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INCORPORATING HEURISTICS AND A META-ARCHITECTURE IN 
A GENETIC ALGORITHM FOR HARNESS DESIGN 

CARLOS ZOZA YA-GOROSTIZA AND LUIS. F. ESTRADA 
Instituto Tecnol6gico Aut6nomo de Mexico, Mexico 

Abstract. This paper presents some recent results that were obtained when a basic 
genetic algorithm (GA) for optimizing the cost of electrical wire harnesses was 
modified. These modifications included the incorporation of two operators that were 
specific for the problem being solved: a) a gauge propagation operator, and b) an 
operator that attempts to improve a solution by randomly changing wire gauges 
associated with a particular device of the harness. In addition, the modified GA included 
the implementation of a meta-architecture that was useful to overcome the problem of 
finding a set of good input parameters for running the single-layered GA. These 
modifications differ from other general purpose techniques that have been suggested for 
improving the search in GAs. Results obtained with the modified GA for an example 
harness showed that the modifications were helpful for improving the effectiveness and 
efficiency of the basic GA. 

1. Introduction 

The design and optullization of the wire harnesses that compose the 
electrical system of a vehicle is a complex and challenging task. It involves 
coming up with a product that not only is easy to manufacture at a low cost, 
but that also satisfies a set of multiple design constraints. Some of the 
constraints that have to be considered when designing an automotive wire 
harness include physical constraints related to the physical configuration of 
the vehicle; thermal constraints related to the behavior of wires conducting 
the currents required to operate the electrical devices to which the harnesses 
of the vehicle are connected; voltage constraints associated with the 
minimum voltage that each of these devices requires to operate properly; 
and other constraints related to the manufacturability and maintainability of 
the product. 

Recent studies have shown that the use of computer tools for optimizing 
the cost of the harness can lead to important savings in the cost of the 
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product and to more reliable designs. Previous work with genetic algorithms 
(GAs) in this problem has shown that this technique can lead to lower cost 
solutions than those found with mathematical programming or heuristic 
methods (Zozaya-Gorostiza, Sudarbo and Estrada, 1994). One reason for 
this is that GAs search for solutions effectively regardless of the convexity of 
the search space (Goldberg, 1989). However, using a general purpose GA 
for this problem required many evaluations of possible solutions before 
finding low cost solutions that were comparable with those found by other 
methods. In addition, our experiments showed that the GA was very sensitive 
to the set of parameters used in its application. As a result, we decided to 
explore on modifying the basic GA for improving its performance in this 
particular problem. 

In this article, we describe some modifications that were incorporated in 
the basic GA described in (Zozaya-Gorostiza, Sudarbo and Estrada, 1994) to 
improve its behavior. In particular, the incorporation of design heuristics and 
the development of a meta-architecture that is used to find appropriate 
values for the parameters of the single-layered GA were included. The 
modifications that incorporate design heuristics into new genetic operators 
differ from other techniques that have been suggested for improving the 
search in a general purpose GA (Booker, 1987; Back, 1992), as explained in 
section 4. The results obtained with the modified GA showed that these 
changes were helpful for improving the effectiveness and efficiency of the 
basic GA. 

The article is organized as follows. First, a description of the problem 
being addressed is presented, with a brief discussion on the results obtained 
when trying to solve it by using a heuristic search program and a 
mathematical programming model. This presentation is followed by a 
description of how GA were initially applied to the harness optimization 
problem. Then, the modifications that were incorporated into this basic GA 
are described. Finally, the results that we observed in the performance of the 
modified GA for an example harness are discussed. 

2. Harness Optimization 

Harness optimization is the process that involves obtaining a set of 
appropriate wire gauges for a particular harness topology. It may be 
considered a subprocess of the broader problem of harness design. When 
conceptualizing a new harness, the designer creates a layout of the electrical 
system, decides upon its main electrical components and specifies an initial 
set of wire gauges and fuse sizes for the harness. Then, he or she tries to 
identify potential reductions in cost for a given layout of the electrical 
system (i.e., the harness topology) and a given set of devices to be operated 
in order to optimize the cost of the harness. 
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Harness optimization is not a simple task. On one hand, the designer tries 
to use as small wire gauges as possible to minimize the cost of the harness; 
but on the other, wire gauges have to be large enough to provide all devices 
with enough voltage to operate appropriately and to be able to transmit the 
corresponding current intensities without burning. 

Figure 1 shows an example of a harness layout that may the used to 
illustrate the activities involved in the harness optimization process: 

Initially, the designer has the following information regarding the harness 
layout: length and insulation type of each of the wires (A through I), 
minimum current and voltage required by each device (1 through 3), 
connecting points for each wire and voltage intensity of the battery (+). 

