from each other and
must be manipulated together, e.g. a hole for an ejector pin is a subordinate of this ejector pin
and the ejector pin is the master of the hole (Figure 6). An important consequence of this
relation is that the hole will be deleted when the ejector pin is deleted, because the ejector pin
was the only reason of existence for the hole. Notice that a subordinate is not always
positioned relative to its master (but it is possible). In Figure 6, for instance, the hole in the
support plate is positioned relative to the plate but is subordinate to the ejector pin. The
master-subordinate relation allows the system to change the position of the ejector pin hole
whenever the position of the ejector pin is changed. The master-subordinate relation is also a
'one-to-many' relation.

~jector plate

subordinate ho les of
ejector pi n

ejector pin

Figure 6 Master-subordinate relation between ejector pin and hole.

198 Part Six Product Modeling

Undercut-slide relation
The starting point for the design of slides are undercuts. Undercuts are considered as special
objects (features) that are related to the product but can be managed separately. In literature
different types of undercuts are distinguished: external, internal and threaded undercuts or
local and global undercuts (Pye, 1989; Menges and Mohren, 1986). Within the mould model
this distinction is not made because terms like external, internal, local and global are not
always well defined (see Figure 7). Even when you can define unambiguously whether an
undercut is local, global, internal or external, it will not necessarily result in a predefined
demoulding solution. For this reason, the design support system leaves the selection of the
appropriate demoulding solution to the designer. An experienced mould designer will know
the type of slide to be used at once, but still has to spend considerable effort on calculating
the appropriate dimensions, the suitable angle for the actuating finger cam and designing
guide strips, locking heel, etc. The slide objects in the mould model have the intelligence to
provide these computations and to generate an appropriate representation on the CAD system.
Because of the slide-undercut relation, modifications to undercuts allow an automatic update
of the corresponding slides (Kruth and Willems, 1994).

1 opening
direction

~
Figure 7 Internal or external undercut?

Cavity-product relation

~ 2 cavities ~
~ ~roduct

~
Figure 8 One product and two cavities in

a two-impression mould.

Most of the injection moulds form one particular product but contain several impressions (the
multi-impression moulds), each impression producing the same product. In order to make a
clear distinction between the product to be moulded and the cavity impressions that are
forming this product, there is a class named CAVITY. Having cavities as separate objects,
makes it possible to move, to delete or to perform any other operation on the cavity
impressions without disturbing the moulded product. The product is considered as a general
object, containing a lot of input information that applies to all the individual cavities. Most
moulds will only have one product involved, though it is possible to have several different
products in one mould. In this case some cavities are linked with one product, while others
are related to another product.

Object oriented injonnation storage 199

5 EXPERTISE STORAGE: RULES

It is mentioned elsewhere that the PROMISES prototype system integrates relational
database, CAD/CAM and expert system tools. Expert systems are usually described as
computer programs that emulate the decision making ability of human experts (Coyne et al.,
1990). Successful expert systems today are mostly knowledge based, a concept that was
primarily introduced with the famous expert system MYCIN. The key to such knowledge­
based systems lies in the clear separation between knowledge and reasoning. Reasoning can
be described as the processing or control of knowledge and is typically a human activity. The
term inferencing is generally used for 'mechanical systems', and the mechanism that is
performing the inferencing is generally called an inference engine. With LISP as development
language, an inference mechanism and a knowledge representation suitable to the project was
developed. LISP does not offer any inference mechanism or knowledge representation. Two
strategies of knowledge processing were implemented in the inference engine: backward
chaining and forward chaining. In backward chaining, it is tried to establish whether a fact is
true by chaining back through all the rules until we arrive at facts that are known to be true.
The multiple inferences that connect a goal with its preconditions, i.e. a chain is traversed
from the goal (or conclusion) back to the required facts (or preconditions). A chain that is
traversed from facts to conclusions is called a forward chain. The backward reasoning is
basically invoked to define unknown elements while the forward chaining is mainly used for
verification and modification purposes.

