
14

A LOGICAL THEORY OF DESIGN

FRANCES BRAZIER, PIETER V AN LANGEN AND JAN TREUR
Vrije Universiteit Amsterdam, The Netherlands

Abstract. Design tasks typically deal with incomplete information and involve
flexible reasoning patterns for which sophisticated control strategies are needed. As a
result, the reasoning patterns are highly dynamic and non-monotonic. The logical
framework introduced provides formal semantics of state descriptions of design processes
based on (compositional) partial models and formal semantics of the reasoning
behaviour based on (compositional) partial temporal models.

1. Introduction

In the area of diagnosis, a number of well-established logical theories have
been developed and are acknowledged as valuable contributions to the field,
such as Reiter (1987), and Console and Torasso (1990). For design (e.g.,
Brown and Chandrasekaran, 1989; French and Mostow, 1985; Logan, Come,
and Smithers, 1992; Takeda, Veerkamp, Tomiyama, and Yoshikawa, 1990)
the situation differs. Although models for design have been proposed using
logic as a vehicle (e.g., Coyne, 1988), and general design theories have been
proposed (e.g., Tomiyama and Yoshikawa, 1987), formal semantics of both
static aspects (Le., characteristics of an individual state) of the design process
and dynamic aspects (i.e., the reasoning behaviour) have yet to be defined.
Design tasks typically reason with incomplete and inconsistent knowledge of
requirements and design object descriptions: they reason non-monotonically
with and about, for example, (default) assumptions, contradictory
information, and new design knowledge. To handle such dynamic reasoning
patterns, knowledge of tactics and strategies is needed. The formulation of
the logical foundations (including formal semantics) of these patterns goes
beyond classical logic.

In the current paper, a logical foundation is introduced in which formal
semantics for both static and dynamic aspects of design are based on partial
models (e.g., Langholm, 1988; Blarney, 1986). Partial models are a means to
formalise information states, representing incomplete world descriptions
(e.g., Langen and Treur, 1989); types of world descriptions relevant for
design are design object descriptions and requirement sets. To obtain formal

J. S. Gero et al. (eds.), Advances in Formal Design Methods for CAD
© Springer Science+Business Media Dordrecht 1996

244 FRANCES BRAZIER, PIETER V AN LANGEN AND JAN TREUR

semantics of reasoning behaviour in design tasks, a recently developed
approach based on partial temporal models is adopted, which has shown to
be applicable to different types of (non-monotonic) reasoning (see Engel­
friet and Treur, 1994; Gavrila and Treur, 1994; Treur, 1994). Semantics of a
reasoning process is formalised by a set of (alternative) reasoning traces,
represented by a partial temporal model, i.e., a sequence of partial models.
As the partial models representing information states are used to provide
semantics of the static aspects, a structural connection between the semantics
of static aspects and of dynamic aspects is obtained. In Brazier, Langen,
Ruttkay, and Treur (1994), the static aspects of design have been formalised;
this paper elaborates upon that work with a formalisation of the dynamic
aspects. Since a design task is complex (involving integration of different
views and perspectives, and often different agents) and consists of a number
of subtasks, the information states also have a compositional structure.

In Brazier, Langen, Ruttkay, and Treur (1994), an approach is presented
to the development of intelligent design support systems based on a high­
level formal specification language, as well as a generic task model of design
specified in this formal specification language. This generic task model has
been developed on the basis of the analysis of task models for the develop­
ment of design support systems (e.g., Brumsen, Pannekeet and Treur, 1992;
Geelen and Kowalczyk, 1992) and has been employed for the development
of new design support systems (e.g., Brazier, Langen, Treur, Willems and
Wijngaards, 1994). The logical foundations presented in this paper provide
formal semantics for both the static and dynamic aspects of design tasks
modelled by the generic task model. Moreover, the logical foundations can
be used to establish (and prove) properties of design support systems, such
as consistency, correctness, and completeness (see Treur and Willems, 1994a;
1994b), and to develop automated tools to support verification and
validation of these properties. In most current frameworks such properties
are basically static: they do not refer to the behaviour of the system.
However, in interactive systems dynamic properties are also important (e.g.,
if under certain circumstances a particular type of behaviour of the system
has been rejected by the user in the past, it should not be repeated in the
present). Expressing dynamic properties requires a logical foundation for
reasoning behaviour of a system (in interaction with the user)-this paper
proposes a framework for this purpose.

In Section 2 of this paper, the notions of design process and design space
are explained. In Sections 3 and 4, static and dynamic aspects of design
processes are presented, respectively. In Section 5, an example of a design
process is given. In Section 6, the logical theory of design is discussed and
conclusions are drawn.

A LOGICAL THEORY OF DESIGN 245

2. Design Processes and the Design Space

In design, requirement qualification sets and design object descriptions are
manipulated. Requirement qualifications are qualitative expressions of the
extent to which (individual or groups of) requirements must be met, either in
isolation or in relation to each other.· A design object description is a
specification of the object to be created. A design process is described by a
sequence of design decisions (and their rationale) concerning modifications
to sets of requirements and their qualifications and to (partial) design object
descriptions.