Depending on the minimum current intensity required for each device to 
operate, each of the wires of the harness will need to transmit a particular 
value of current; this computation is straightforward unless the harness 
has switches that constrain the simultaneous operation of the devices. For 
example, the current transmitted by wires Band F will be at least equal to 
the current required by device 1 to operate; the current in wire I will be 
the sum of the currents in wires F and G, and so forth. 
Based on these currents, the designer identifies which is the minimum 
gauge that each wire needs to have in order to be able to transmit the 
corresponding current value. In this task, the designer is helped by a 
thermal model that provides information about the temperature reached 
by a particular wire, as a function of the current intensity being 
transmitted, the insulation type and thickness of the wire, the temperature 
of the environment surrounding the wire, and the gauge of the wire. This 
model also provides the designer with information about the voltage drop 
that will be present along the wire per unit length. 

• Having identified the set of minimum gauges for the wires, the designer 
evaluates whether all devices have enough voltage to operate properly. If 
this were the case, the current harness design would be optimum for the 
given layout and device information. However, it is usual to find multiple 
devices without enough voltage to operate. 

• The designer has to increase the gauges of some of the wires of the 
harness in order to provide all devices with the required voltages. At this 
point, the designer is faced with multiple choices. For example, if devices 
1 and 2 of the example layout require more voltage, the designer can 
increase the voltage of any of the wires, except wires E and H, to provide 
them with more voltage. Furthermore, we can have multiple possibilities 
for satisfying the voltage constraints associated with these devices, and 
each of them has a different cost. 
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Figure 1. Example of a harness layout. 

At this moment, the reader might argue that the problem can be 
formalized as a mathematical program, where the objective function is 
expressed as the minimization of the cost of the harness (I CijXij, where Cij 
is the cost of wire i for gauge value j, and Xij is a binary variable that is set to 
1 when wire i is assigned gauge value j), and voltage requirements are 
expressed as constraints of the model. In fact, this assertion is true, but only 
for harness layouts where all devices are connected in parallel (as in Figure 
1) since all voltage constraints can be expressed as linear functions. For 
example, the voltage constraint associated with the first device would be 
expressed as follows: 

Vbatt - VdropA - VdropB - VdropF - VdropI ~ VminDev1 

where Vbatt is the voltage provided by the battery, V dropA through V dropI 
are the voltage drops observed at each of the wires that are in the path that 
leads from the device being considered (i.e., Device 1) to the battery and to 
the ground (and can be expressed as a function of the wire gauges), and 
VminDev1 is the minimum voltage required by device 1 to operate properly. 

In more complex topologies, however, the use of a mathematical model is 
not straightforward. For example, consider the harness topology shown in 
Figure 2. For this topology, we can describe the voltage restrictions on 
devices 1 and 2 as linear functions; however, the voltage restriction on device 
3 is not a linear function of the voltage drops observed in some of the wires 
of the harness. Furthermore, our research (Zozaya-Gorostiza, Sudarbo and 
Estrada, 1994) has shown that even if the mathematical model can be 
formulated, the results obtained when solving the model using powerful 
modeling tools such as GAMS (Brooke, Kendrick and Meeraus, 1987) are 
not optimal. 

An initial approach in trying to solve the harness optimization problem 
was the development of OPTAR (Zozaya-Gorostiza, 1991). OPTAR 
implemented a hill-climbing heuristic search procedure in which the gauge 
of a selected wire was increased to the next allowable gauge value for each 
iteration of the algorithm until all devices had enough voltage to operate. 
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Wires were selected using a heuristic formula that included the number of 
devices that were affected by each wire, the marginal cost incurred when 
increasing the corresponding gauge, and the additional voltage supplied 
when doing this gauge change. The results obtained with OPTAR received 
encouraging comments from harness designers of the Packard Electric 
Division of General Motors, because at that moment the only tools available 
to support the harness design process were some simulation packages and 
empirical models (O'Keefe, 1989; Styer and Burns, 1990). 

Figure 2. Example of three devices that are not connected in parallel. 

The next attempt was to use genetic algorithms for improving the results 
obtained by OPTAR. This technique had shown good results when applied 
to other design and optimization problems, and have the power to search in 
complex solution spaces regardless of their shape. In the next section we 
summarize how we initially used this technique for solving the harness 
optimization problem. 

3. Basic Genetic Algorithm 

Genetic algorithms (GAs) are search methods based on the mechanics of 
natural selection and genetics (Holland, 1975). They employ string 
structures (called chromosomes) to represent sets of solution variables and a 
fitness function to evaluate these sets. New solutions are obtained through a 
combination of the material included in these strings by means of different 
genetic operators. A simple genetic algorithm uses various kinds of random 
operators: a selection operator identifies those chromosomes that may be 
used to generate new chromosomes, a crossover operator creates two 
children chromosomes by randomly exchanging portions of the parent 
chromosomes, and a mutation operator randomly modifies parts of the 
strings. In addition, a GA has a replacement operator that inserts and 
replaces chromosomes of a certain population to create a new one. Starting 
with an initial population, the GA proceeds iteratively until a stopping 
criteria is achieved. Each iteration in which a new population is obtained is 
known as a generation (see Figure 3). 
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Figure 3. Operation of a basic GA. 