Like most commercial expert systems, PROMISES represents the knowledge by means of
traditional IF-THEN type rules. The syntax of the rules is designed so that all the power of
LISP can be used within the rules; for example: functions can be called within the rules. The
possibility to call LISP expressions from within the rules, allows to have a strong
combination of procedural and rule based reasoning mechanisms.
The syntax of a rule is the following:

(defrule <rule name>

: IF (known <data_element> *)

<IF-TEST : LISP-expression>

: THEN (defines <data_element> *)

<THEN-action : LISP-expression>

A data element can be an instance name, an instance attribute or an arbitrary LISP
variable. In practice a lot of rules apply to a group of objects and it would be unacceptable to
write the same rule for each of the different object names. Therefore, we provided the
possibility to have data elements like class patterns. A pattern is a description of a well­
defined group of objects. Within the PROMISES system, a pattern is either the description of
a class (giving access to the subclasses), or the description of an attribute of a class (giving
also access to subclasses). This ability of 'pattern matching' allows that rules are written on
the level of, for instance, an ejector pin class, hereby applying to all instances of that class.

200 Part Six Product Modeling

The rules are organised in sets, called knowledge sources. These knowledge sources act as
real world experts gathered in front of a blackboard and solving the problem. Each expert has
his own experience, solves part of the problem and puts his findings on the blackboard. The
user of the application is considered as a special knowledge source that is asked when no
other knowledge source can contribute to the solution of the problem. The blackboard control
acts like a moderator, selecting appropriate knowledge sources in an opportunistic way. The
blackboard control incorporates a kind of rudimentary metaknowledge (Lecluse and Sleeckx,
1993). Metaknowledge is said to be the top level of the general knowledge pyramid.

The PROMISES design support system contains rulesets for product definition, cavity
layout, cooling, demoulding mechanisms, inserts and cost estimation. Since the blackboard
controller ensures a reasoning beyond the boundaries of one particular ruleset, they can be
considered as one big knowledge source. Our experience showed that it is useful to construct
separate rulesets for backward and forward chaining which allows to have each of them
optimised for their specific purpose. The construction of rulesets for both forward and
backward chaining is sometimes hard, because of the combination with procedural
knowledge (e.g. database and CAD-interaction) called from within the body of the rules.

It must be clear that the construction of rules is not as easy as it might seem at first sight. It
is certainly a misunderstanding that statements like for instance 'when there is an undercut,
there must be a slide' or 'when there is an internal undercut, one must use a lifting slide' can
be considered as rules that will lead to any result. Such rules may be perfect guidelines for a
human expert but are mostly useless for a computer system. The reason is very simple: every
word in a written rule like stated above has a meaning that is obvious for a human being but
not for a computer program: 'what is an undercut?' 'what defines an undercut?' 'what are
the inside and the outside of a product?'. Formalising design knowledge encompasses more
than just identifying IF-THEN expressions.

6 CONCLUSION

The various levels of information within an intelligent support system for the design of
injection moulds have been described. The data of standard mould components, that are
available from a number of suppliers, is stored in a relational database. The designer can
access these standard catalogues and insert components into the mould. The 'real' design
information is stored in an object oriented, feature based mould model. This mould model
contains geometrical information of a higher level than that in the CAD database and also
stores a great deal of technological information such as material codes, BOM codes, costs,
suppliers, functionality. Moreover, it stores a number of different relationships between the
various objects in a mould. The dynamic nature of objects allows to do complex reasoning
through complex data manipulation and so the mould model contains considerable amount of
procedural knowledge. The design expertise, that is of a more changing nature, is represented
in IF-THEN type rules which are gathered in different knowledge sources. The system that
has been described contains knowledge sources for product definition, cavity layout, cooling,
demoulding mechanisms, inserts and cost estimation. A blackboard control software acts like
a moderator, selecting appropriate knowledge sources. This combination of object oriented
programming techniques and a rule based expert system implemented in LISP showed to be a
powerful tool to support the design of injection moulds.

Object oriented information storage 201

7 REFERENCES

Coyne, R.D., Roseman, M.A., Radford, A.D., Balachandran, M and Gero, J.S. (1990)
Knowledge-based Design Systems. Addison-Wesley, Sydney.

Giarratano, J. and Riley, G. (1989) Expert Systems, Principles and Programming. MA, PWS­
Kent, Boston.