Figure 1 shows an example of a design process in the two-dimensional
design space spanned by requirement qualification sets and design object
descriptions. Note that the notions of space and dimension are used inform­
ally here: the choice of metric on the design space is left open. (A possibility
would be to measure the distance between two points in a dimension by the
number of differences between the descriptions denoted by these points.)

t
requirement
qualification

sets

2

8

5

design object
descriptions

6

7

Figure 1. Example of a design process in the design space.

Figure 1 shows a nine-step sequence of modifications to requirement
qualification set and design object description. The first step in the sequence,
depicted by the arrow labelled '1', represents a modification to the initial
requirement qualification set only. The initial design object description is
modified in steps 2 and 3. After step 3 (i.e., at the point in which the arrow
labelled '3' ends), modification of the design object description halts for
some reason: maybe the design object description satisfies all requirements

246 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR

of the current requirement qualification set, or maybe there is reason to
believe that no design object description can be made that satisfies all
requirements. In each case, the requirement qualification set is modified in
step 4, taking into account the reason why modification of the design object
description stopped. After the modifications in steps 5 to 8, the design
process reaches an interesting state: the sequence of modifications has led to
a requirement qualification set and a design object description that in
combination are equivalent to the result of step 2. Therefore another
direction is sought, which differs from the one chosen in step 3, leading in
step 9 to a modification to the requirement qualification set. In summary,
there are five requirement qualification set modifications (steps 1, 4, 6, 8 and
9) and four design object description modifications (steps 2, 3, 5 and 7).

In general, a large (and possibly infinite) number of new points in the
design space could be generated by modification to either the requirement
qualification set or the design object description that correspond to a given
point. In practice, only a few of these new points are of interest, because they
are the ones that 'make sense' -these are the possible alternative choices for
the next step in the design process. To describe the dynamics of the design
process, knowledge of tactics and strategies, needed to guide the design
process, must be made explicit.

3. Static Aspects of Design Processes

In design, manipulation of requirement sets, of their qualifications, and of
design object descriptions plays a crucial role. A design process can be
regarded as a sequence of design decisions concerning requirements, their
qualifications and (partial) design object descriptions. The current state of
the design process changes continually: requirements can be added or
withdrawn, requirement qualifications can be changed, and partial design
object descriptions can be added or retracted. During design, often different
(alternative) requirement sets (and their qualifications) and design object
descriptions are considered.

Steps in the design process can be represented by transitions of two types:
transitions modifying design object descriptions and those modifying
requirement qualification sets. Note that no commitment is made to model
design as a search process. Steps in the design process can be controlled
completely, depending on the strategic knowledge used.

The logical analysis of the static aspects of design processes is discussed
below in Sections 3.2, 3.3, and 3.4. In Section 3.1, the basic terminology
employed is introduced. Throughout Section 3 and Section 4, the example
of designing a house will be used to illustrate the logical analysis.

A LOGICAL THEORY OF DESIGN 247

3.1. BASIC APPROACH AND TERMINOLOGY ON STATIC ASPECTS

It is assumed that the reader is familiar with many-sorted first-order
predicate logic, an essential element in our approach. In Langen and Treur,
(1989), formal definitions of semantics fo~ many-sorted partial models are
presented. For an overview of partial logic, see Blamey (1986) and
Langholm (1988).

Definition. A signature for many-sorted first-order predicate logic is a tuple
!: = (S, C, F, P) with sorts S, constants C, functions F and predicates P.

In the sequel, !: denotes a signature, At(!:) the set of all ground atoms
of !: and Wff(!:) the set of all closed well-formed formulae over !:.

Definition. A partial model for !: is a mapping M: At(!:) ~ { 0, 1, u }. An
atom a E At(!:) is true in M if M(a) = 1,false in M if M(a) = 0, and
undefined or unknown in M if M(a) = u. A partial model M is complete if
for all a E At(!:), either M(a) = 0 or M(a) = 1.

Definition. The model space Mod(!:)is the set of all partial models for !:.

Definition. The satisfaction relation t= on Mod(!:) x Wff(!:) is defined for
all atomic well-formed formulae a E At(!:) as:

M t=+ a iff M(a) = 1
M t=- a iff M(a) = 0
M~+a iff M(a) * 1
M ~- a iff M(a) *0.

For the logical connectives "A, V, ~ and ¢::>, the strong Kleene
semantics is adopted (Blamey, 1986; LaIigholm, 1988), of which the truth
tables are shown in Figure 2.

Definition. The refinement relation :s; on Mod(!:) x Mod(!:) is such that for
all M, M' E Mod(!:), M :s; M' holds if for all a E At(!:), M(a):S; M'(a) (with
o :s; 0, u :s; 0, 1 :s; 1, U :s; 1, U :s; u).

Definition. A theory for!: is a set T c Wff(!:).

Definition. Let M be a partial model for Land T a theory for L. The
class of models defined by M with T is the set { N E Mod(L) I N is
complete, M:S; N, and N t= T }.

248 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR

-,A

o
o 1

u u

o u

o u

o 0 0 0

u u 0 u

A:::::}B 1 0 u

o u

o 1

u u u

AvB 1 d u

1

o 1 0 u

u u u

A <=>B o u

1 0 u

o 0 u

u u u u

Figure 2. Kleene's strong three-valued connectives.