I I 
I I 
I I 

l' 

In our initial application of a GA to the harness optimization problem, we 
used binary strings to represent the set of wire gauges associated with a 
particular harness design. Each wire gauge was represented by 4 bits, and the 
chromosome was formed by concatenating these segments for all the wires 
in the harness. The order in which these 4 bit segments are concatenated IS 

completely independent from the harness topology (see Figure 4). 

I 0110 0111 11 00 1110...... 0010 I +-- Chromosome 

Wire 1 Wire2 Wire3 Wire 4 Wire N 1 Decoding 

'--_12 ___ 10 __ 2 _______ 18_-'1...-- Set of Wire Gauges 

Wire 1 Wire2 Wire3 Wire 4 Wire N l Cost & Voltages 

Fitness Evaluation 

Figure 4. Harness representation and decodification. 

The initial population was randomly generated by taking into 
consideration all possible gauge values a wire might have (22, 20, 18, 16, 14, 
12, 10, 8, 6, 4, 2, 1 and 0), and the evaluation function was responsible for a) 
decoding the chromosomes into a set of gauge values, b) computing the 
fitness of the chromosome by considering the cost of the solution being 
represented, the violation to the voltage constraints of the devices and . the 
violation of the thermal constraints on each wire. In the basic GA, decoding 
is performed by linearly mapping the 16 possible values obtained by the 4-
bit segment to the 13 possible gauge values; for example, if the 4-bit 
segment consists is 1110, the associated gauge value would be the 12th 
element (i.e., round(l3*(14+1)116)= 12) of the set of possible gauge values, 
which is equal to value 1. The selection, crossover, mutation and replacement 



HEURISTICS AND A META-ARCHITECTURE IN A GA 81 

operators were used to generate the next population of solutions, and the 
procedure continued until a predefined value of generations was achieved. 

Figure 5 shows an example of how the crossover operator is applied to a 
pair of parent chromosomes. A random number that represents the position 
of the string that will be used to exchange the genetic material of the two 
parents, called the locus for crossing, is generated. The children 
chromosomes are generated by exchanging left and right portions of the two 
chromosomes with respect to the locus position. It is interesting to note that 
even though the only wire whose gauge changed in the children 
chromosomes was wire 3, the set of wire gauges in the children chromosome 
represent different configurations for the harness. 

I Locus for crossing::;: 11 

, 0110 0111 11?0 1110...... 0010 , 
Wire 1 Wire2 Wife3 Wire 4 Wire N ----. .------

0011 1111 0101 0111 1 1 1100 
Wire 1 Wire2 W~e3 Wire 4 Wire N 

! 1 Crossover 

1 0110 0111 1101 0101...... 0111 , 
Wirel Wire2 Wire3 Wire 4 Wire N _____ 

1 1100 0011 1110 1110...... 0010 ,----

Wire 1 Wire2 Wire3 Wire 4 Wire N 

Figure 5. Crossover operator. 

4. Modified Genetic Algorithm 

Parent 
Chromosomes 

Children 
Chromosomes 

The results obtained with the basic GA described in the previous section were 
stimulating. In fact, we were able to obtain better solutions than those 
obtained with the GAMS model. However, we found that the basic GA 
required a large number of evaluations to obtain designs that were 
comparable in cost and performance than those obtained by the other 
techniques (i.e., mathematical programming and heuristic search) described 
earlier. 

In order to improve the efficiency and effectiveness of the GA, we 
decided to incorporate various heuristics associated with the design of 
electrical wire harnesses. These heuristics include: 

including chromosomes with minimal gauges in the initial popUlation; 
• using an operator that modifies the chromosomes according to a design 

heuristic; 
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• mapping the gauge values obtained when decoding the chromosomes to 
values greater than or equal to the minimal gauges; and 

• using an operator that inserts new chromosomes into the population. 
In addition, we found that the basic GA was very sensitive to its input 

parameters. After various attempts to obtain a good and robust set of 
parameters, we implemented a meta-architecture that could provide us with 
appropriate input parameters. In the discussion that follows we describe how 
these modifications to the GA were implemented. 

4.1. INITIAL POPULATION 

In the basic GA, the initial population was generated randomly by allowing 
each wire to take any possible gauge value. In this population, each solution 
(i.e., chromosome) might have gauge values that violate the thermal 
restrictions associated with the type of insulation of the wire. 

In the modified GA, the initial population is obtained by using the 
minimal gauges that are thermally feasible for each wire. Some 
chromosomes with these values are introduced in the population, and the rest 
of the population is generated by using the crossover and mutation 
operations on these chromosomes. These genetic operators are applied with 
high probability values (0.8 and 0.01 respectively) to ensure that there is 
enough diversity in the initial population. After these operators are applied, 
resulting gauge values are mapped to the set of thermally feasible gauge 
values to ensure that there are no violations in the thermal constraints of the 
design problem. 