Kruth, J.P. and Kesteloot, P. (1989) CAD/CAM reinforces the competitive edge of European
mould makers, Proceedings of 9th MICAD Conference, Paris.

Kruth, J.P. and Willems R. (1994) Intelligent Support System for the Design of Injection
Moulds, Journal of Engineering Design, Vol. 5, No.4, pp. 339-351.

Kusiak, A. Szczerbicki, E. and Vujosevic, R (1991) Intelligent design synthesis: an object­
oriented approach, Int. Journal Prod. Res., Vol. 29, No.7, pp 1291-1308.

Lecluse, D. and Sleeckx, E. (1993) An integrated design support system for mechanical
applications applied for plastic injection mould design, Proceedings of 7th International
Conference on Systems Research, Informatics and Cybernetics.

Menges, G. and Mohren, P. (1986) How to Make Injection Moulds. Hanser, New York.

Meyer, B. (1988) Object-Oriented Software Construction. Prentice Hall.

Pye, R.G.W. (1989) Injection Mould Design. Longman, London.

Salomons, O.W., van Houten, F.J.A.M., Kals, H.J.J. (1992), Review of research in Feature­
Based Design, Journal of Manufacturing Systems, Vol. 12, No.2., pp 113-132.

Schwarz, H. (1985) Catalogue of standardized CAD parts - an essential component of
economical CAD/CAM application in the design of tools and moulds, Industrial &
Production Engineering, 3, pp. 104-113.

Shah, J.J. (1990) An Assessment of features technology, proceedings of the CAM-I feature
symposium P-90-PM-02, pp 55-77.

Stroustrup, B. (1988) What is Object-Oriented Programming?, IEEE Software, Vol. 5, No.3,
pp 10-20.

Wierda, L.S. (1991), Linking Design, Process Planning and Cost Information by Feature­
based Modelling, Journal of Engineering Design, Vol. 2, No.1, pp 3-19.

Winston, P.H. (1984) Artificial Intelligence. Addison-Wesley, Sydney.

Zeid, I. (1991) CAD/CAM Theory and practice. McGraw-Hill, Singapore.

8 BIOGRAPHY

Robin Willems studied electro-mechanical engineer at the dept. of Mechanical Engineering
of the Katholieke Universiteit Leuven (K.U.Leuven, 1991) and he currently works there as a
research engineer at the division of Production Engineering, Machine Design and Automation
(PMA). He was involved in the BRITE PROMISES project (BE-3148), where he was
responsible for the implementation of the expertise about plastic injection mould design and
manufacturing. Currently he is involved in the European CRAFT project IMES (CR-1309)
and he is preparing his Ph.D. on Computer Aided Design and Manufacturing of Plastic
Injection Moulds.

202 Pan Six Product Modeling

Dirk Lecluse studied information technology at the dept. of Computer Science of the
K.U.Leuven (1990) and works now as a research engineer at the Scientific and Technical
Center of the Belgian Metalworking Industry (WTCM/CRIF). During the BRITE PROMISES
project (BE 3148), he was responsible for the design and implementation of an expert system
for plastic injection mould design. Currently he is technical project leader of the European
CRAFf project IMES (CR-1309). IMES is a joint initiative of 15 industrial companies and 4
R&D partners for the development of an Injection Mould Engineering System.

Prof.dr.ir. J.P. Kruth obtained his Ph.D. at the K.U.Leuven in 1979 with a dissertation on
Computer Adaptive Control for Electro-Discharge Machining. He worked as expert in
production engineering at the Institut Technologi Bandung, Indonesia, from 1979 to 1982.
Later, he became research engineer at WTCM/CRIF, till 1987. During the same period he
was half-time consultant engineer at the national 'Stand-By CAD/CAM' service for industry
and he lectured CAD at the K.U.Leuven. He was nominated professor at K.U.Leuven in
1987, where he chairs the division PMA. He is active member of the Institution for
Production Engineering Research (CIRP), senior member of the North American
Manufacturing Research Institution (NAMRIISME), honorary member of the Rumanian
Society of Mechanical Engineers, and member of several other professional associations,
editorial boards and others.