3.2. STATIC ASPECTS OF DESIGN OBJECT DESCRIPTIONS

To describe a design object, a language is needed in which properties and
their values can be named and relations between properties can be expressed.

Definition. A design object description lexicon is a signature LOOO = (5, C,
F, P), where {Parameters, Values} ~ 5 and {eq c Parameters x Values} ~
P.

In other words, the signature should at least contain the sorts Parameters
and Values for denoting design parameters and values, respectively, and
should contain a relation eq on Parameters x Values for denoting the fact
that a certain design parameter has a certain value. Common relations used
in design object ontologies, such as the 'part-of' relation by means of which
the components and parts of a design object can be described, can also be
included.

During design, not all properties of a design object are considered simul­
taneously: the description of a design object is often partial. In the sequel,
LOOO denotes a design object description lexicon.

Definition. A design object description based on LOoo is a partial model
for LOOO.

Example. Suppose the designer has placed the living-room and the kitchen
on the ground-floor (floor 0) and one bedroom (bedroom 1) on the first
floor (floor 1). Whether the first bathroom (bathroom 1) and the second

A LOGICAL THEORY OF DESIGN 249

bedroom (bedroom 2) should be placed on the ground-floor or on the first
floor is, as yet, undecided. This can be expressed by means of the following
design object description DOD1:

DOD1 (eq(floor-of(living-room(1 », 0» = 1
DOD1(eq(floor-of(kitchen(1», 0» = 1
DOD1 (eq(floor-of(bedroom(1 », 1» = 1
DOD1(eq(floor-of(bedroom(2», 1» = U

DOD1 (eq(floor-of(bathroom(1 », 0» = U

DOD1(eq(floor-of(bathroom(1», 1» = u.

An abbreviated notation for DOD1 is:

{ eq(floor-of(living-room(1», 0),
eq(floor-of(kitchen(1 », 0),
eq(floor-of(bedroom(1», 1) }.

A design object description can be seen as one element of the set of all
partial or complete design object descriptions.

Definition. The design object description space DOD based on LOoo is the
set of tuples of models from MOd(LoOO).

During design the number of properties of the design object that have
been determined may increase or decrease. Both types of modification can
be described by means of the following refinement relation.

Definition. The design object refinement relation based on LOOO is the
refinement relation ::;; on Mod(LOOO) x Mod(LOOO). Furthermore, for any
two tuples Sand T that are elements of DOD, the combined design object
refinement relation S::;; T holds if for all M E S there is an NET with
M ::;; N and for all NET there is an ME S with M::;; N.

Example. Suppose the designer, after allocating rooms as in the previous
example, designs a kitchen with an area of 9 m2. This can be expressed by
means of the design object description DOD2:

{ eq(floor-of(living-room(1 », 0), eq(floor-of(kitchen(1 », 0),
eq(floor-of(bedroom(1 », 1), eq(area(kitchen(1), m2), 9) }.

250 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR

To design an object, knowledge of the properties and the relations
between the properties is essential. In practice, not all knowledge is available
and has to be acquired during the design process.

Definition. A design object theory based on l:DOD is a theory TDOD for
l:DOD·

Example. Assume that general house design knowledge is that the area of a
floor equals the sum of the areas of the rooms on that floor, and that a room
can be allocated to one floor only. This can be expressed by means of the
design object theory TDOD:

'v'f E Floors 'v'u E AreaUnits:
eq(area(f, u»,

La E Areas: :3r E Rooms (eq(floor-of(r), f) 1\ eq(area(r, u), a»

'v'r E Rooms 'v'f1, f2 E Floors:
(eq(floor-of(r), f1) 1\ eq(floor-of(r), f2» ~ f1 = f2.

(L k: <p(k) is the sum over each k satisfying <p, such that if k satisfies exactly

N quantifier-free instances of <p, then k appears exactly N times in the sum.
The symbol '=' is the symmetric, reflexive and transitive equality relation
on values.)

3.3. STATIC ASPECTS OF REQUIREMENT QUALIFICATION SETS

Before and during the process of design, knowledge of necessary and
desired properties of the object to be designed (within a given context) is of
importance. These necessary and desired properties are the requirements
placed upon a design.

Definition. Let l:DOD be a design object description lexicon. A requirement
is a well-formed formula over l:DOD.

To describe requirements, a language is needed in which requirements,
qualifications and relations between qualifications can be expressed.

Definition. A requirement qualification lexicon is an extension of the
signature l:RQS = (5, C, F, P), where

5: Sorts,
Vars,

/* sorts in l:DOD */
/* variables over l:DOD */

A LOGICAL THEORY OF DESIGN 251

VarSets, 1* variable sets over l:DOD *1
Wffs, 1* well-formed formulae over l:DOD *1
WffTuples,
QualificationNames,
Parameters,
Values;

1* well-formed formula tuples over l:DOD *1
1* names for qualifications *1
1* design parameters *1
1* values of design parameters *1

C : A: WffTuples;
0: VarSets;

1* the empty tuple *1
1* the empty set *1

F : (,): Wffs x WffTuples ~ WffTuples;
{ , }: Vars x VarSets ~ VarSets;
eq: Parameters x Values ~ Wffs;
and, or, implies: Wffs x Wffs ~ Wffs;
not: Wffs ~ Wffs;
for-all, exists: VarSets x Sorts x Wffs ~ Wffs;

1* written as (, ... ,) *1
1* written as { , ... , } *1

P: rq c WffTuples x QualificationNames; 1* requirement qualification *1.