4.2. GAUGE PROP AGA TION 

A simple design heuristic in the case of electrical wire harnesses requires that 
the gauge of a cable that splits into two or more cables is greater than 0 r 
equal to the gauges of these cables. Conversely, if two or more cables join 
into another cable, the former cables have to have a gauge value that is less 
than or equal to the gage of the latter cable. Figure 6 illustrates this 
heuristic: the gauge value of cable A has to be greater than or equal to the 
gauge values of cables Band C, and cables X and Y have to have gauge 
values that are less than or equal to the gauge value of cable Z. 

WireB 
Wire A 

Wire C 
Gauge A >= Gauge B 

Gauge A >= Gauge C 

Wire X 

__ --'I Wire Z 

WireY 

Gauge Z >= Gauge X 

Gauge Z >= Gauge Y 

Figure 6. Gauge heuristic. 
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In a GA, this heuristic can be violated when the crossover or mutation 
operators are applied to generate new chromosomes in the population. In the 
modified GA, we use a gauge propagation operator that adjust gauge values 
to comply with this heuristic. This operator allows the GA to reduce wide 
gauge values in wires that, because of their location in the topology of the 
harness, may have thinner gauge values. 

The application of the gauge propagation operator is not deterministic. 
Even with the heuristic it is impossible to know if the propagation has to be 
"upwards" (i.e., towards the devices or the harness) or "downwards" (i.e., 
towards the battery or the ground). Considering the examples shown in 
Figure 6, and assuming that in a particular chromosome the gauge of wire A 
is less than or equal to the gauge of wire B, we have two manners of 
complying with the gauge heuristic: 
• to increase the value of wire A, which takes us to a harness with higher 

cost but more voltage to those devices that are affected wire A; 
• to decrease the value of wire B, which takes us to a harness with lower 

cost but less voltage to those devices affected by wire B. 
In the GA, the voltage available to each device of the harness is computed 

by the fitness function of the algorithm. Therefore, it is impossible to know 
which decision might be more appropriate. Furthermore, we did not want to 
create a deterministic operator that would constrain the search for new 
solutions. As a result, the gauge propagation operator is applied either 
"upwards" or "downwards" randomly, and the wire that is used as the 
starting point in this operation is also selected in a random manner. 

Another possibility that could have been explored to comply with the 
design heuristic would have been to modify the crossover and mutation 
operators directly. This modification would have implied to alter these 
operators so that the chromosomes that are being generated do not violate 
the heuristic. For example, in the crossover operator, we could have modified 
the manner how the locus for crossover is selected, or we could have 
implemented a loop to apply this operator as many times as needed until a 
new individual that complies with the heuristic is obtained. It is also possible 
to include the heuristic as part of the evaluation function so that 
chromosomes that comply with it have higher fitness values. 

In our GA we decided not to alter the basic GA operators directly. The 
gauge propagation operator is applied randomly using a new input 
parameter called the propagation probability. We generate a random 
number for each chromosome in the population, and if it is less than or 
equal to the propagation probability, the propagation process is applied. In 
this case, a new random number is generated to select the wire that will be 
used as the starting point of the propagation and another number to decide 
whether the propagation is "upwards" or "downwards". Then, we search in 
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the chosen selection for wires that violate the design heuristics and alter their 
gauge values to comply with it. The random selection of the wire chosen as 
the starting point allows the GA to incorporate new genetic material into the 
population and to obtain different modified individuals even if the operator 
is applied in identical chromosomes. In addition, the compliance with the 
design heuristic was also included as part of the evaluation function in order 
to penalize those individuals that violate this heuristic. Figure 7 shows an 
example of the application of the gauge propagation operator for a sample 
harness topology. 

Harness topology 

WireB 

CD Wire All----_ 

Original Gauge Values 

Wire A I Wire B I Wire C 
16 I 12 I 18 

WireC 

Type of From 
Gauge Values after 
Propagation 

Propagation Wire Wire A WireB WireC 
Upwards A 16 16 18 
Downwards B 12 12 18 
Downwards C 18 12 18 

Figure 7. Gauge propagation. 

Gauge propagation can be undertaken easily by representing the wire 
harness by double linked lists. This representation allows the operator to 
navigate upwards or downwards in the structure of the harness from a 
particular wire. Recursive functions are used to implement this navigation. 
Two data structures are used to represent the topology of the harness. The 
primary structure stores the identifier of the cable and two pointers, one that 
points to the "father" wire of the cable, and one to the first of its "s 0 n s " . 
The second structure is used to identify all cables that are at the same level of 
ramification. 

4.3. GAUGE MAPPING 

Another type of heuristic that was implemented consisted of mapping the 
values that are obtained from the execution of the crossover and mutation 
operators. Since we use 4 bits to represent each wire, the set of 16 possible 
values that may be obtained with these four bits have to be mapped to the set 
of possible gauge values. In a simple GA, each wire might have any of the 
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13 gauge values described earlier. However, some of these values might 
violate the thermal constraints associated with its type of insulation. For 
example, if a wire transmits a high current value, a gauge value of 22 or 20· 
might cause its insulation to melt. Therefore, we represent the minimal gauge 
values that were obtained using the thermal model RADWIRE, and map the 
16 possible 4-bit values to those wire gauges that are wider than these 
minimum values. This modification of the simple GA ensures that all the 
individuals of the population comply with the thermal constraints of the 
model. In other words, this mapping allows us to exclude the satisfaction of 
the thermal constraints from the fitness function of the algorithm. 

Gauge mapping is implemented in a straightforward manner. The value 
associated with the 4 bits of a wire is divided by 16 and multiplied by a 
number that represents the size of the set of possible gauge values for this 
wire. If all gauge values are permitted (i.e., the cable transmits a low current 
intensity), this number is 13. However, for wires with higher current 
intensities, this number might range from 13 to 1. The result is used as an 
index for finding the corresponding wire gauge. 

4.4. INSERTION OF IMPROVED CHROMOSOMES 

When a GA is being executed, the fitness of the solutions being generated 
improves through the iterations of the algorithm. However, the convergence 
of the algorithm is slower as the algorithm finds better solutions to the 
problem. In the case of our GA, the basic algorithm converged rapidly 
during the first generations (l00 to 200) but it found difficult to improve 
this solutions after these initial iterations. 

In order to deal with this problem, several authors have discussed 
mechanisms to ensure the diversity of the population (Goldberg, 1989). 
However, our experiments showed that diversity was not the cause of the 
problem; what we needed was a mechanism that would fine-tune the 
solutions being proposed in order to improve the effectiveness and 
efficiency of the algorithm. 

We modified the basic GA to include an operator that a) proposes 
cheaper solutions for a given chromosome by trying to reduce the gauges of 
some of the wires without affecting the performance of the devices of the 
harness, or b) attempts to satisfy the required voltage for particular devices. 
This operator takes the best solution found in a given population (i.e., the 
one that has the higher value of the fitness function), picks a particular 
device of the harness, and explores whether it can reduce or increase the 
gauges of the wires that are in the path that leads from this device to the 
battery, or from this device to the ground, in order to reduce the cost of the 
harness without violating the constraint associated with the minimum voltage 
of this device, or provide it with enough voltage to operate. 
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The operator proposes solutions using a procedure that resembles a hill­
climbing type of search. Since this technique can lead to local optima, we 
decided to use it carefully in order not to affect the benefits of using a GA. 
The operator is executed only after the GA has been run through a given 
number of iterations, in order to ensure that it has already explored a good 
portion of the search space.' 

The operator that proposes an improved solution for a given 
chromosome, works as follows: 
1. We give the GA as inputs several variables that indicate whether this 

operator should or should not be applied, the starting generation for 
using this operator, and a constant that represents the gap between 
generations in which the operator should be applied. 

2. When the modified GA gets to the point at which the operator may be 
applied, the algorithm picks the best solution found in the preceding 
population. 

3. The GA identifies those wires that are associated with the first device of 
the harness (i.e., those whose gauge values affect the available voltage in 
this device) and selects one of them randomly. 

4. The gauge of this particular wire is decreased to the next allowable lower 
value of those thermally feasible. As a result, the available voltage for the 
device and the total cost of the harness are reduced. The algorithm then 
checks whether the selected device has still enough voltage to operate. If 
this is the case, the algorithm goes to step 8; otherwise, the gauge of the 
wire is restored to its original value and the algorithm goes to step 5. 

5. If the device being analyzed does not have enough voltage to operate, the 
gauge of the selected wire is increased to the next allowable higher value. 
As a result, the available voltage for the device is also increased. The 
algorithm then checks whether the selected device has enough voltage to 
operate. If this is the case, the algorithm goes to step 8; otherwise, the 
gauge is restored to its original value and the algorithm goes to step 6. 

6. In the case in which no improvements could be made in the cost of the 
harness (by reducing the gauge of the selected wire in step 4) or in the 
satisfaction of the voltage constraint of the device (by increasing the 
gauge of the selected wire in step 5), the algorithm picks randomly 
another cable of those associated with the device. If all the wires 
identified in step 3, or if five of these wires have already been selected, 
the algorithm stops; otherwise, the algorithm returns to step 4 with the 
newly selected wire. 

7. If none of the gauge changes proposed was useful for satisfying the 
voltage in the device or for reducing the cost of the harness, the 
algorithm selects randomly one of the wires identified in step 3 and 
applies the gauge propagation operator. This is performed in order to 
force the insertion of new genetic material into the population. 
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8. The new combination of wire gauges is introduced in the best individual 
of the preceding generation, and the modified chromosome is included 
into the new population. 

9. The algorithm repeats steps 4 through 8 for the remaining devices of the 
harness, so that one new individual is introduced into the new population 
for each device. 

4.5. META-ARCHITECTURE 

One of the problems that we found when using GA to optimize wire harness 
costs was the selection of appropriate input parameters for the GA. Even with 
the incorporation of the mechanisms described in the previous section, the 
performance of the GA was very sensitive to the set of input parameters 
being used. Initially, we attempted to find a set of good input parameters 
using a manual trial-and-error procedure. However, the results obtained with 
this method were not encouraging. Therefore, we decided to explore other 
alternatives and an innovative idea was to use a meta-population in which the 
meta-chromosomes represented various combinations of input parameters 
for running the modified GA. This allowed us to use the same genetic 
operators in order to find the set of inputs we were looking for. 