The meaning of the above functions representing logical connectives is
intuitive; see (Langen and Treur, 1989) for a definition. In the sequel, l:RQS
denotes a requirement qualification lexicon.

Definition. A requirement qualification set based on l:RQS is a partial
model for l:RQS.

Example. The customer's requirements for the design of the house are that:
(1) there must always be a bathroom on the same floor as a bedroom, (2) the
house has one kitchen, one living-room, three bedrooms of which one is on
the ground-floor, and one bathroom and (3) the ground-floor area is at most
36 m2. These are all hard requirements, i.e., a design must satisfy them all.
This can be expressed by means of the requirement qualification set RQS1:

{ rq((for-all({f}, Floors, for-all({n}, RoomNrs,
implies(eq(floor-of(bedroom(n», f),
exists({m}, RoomNrs, eq(floor-of(bathroom(m», f))), hard),

rq((exists({f}, Floors, eq(floor-of(kitchen(1», fn), hard),
rq((for-all({n }, RoomNrs,

implies(exists({f}, Floors, eq(floor-of(kitchen(n», f), n=1»), hard),
rq«exists({f}, Floors, eq(floor-of(living-room(1», f)), hard),

252 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR

rq((for-all({n}, RoomNrs,
implies(exists({f}, Floors, eq(floor-of(living-room(n», f)), n=1) »,

hard),
rq«eq(floor-of(bedroom(1», 0», hard),
rq«exists({f}, Floors, eq(floor-of(bedroom(2», f)), hard),
rq«exists({f}, Floors, eq(floor-of(bedroom(3», f)), hard),
rq((for-all({n}, RoomNrs,

implies(exists({f}, Floors, eq(floor-of(bedroom(n», f»,
and(1:::;n, n:::;3»»,

hard),
rq((exists({f}, Floors, eq(floor-of(bathroom(1», f)), hard),
rq((for-all({n}, RoomNrs,

implies(exists({f}, Floors, eq(floor-of(bathroom(n», f», n=1 »), hard),
rq((for-all({a}, Areas,

implies(eq(area(floor(O), m2), a), ge(36, a»»), hard) }

(where ge denotes the relation 'greater than or equal to').

Definition. The requirement qualifications space RQS based on LRQS is
the set of tuples from Mod(LRQS).

Comparison of requirement qualification sets is necessary to guide the
design process: knowledge is required of how qualifications are related and
what the implications of the relations are.

Definition. A requirement qualification theory based on LRQS is a theory
TRQS for LRQS.

Example. Suppose that general building requirements require that there
must be a hall on the ground-floor and that the minimum area of (1) a hall
is 2 m2, (2) a kitchen is 4 m2, (3) a living-room is 16 m2, (4) a bathroom is 3
m2, and (5) a bedroom is 6 m2. Furthermore, in general if the customer
wants the kitchen on the ground-floor, then an additional requirement is that
the living-room also be on the ground-floor. These hard requirements can
be expressed by means of the requirement qualification theory T' RQS:

rq«exists({n}, RoomNrs, eq(floor-of(hall(n», 0»), hard)
rq((for-all({n}, RoomNrs, for-all({a}, Areas,

implies(eq(area(hall(n), m2), a), ge(a, 2»)))), hard)
rq((for-all({n}, RoomNrs, for-all({a}, Areas,

implies(eq(area(kitchen(n), m2), a), ge(a, 4»»), hard)

A LOGICAL THEORY OF DESIGN

rq((for-all({n}, RoomNrs, for-all({a}, Areas,
implies(eq(area(living-room(n), m2), a), ge(a, 16)))), hard)

rq((for-all({n}, RoomNrs, for-all({ a}, Areas,
implies(eq(area(bathroom(n), m2), a), ge(a, 3))))), hard)

rq((for-all({n}, RoomNrs, for-all({a}, Areas,
implies(eq(area(bedroom(n), m2), a), ge(a, 6»)))), hard)

'lim,n E RoomNrs:
rq(eq(floor-of(kitchen(m», 0», hard) :::::}
rq((eq(floor-of(living-room(n», 0», hard).

3.4. STATIC ASPECTS OF THE DESIGN PROCESS AS A WHOLE

253

Given a number of requirement qualifications, specific tactics and strategies
can be chosen to guide the overall design process (when to reason about
requirements and their qualifications and when to reason about design object
descriptions). These tactics and strategies determine on which requirements
the design process is to (possibly temporarily) focus: a commitment is made
to satisfy these requirements. In the sequel, LOOO denotes a design object
description lexicon and LROS a requirement qualification lexicon.

Definition. A commitment mapping from LROS to LOoo is a mapping of
partial models in Mod(LROS) onto sets of well-formed formulae in
Wff(LOOO)·

The qualifications placed on requirements may be comparable. If one set
of requirement qualifications specifies precisely the same as another, but in
addition specifies extra requirement qualifications, the first is seen as a
specialisation of the second.