In the meta-population, each individual (i.e., meta-individual represented 
as a meta-chromosome) stores information of the following six input 
parameters for the modified GA (see Figure 8): three associated with the 
probabilities in which the GA operators will be applied (crossover, mutation 
and gauge propagation), and three associated with the relative weight for 
each term of the fitness function (satisfaction of voltage constraints, cost of 
the harness, and satisfaction of the design heuristic). Again, we used 4 bits 
for representing the values of each of these parameters, and we encapsulated 
these bits using two unsigned integers in a similar manner how we 
represented the wires in the regular population. 

Unsigned integer 1 Unsigned integer 2 

Crossover Mutation Propagation Voltage Cost Propagation 
Probability Probability Probability Weight Weight Weight 

1011 0011 1101 0010 1101 0011 

Probabilities for applying the different Relative weights for each term of the 
Operators Fitness Function 

Figure 8. Representation of a meta-chromosome. 



88 CARLOS ZOZAYA-GOROSTIZA AND LUIS. F. ESTRADA 

Mapping of values was done by considering that the crossover and 
propagation probabilities could have values that range from 0 to 1 in 
increments of 0.1, and that mutation probabilities could have values ranging 
from 0 to 0.01 in multiples of 0.001. Similarly, the allowable values for the 
relative weights of each of the parameters in the fitness function was done by 
taking a range from 0 to 100% in mUltiples of 10% for each of the weights. 
However, since we want to ensure that the sum of the relative weights is 
always set to 100%, the GA adjusts these weights by increasing or decreasing 
them until this sum is satisfied. If the sum is greater than 100%, the 
algorithm reduces the relative weights associated with the satisfaction of the 
design heuristic, the voltage constraints or the cost, in this order, until the 
sum is set to 100%. If the sum is less than 100%, the algorithm increases the 
weight values in the opposite order until the sum is satisfied. 

Figure 9 shows the operation of the Meta-GA (i.e., the modified GA with 
a meta-architecture). For each meta-individual (1 through M), the lower level 
GA is run independently through N generations with the set of input 
parameters stored in the meta-individual. At the end of each meta­
generation, each meta-individual is associated with the best solution found in 
the corresponding population N of the lower level GA, and the GA will 
proceed to combine the genetic material of these meta-individuals to come 
up with new sets of parameters (i.e., new meta-individuals) for running the 
modified GA. 

META-POPULATION 1 META-POPULATION 1+1 
S 1 . Replacemenr t _________ • 

,...------------,. e ectJon ~ 

Crossover 
meta-chromosome 1 & Mutation meta-chromosome 1 

T 
Fitness 

Evaluation of 
Meta-chromosome 

Input 
Params 

Figure 9. Operation of the meta-genetic algorithm. 
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In order to provide a GA with a self-adaptation mechanism, other authors 
such as Back (1992) have incorporated additional bits into the chromosomes 
of a the GA for representing varying mutation probabilities. With this 
representation, each individual of the population may have associated a 
different set of mutation probabilities that control the execution of the 
mutation operator. Our solution differs from this idea for three main 
reasons: a) we provide the algorithm with the possibility of changing not 
only the values of mutation probabilities, but also the five other parameters 
of the GA described in Figure 8 (i.e., crossover and propagation 
probabilities, and the three relative weights of the fitness function); b) the 
adaptation of parameters in our modified GA is performed by combining 
the genetic material in the meta-chromosomes of the meta-popUlation, and 
not by combining the genetic material in the chromosomes of the lower level 
population; c) for each meta-individual, the parameters encoded in its 
representation are taken as constant input parameters through all the N 
popUlations of the lower level GA associated with it. 

At this point it is important to consider how to rank the meta-individuals 
in order to select which of them are more appropriate for being used for the 
application of crossover and mutation operators in the meta-population. 
Initially, one could consider using the fitness of the best individual in the 
lower level population as the basis for comparison. However, the problem 
with this alternative is that this fitness depends on the relative weights 
assigned to the voltage, cost and design heuristic, which are parameters 
encoded in the meta-individual. Therefore, an individual which has a good 
fitness value in one of the populations might have a bad fitness value in 
another. In other words, the fitness value associated with the best individuals 
cannot be used directly to rank the meta-individuals. 

In the literature, we found no straightforward recommendation for 
solving this problem; in fact, we did not find a reference where a meta­
architecture is implemented in a GA to find a good set of parameters for a 
lower level GA, since other solutions deal only with single-layered GAs 
(Booker, 1987; Back, 1992). As a result, we thought of two alternatives: 

To evaluate the best individuals associated with the meta-chromosomes 
using a common set of weights (i.e., a meta-fitness function); or 

To evaluate the best individuals associated with the meta-chromosomes 
by considering only the cost of the harness, and penalizing the 
evaluation by taking into account how many devices do not satisfy the 
voltage constraints. 