Definition. Let TOOO be a design object theory based on LOOO and
commit a commitment mapping from LROS to LOOO. The requirement
qualification specialisation relation based on LROS with TOOO and
commit is a relation ~ on Mod(LROS) X Mod(LROS) such that for all rqs 1,
rqs2 E Mod(LROS):

rqs1 ~ rqs2 if for all dod E Mod(Looo) such that dod F T 000,
dod F commit(rqs2) implies dod F commit(rqs1).

As in the design object description space, this refinement relation can be
extended to the requirements qualification space RQS, consisting of tuples.

Example. Suppose the requirement qualification set RQS1 is refined to
RQS2 by applying the requirement qualification theory T'ROS to RQS1.

254 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR

Suppose further that for the design only hard requirements are taken into
account. This commitment can be expressed by means of the following
mapping Commit':

Vrqs E Mod(1:RQS) Vwff E Wffs:
rq«wff), hard) E rqs ~ Commit'(rqs) 1= wff.

Then ROS1 ~ ROS2 with Tooo and Commit'.
A design problem can be seen as a problem of generating a description

or modifying an existing description of a design object, given a number of
requirement qualifications.

Definition. A design problem description is a pair (dod, rqs) with dod E

Mod(1:ooo) and rqs E Mod(1:RQS).

The solution to a design problem is a design object description which
fulfils the requirements chosen and which complies with the knowledge of
the domain.

Definition. Let dodO and dod be design object descriptions based on
1:000, Tooo a design object theory based on 1:000, rqs a requirement
qualification set based on 1:RQS and commit a commitment mapping from
1:RQS to 1:000. dod is a design solution of the design problem description
(dodO, rqs) with TOOO and commit if (1) dodO ~ dod, (2) the class of
models defined by dod with Tooo is non-empty, and (3) for each element
dod' of that class, dod' 1= commit(rqs).

Example. The design object description 0002 is not a design solution of
the design problem description (0001, ROS2) with Tooo and Commit'.

4. Dynamic Aspects of Design Processes

To describe the dynamic aspects of a design process, the circumstances
under which specific choices are to be made must be specified in relation to
the alternatives. Strategic and tactical knowledge is required to steer the
design process: that is, to determine along which of the two dimensions of
the design space the design process should continue, and to determine how
to proceed.

Section 4.1 defines the general basic concepts underlying the formal­
isation of the dynamic aspects of design: information states, transitions
between information states and traces generated by these transitions. In
Section 4.2 the notion of information state is more specifically defined for

A LOGICAL THEORY OF DESIGN 255

the information states relevant for design: design object (description) states,
requirement qualification (set) states and overall control states. In Section
4.3 the related transitions are defined and in Section 4.4 the reasoning traces
(temporal models of design process behaviour) based on the transitions are
presented.

4.1. BASIC APPROACH AND TERMINOLOGY ON DYNAMIC ASPECTS

To define the dynamic aspects of a design process, a notion of state is
required. In our logical approach, a state is the current state of the
information acquired or derived so far, including information about in­
completeness or partiality of the design process information.

Definition. An information state for signature l: is a (partial) model M for
l:. The set of all information states for signature l: is denoted by IS(l:).

An information state formalised as a partial model reflects all ground
literal conclusions that have been derived at a certain moment in time. This
approach can also be used to model inference relations such as SLD
resolution or chaining.

Definition. A transition between information states for signature l: is a pair
of partial models for l:; i.e., an element (5, 5') of IS(l:) x IS(l:). A transit­
ion relation is defined as a set of transitions, i.e. a relation on IS(l:) x IS(l:).
If this relation is defined as a mapping from IS(l:) into IS(l:), it is called a
transition function.

Definition. A trace or partial temporal model for signature l: is a sequence
of information states (Mt)t E I'T in IS(l:). The set of all partial temporal
models is denoted by IS(l:)i'T, or Traces(l:).

Traces generated by repeatedly applying a tranSItion function on the
current information state can be interpreted as partial temporal models.
These partial temporal models provide a declarative description of the
semantics of the behaviour of the design process; the set of these models can
be viewed as the required behaviour of the design process.

If a design process is modelled as a compositional structure, then the
information state is a combination of information (sub-)states of each of the
components of the structure. Transitions from one information state to
another are specified in a similar way by their effect on the different
information sub states. The overall partial temporal model, that models the
behaviour of the design process, can be constructed as a composition of
partial temporal models of each of the components.

256 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR

4.2. STATES IN A DESIGN PROCESS

An information state of the design process comprises information on a
design object description and a requirement qualification set. The
abbreviations used below are DOD for design object description space and
RQS for requirement qualification set space.

Definition. (design object states and requirement qualification states)
a) A design object state is an element of ISOOO = ISoooobject x ISOOometa,
where ISoooobject = IS(~oOoobject) and ISOOometa = IS(~OOometa), with
~oooobject and ~OOometa signatures for the object-information and meta­
information about design object descriptions, respectively.
b) A requirement qualification state is an element of ISRQS = ISRQSobject x
ISRQSmeta, where ISRQSobject = IS(~RQSobject) and ISRQSmeta =
IS(~RQSmeta), with ~RQSobject and ~RQSmeta signatures for the object
information and meta-information about requirement qualification sets,
respectively.