The problem with using the first alternative was that we need to come up 
with a set of parameters for the meta-fitness function. For the second 
alternative we used the following formula, which is expressed as a function 
of terms that do not depend on a set of predefined weights: 
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fitness = (minimum costlcost of the best individual) * (no. of satisfied 
devices/no. of devices) 

where: 
• minimum cost is the cost of a harness with the minimum wire gauges 

that satisfy the thermal constraints. 
• cost of the best individual is the cost of the individual with highest 

fitness in the last generation of the lower level GA obtained using the 
parameters encoded in the meta-chromosome. 

• no. of satisfied devices is the number of devices that have enough 
voltage to operate appropriately in the individual with highest fitness in 
the last generation of the lower level GA obtained using the parameters 
encoded in the meta-chromosome. 

• no. of devices is the total number of devices in the harness being 
designed. 
Once each meta-individual has an associated fitness value, the genetic 

material of the meta-individuals is exchanged using regular crossover and 
mutation operators. These operators are used to create new meta-individuals 
which are included in the new meta-population. As in the lower level GA, we 
include the best meta-individual from the previous generation into this new 
population to ensure a monotonic behavior of the GA. 

5. Results 

To measure the performance of our GA we used the same example harness 
that we had used in our previous research with heuristic search (Greiff and 
Zozaya-Gorostiza, 1989), mathematical programming and a basic GA 
(Zozaya-Gorostiza, Sudarbo and Estrada, 1994); this harness has 26 wires 
and 7 devices. The purpose of using the same harness was to be able to 
isolate the benefits obtained when using the meta-architecture and the new 
operators described in the previous section. As mentioned earlier, this 
harness has all its devices connected in parallel, and therefore it can be 
modeled using a simple mathematical program. 

In the following graphs, we present the average results obtained by doing 
ten runs of the GA for a given set of parameters. Each point corresponds to 
the best individual found on multiples of ten generations. All the solutions 
satisfy the thermal restrictions on the wires, since we always decoded the 
chromosomes by mapping to allowable gauge values that do not violate 
these constraints. Also, since we are interested only in solutions that provide 
enough voltage to the devices, we only plot those solutions that satisfy this 
second type of constraints. Therefore, if the algorithm was run for a total of 
400 generations, the graph might have less than 40 points. 
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Graphs are ordered to illustrate the benefits obtained when a new 
operator was included in the basic GA. The performance of the GA when all 
the modifications as well as the meta-architecture were incorporated IS 

shown in Figure 13. The other graphs show the performance of the GA 
without using the meta-architecture, for a given set of input parameters. 

5.1. RESULTS OF THE BASIC GA 

Figure 10 shows the performance of the basic algorithm through 400 
generations for different values of the crossover and mutation probabilities. 
The algorithm performs better for high values of the crossover probability 
and for low values in the mutation probability. 

--II.- Cross=O.2,Mut.=0.008 ------.. Cross=0.5,Mut.=O.005 --II.- Cross=0.8,Mut.=0.002 

J 
24000 

22000 
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18000 

16000 

14000 
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10000 
0 50 100 150 200 250 300 350 400 

Generations 

Figure 10. Performance for different values of crossover and mutation probabilities 
(Cost weight: 0.4, Voltage weight: 0.6, Population size: 30) 

5.2. EFFECTS OF THE GAUGE PROPAGATION OPERATOR 

As mentioned earlier, gauge propagation has the objective of making more 
effective the performance of the GA by obtaining solutions that comply with 
the design heuristic described in section 4.2. This operator is randomly 
applied to increase or decrease wire gauges in order to eliminate those cases 
in which a wire that transmits a high current intensity has a lower gauge 
value than a wire that transmit less electrical current. 

Figure 11 shows the results obtained with the gauge propagation operator 
for different values of the probability associated with its application, and for 
the same set of crossover and mutation probabilities. The first graph corres­
ponds to the case in which the operator is never applied, and is included here 
for comparison purposes. As in the previous graph, only solutions that 
provide enough voltage for the seven devices of the harness are plotted. 
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Figure 11. Performance of the GA with the Gauge Propagation Operator 
(Cost weight: 0.4, Voltage weight: 0.6, Population size: 30) 

400 

It is interesting to note that the best result was obtained when the 
probability of applying the gauge propagation operator was 0.5 and not 0.8. 
This fact might indicate that too much manipulation of the chromosomes 
might affect the power of the GA to search the solution space. By 
introducing the new operator we are trying to converge more rapidly to 
good solutions; however, the theory of GA is based on letting the traditional 
operators (i.e., crossover and mutation) to act freely in the population. 
Nevertheless, the results were in both cases better than those obtained when 
the operator was not applied. 

5.3. EFFECTS OF THE INSERTION OF IMPROVED CHROMOSOMES 

The insertion of improved chromosomes has the objective of modifying a 
particular solution to reduce its cost or to satisfy the voltage constraints 
associated with the devices of the harness. Once an improved solution has 
been obtained from the best individual in a given population, the 
chromosome that represents this solution is inserted in the succeeding 
population. The combination of its genetic material with that of other 
chromosomes is made by the crossover operator of the basic GA. 