Example. The designer often needs to reason at a meta-level about a partial
design object description, for instance with respect to completeness. For
example (cf. 0001), the designer knows that the living-room and the kitchen
are on the ground-floor and not on the first floor and that the first bedroom
is on the first floor and not on the ground-floor. In addition, he/she knows
that the floor for a second bedroom has not yet been decided. This can be
expressed by means of the following design object state IS'OOO:

({ eq(floor-of(living-room), 0),
eq(floor-of(kitchen), 0),
eq(floor-of(bedroom(1 », 1) },

{ true(eq(floor-of(living-room), 0»,
false(eq(floor-of(living-room), 1»,
true(eq(floor-of(kitchen), 0»,
false(eq(floor-of(kitchen), 1»,
true(eq(floor-of(bedroom(1 », 1 »,
false(eq(floor-of(bedroom(1», 0»,
-, known(eq(floor-of(bedroom(2», 0»,
-, known(eq(floor-of(bedroom(2», 1»}).

In a similar way, a requirement qualification state IS'RQS can be defined as a
pair (Sobject. Smeta), where Sobject equals, for example, the requirement
qualification set RQS1 (cf. Section 2.3) and Smeta comprises the meta­
information about RQS1 that all requirement qualifications in RQS1 are
known to be true.

A LOGICAL THEORY OF DESIGN 257

As can been seen in the above example, one part of the meta-information
about a design object description or a requirement qualification set concerns
epistemic information (i.e., information about what is known). The full
epistemic information ISe associated with an object information state ISo is:

ISo(a) = 1 ~ (ISe(true(a» = 1 A ISe(false(a)) = 0 A ISe(known(a)) = 1)
ISo(a) = 0 ~ (ISe(true(a» = 0 A ISe(false(a» = 1 A ISe(known(a» = 1)
ISo(a) = u ~ (ISe(true(a)) = 0 A ISe(false(a» = 0 A ISe(known(a» = 0).

Besides epistemic information, the meta-information also includes local
control information, which directs the design process within either the design
object description space or the requirement qualifications space.

Overall design process coordination is needed to determine in which of
these two spaces the design process is to continue. Therefore, a third state of
design process coordination information is defined, expressed in terms taken
from an overall control lexicon ~oScontrol. For the design system, the
abbreviation OS is used.

Definition. (states of a design process)
a) A basic state of a design process is a pair consisting of a design object
state and a requirement qualification state, i.e., an element of ISoSbasic =
ISooo x ISRQS.
b) An overall state of a design process is a pair consisting of a basic state of
the design process and an overall control state, i.e., an element of
ISoSoverall = ISosbasic x ISoScontrol, where ISoScontrol = IS(~OScontrol).

4.3. DESIGN STEPS

Having defined states, design steps can be defined by transitions from one
state to another. This can be described in the following compositional
manner.

Definition. (transitions in the two spaces)
a) A transition in the design object space is a pair of design object states,
i.e., an element of ISOOO x ISOOO.
b) A transition in the requirement qualification space is a pair of
requirement qualification states, i.e., an element of ISRQS x ISRQS.

Definition. (basic and overall design transitions)
a) A basic design transition is a pair of basic design states, i.e., an element
of ISOSbasic x ISOSbasic that is induced by a transition in either the design
object space or the requirement qualification space.

258 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR

b) An overall control transition is a pair of control states, i.e., an element of
ISoscontrol x ISoscontrol.
c) An upward control interaction transition is a pair consisting of a basic
design state and a control state, i.e., an element of ISOSbasic x ISOSoverall
that is induced by a transition in either the design object space or the
requirement qualification space.
d) A downward control interaction transition is a pair consisting of a
control state and a basic design state, i.e., an element of ISOSoverall x
ISOSbasic that is induced by a transition in either the design object space or
the requirement qualification space.
e) An overall transition is a pair consisting of two overall design states, i.e.,
an element of ISOSoverall x ISOSoverall that is induced by one of the above
transition types.

For each of these types of transitions, it holds that if an individual
transition is element of S x S', a transition relation of that type is defined as
a subset of S x S'. Furthermore, if this relation is defined as a mapping from
S into S', it is called a transition function. It will be assumed that in upward
and downward control interactions, only the meta-level information of the
basic design states is involved. Examples of basic design transitions are
shown in Section 5.

4.4. TRACES AND TEMPORAL MODELS OF A DESIGN PROCESS

Having defined states and transitions in a compositional manner, traces can
be defined.

Definition. (overall temporal model) Let Tracesos = (lSosoverall)Ii. An
overall trace is an element (Mt>. E IT E TracesoS. Such a trace (Mt>. E II

is a temporal model of a design system if for all time points t the step from
Mt to Mt+1 is defined in accordance with an overall transition. The set
BehMod of temporal models forms a subset of Tracesos.