Figure 12 shows the performance of the GA with and without the 
application of the operator that inserts improved chromosomes into the 
population, The first 400 generations were run without applying this 
operator; starting with generation 400, every ten generations the operator 
was applied, and the algorithm was run until generation 700. The graph 
shows only those solutions that satisfied the voltage constraints for all the 
devices of the harness. 
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Figure 12. Perfonnance of the GA when the operator that modifies the best individual in 
the preceding population is applied starting at generation 400. 

(Crossover prob: 0.8, Mutation prob: 0.002, Gauge propagation prob: 0.5, Cost 
weight: 004, Voltage weight: 0.5, Heuristic weight: 0.1, Population size: 30) 

SA. EFFECTS OF USING THE META-ARCHITECTURE 

Figure 13 shows the performance of the GA after iterating through 40 meta­
generations with 6 meta-individuals in the meta-population. In this case, we 
plotted the cost of the best individual obtained in each meta-population. To 
generate this graph, the lower level GA was run through 700 generations, 
using the operator that modifies the best individual in the preceding 
population starting at generation 400. Therefore, the set of solutions that had 
to be tested was 700 for each of the 6 meta-individuals, giving a total of 
700*6*40= 168,000 generations; where each set of 700 generations was run 
with a particular set of the input parameters discussed in section 4.5. Since 
each generation has 30 individuals, the number of solutions that were 
evaluated is 5.04 * 106 which is still a very small fraction of the solution 
space (13 possible gauge values for each of the 26 wires of the example 
harness, gives a total of 9.17 *1028 possible solutions). 

In each series of the graph, the manner how the GA evaluated the fitness 
of the meta-individuals was different. In the first series, each meta-individual 
is evaluated by applying a common fitness function to the best individual 
obtained after the modified GA was run through 700 generations using the 
parameters encoded in its chromosome. In the second series, we applied the 
same kind of evaluation, but we preserved in the meta-population the best 
meta-individual of the previous generation (i.e., elitism was incorporated). 
Finally, in the third series the meta-individuals were evaluated by using the 
formula described in section 4.5. In this series, elitism was also applied. 

700 
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Figure 13. Performance of the GA when the Meta-Architecture was implemented. 
(Crossover prob: 0.8, Mutation prob: 0.002, Gauge propagation prob: 0.5, Cost 

weight: 0.4, Voltage weight: 0.5, Heuristic weight: 0.1, Population size: 30; 
Generations for each meta-individual: 700; Meta-population size: 6) 
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The graph shows that incorporation of elitism did not lead to 
significantly better results in the performance of the meta-GAo This can be 
explained by considering that the initial population of a meta-individual is 
generated by using the best individual of the populations associated with the 
meta-individuals whose genetic material was combined to create the new 
meta-individual; therefore, these individuals are likely to be preserved in the 
new population unless there were a drastic change in the input parameters 
used to run the lower level GA. As a consequence, the effect is the same as if 
the original meta-individuals had remained in the meta-population. 

The graph also shows that the results obtained when using a common 
fitness function for the meta-individuals were similar to those obtained when 
we apply the formula that evaluates the meta-individuals using relative 
factors with respect to the solution with minimum gauges. This can be 
explained for those cases in which the common fitness function has similar 
relative weights for its cost and voltage weights. 

'6. Conclusions 

This paper presents some recent results that were obtained when a basic 
genetic algorithm (GA) for optimizing the cost of electrical wire harnesses 
was modified. These modifications included the incorporation of two 
operators that were specific for the problem being solved: a) a gauge 
propagation operator, and b) an operator that attempts to improve a possible 
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solution by randomly changing wire gauges associated with a particular 
device of the harness. In addition, the modified GA included the 
implementation of a meta-architecture that was useful to overcome the 
problem of finding a set of good input parameters for running the single­
layered GA. 

The results obtained when trying to optimize the design of an example 
harness show that the incorporation of domain heuristics, as well as the use 
of a meta-architecture in a GA, can lead to significant improvements in the 
performance of the GA. 

These modifications could be incorporated in other applications of GAs 
for design activities that present similarities with the harness optimization 
problem. For example, the design of hydraulic networks with a given 
topology could be analogous to this problem by replacing voltages with 
pressures and current intensities with flows. However, the techniques here 
suggested, in particular the use of a meta-architecture, might also be 
applicable to generic implementations of genetic algorithms. 

Further research and experimentation with other applications of GAs 
could help to answer questions that remain open with respect to the manner 
how meta-chromosomes can be evaluated in a two-layered GA. The two 
alternatives that were implemented in this work constitute only some of the 
possibilities that could be tested in the future. In addition, the convenience of 
implementing new operators similar to those used for the gauge propagation 
and chromosome improvement processes would have to be evaluated when 
using GAs in other types of design problems. 
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