A trace defines a complete design history. In most systems only part of
the design history is actually represented (see for instance (Brazier, Langen,
Treur, Willems, and Wijngaards, 1994), where it was sufficient for devising an
elevator configuration to remember the previous state of the configuration).
An overall temporal model describes a trace representing possible (intended)
behaviour of the design process. From every initial information setting,
traces can be generated by the transitions. All generated traces together form
the set BehMod. The transition functions in fact define a set of (temporal)
axioms BehTheory on temporal models in TracesoS. The possible
behavioural alternatives are given by the set of the temporal models

A LOGICAL THEORY OF DESIGN 259

satisfying these temporal axioms. A design process is correct with respect to
the specified transitions if each generated trace (from BehMod) satisfies the
theory BehTheory. This can be used for purposes of verification or proving
properties of a specification. For example, proof techniques in temporal
logic can be used to derive whether a design system is able to generate a
given design object description on the basis of a given set of requirement
qualifications. For more details on verification, see (Treur and Willems,
1994a; 1994b).

5. Example of a Design Process

In this section, the example of designing a house is pursued to show an
overall trace of a design process. In this example, a customer and a designer
cooperate in the design: the customer by stating his/her wishes with regards
to rooms, floors and room areas, and the designer by allocating rooms to
floors and determining the areas of rooms.

The sample process proceeds as follows. First, the customer states his/her
wishes, which are then translated into requirements and qualifications (cf. the
set ROS1 in Section 3.3). After this, the designer tries to design a bungalow
that fulfils the requirements. This, however, results in a design with too large
a ground-floor area. The designer cannot remedy this problem: adding one
storey to the house and putting a bedroom on the first floor also entails put­
ting a bathroom on that floor, but that would mean there would be more
bathrooms than the customer wanted. To resolve this problem, the customer
decides to allow for more than one bathroom. The designer then designs a
two-storey house that pleases the customer.

A (partial) overall trace of this process is shown below. Of each element
(Mt)t E H from this trace, the contents of its five components, ISoooobject,
ISOOometa, ISRQSobject, ISRQSmeta, and ISOScontrol, are shown. Together,
these states (in chronological order) form the design history.

The requirement qualification sets that are generated during the design
process are written as ROSj E I'J, and similarly, the design object descriptions
as DODj E I+ Note that initially, ROSo = 0 and 0000 = 0. For the sake of
convenience, the meta-information in states of ISooometa and ISRQSmeta
is restricted to the (partial) results of analysis of the corresponding object­
information and the chosen method of modification. Similarly, the overall
control information in states of ISoScontrol is restricted to information
about which description to be manipulated next and how.

Step 1. The customer states his/her wishes, which are translated into a set of
requirements for the design of the house ('u' is the set union operation):

260 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR

ROS1 = ROSa u
{ /* there must always be a bathroom on the same floor as a bedroom */
rq((for-all({f}, Floors, for-all({n}, RoomNrs, .

implies(eq(floor-of(bedroom(n», f),
exists({m}, RoomNrs, eq(floor-of(bathroom(m», f»»», hard),

1* the house has one kitchen */
rq«exists({f}, Floors, eq(floor-of(kitchen(1», f»), hard),
rq((for-all({n}, RoomNrs,

implies(exists({f}, Floors, eq(floor-of(kitchen(n», f», n=1 »), hard),

/* the house has one living-room *1
rq«exists({f}, Floors, eq(floor-of(living-room(1 », f»), hard),
rq((for-all({n}, RoomNrs,

implies(exists({f}, Floors, eq(floor-of(living-room(n», f», n=1»),
hard),

/* the house has three bedrooms of which one is on the ground-floor */
rq«eq(floor-of(bedroom(1 », 0», hard),
rq((exists({f}, Floors, eq(floor-of(bedroom(2», f»), hard),
rq«exists({f}, Floors, eq(floor-of(bedroom(3», f»), hard),
rq«for-all({n}, RoomNrs,

implies(exists({f}, Floors, eq(floor-of(bedroom(n», f»,
and(1::;;n, n::;;3»»,

hard),

/* the house has one bathroom */
rq«exists({f}, Floors, eq(floor-of(bathroom(1», f»), hard),
rq((for-all({n }, RoomNrs,

implies(exists({f}, Floors, eq(floor-of(bathroom(n», f», n=1 »), hard),

1* the ground-floor area is at most 36 m2 */
rq((for-all({a}, Areas,

implies(eq(area(floor(O), m2), a), ge(36, a»»), hard) }.

Step 2. The current requirement qualification set is analysed, and it is found
that it can be further refined by extending it with all logical consequences
that follow from the available theory of the domain (T'RQS, Section 3.3):

{ analysis(current-description-can-be-refined),
methode deductive-refinement) }.

A LOGICAL THEORY OF DESIGN 261

Step 3. The current requirement qualification set is deductively refined by
means of TROS:

ROS2 = ROS1 U

{ 1* there must be a hall on the ground-floor *1
rq«exists({n}, RoomNrs, eq(floor-of(hall(n)), 0), hard),

1* the minimum area of a hall is 2 m2 *1
rq«for-all({n}, RoomNrs, for-all({a}, Areas,

implies(eq(area(hall(n), m2), a), ge(a, 2))))), hard),

1* the minimum area of a kitchen is 4 m2 *1
rq((for-all({n}, RoomNrs, for-all({a}, Areas,

implies(eq(area(kitchen(n), m2), a), ge(a, 4))))), hard),

1* the minimum area of a living-room is 16 m2 *1
rq((for-all({n}, RoomNrs, for-all ({a}, Areas,

implies(eq(area(living-room(n), m2), a), ge(a, 16))))), hard),

1* the minimum area of a bathroom is 3 m2 *1
rq((for-all({n}, RoomNrs, for-all({a}, Areas,

implies(eq(area(bathroom(n), m2), a), ge(a, 3))))), hard),

1* the minimum area of a bedroom is 6 m2 *1
rq((for-all({n}, RoomNrs, for-all({a}, Areas,

implies(eq(area(bedroom(n), m2), a), ge(a, 6))))), hard).

Step 4. The current requirement qualification set is analysed and no further
problems can be found:

{ -, analysis(current-description-can-be-refined),
-, analysis(current-description-is-too-restrictive) }.

Step 5. The current design process is analysed, and it is determined that it is
now time to refine the current design object description:

{ to-manipulate-next(current-design-object-description),
manipulation-type(refinement) }.

Step 6. The current design object description is analysed, and it is found that
it is incomplete and should be refined by making assumptions about useful
extensions to the current description:

262 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR

{ analysis(cu rrent-description-is-incomplete),
method(refinement-by-assumptions) }.

Step 7. The designer's first idea is to design a bungalow, with a kitchen of 4
m2, a living-room of 16 m2, a hall of 2 m2, a bathroom of 3 m2, and three
bedrooms, each of 6 m2:

0001 = 0000 u
{ eq(floor-of(kitchen(1 », 0),
eq(area(kitchen(1), m2), 4),
eq(floor-of(living-room(1 », 0),
eq(area(living-room(1), m2), 16),
eq(floor-of(hall(1 », 0),
eq(area(hall(1), m2), 2),
eq(floor-of(bathroom(1 », 0),
eq(area(bathroom(1), m2), 3),
eq(floor-of(bedroom(1 », 0),
eq(area(bedroom(1), m2), 6),
eq(floor-of(bedroom(2», 0),
eq(area(bedroom(2), m2), 6),
eq(floor-of(bedroom(3», 0),
eq(area(bedroom(3), m2), 6) }.

Step 8. The current design object description is analysed, and it is found that
it can be further refined by extending it with all logical consequences that
follow from the available theory of the domain (Tooo, Section 3.2):

{ analysis(current-description-can-be-refined),
methode deductive-refinement) }.

Step 9. The current design object description is deductively refined by
means ofT'ooo:

0002 = 0001 U { eq(area(floor(O), m2), 43) }.

Step 10. The current design object description is analysed, and it is found
that it is incorrect, because of a violation of requirements, in particular the
requirement on the maximum floor area, and should therefore be revised:

{ analysis(cu rrent-description-is-incorrect),
method(revision) }.

A LOGICAL THEORY OF DESIGN 263

Step 11. The designer understands that the idea of designing a bungalow is
not so good, because the floor area will always remain a problem. Therefore,
he/she now tries a two-storey house. The only difference with the bungalow
design is that the two-storey house has two of the three bedrooms on the first
floor rather than on the ground floor ('\' is the set difference operation):

0003 = 0001 U

{ eq(floor-of(bedroom(2)), 1),
eq(floor-of(bedroom(3)), 1) }

\
{ eq(floor-of(bedroom(2)), 0),
eq(floor-of(bedroom(3)), 0) }.

Step 12. The current design object description is analysed, and it is found
that it is still incorrect, because of a violation of requirements, in particular
the requirement on the number of bathrooms in the house, and should
therefore be revised:

{ analysis(current -description-is-incorrect),
method(revision) }.

Step 13. The designer does not know how to proceed: whatever he/she does,
a violation of requirements seems unavoidable. Bedrooms on two floors also
requires bathrooms on two floors, but there may only be one bathroom.

Step 14. The current design process is analysed, and it is determined that it is
now time to manipulate the current requirement qualification set:

{ to-man i pu late-next(cu rrent -requi rement -q ualification-set),
manipulation-type(revision) }.

Step 15. The current requirement qualification set is analysed, and it is
found that it is too restrictive to permit any design solution, which can be
resolved by deleting one or more requirement qualifications:

{ analysis(current-description-is-too-restrictive),
method(deletion)}.

Step 16. The customer, knowing the reason why the preliminary design of
the two-storey house failed, drops the hard single-bathroom requirement:

ROS3 = ROS2 \
{ rq((for-all({n}, RoomNrs,

264 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR

implies(exists({f}, Floors, eq(floor-of(bathroom(n», f», n=1»),
hard) }.

Step 17. The current requirement qualification set is analysed and no further
problems can be found:

{ -, analysis(current-description-can-be-refined),
-, analysis(current-description-is-too-restrictive) }.

Step 18. The current design process is analysed, and it is determined that it is
now time to revise the current design object description:

{ to-manipulate-next(cu rrent-design-object-description),
manipulation-type(revision) }.

Step 19. The current design object description is analysed, and it is found
that it is (still) incorrect and should be revised:

{ analysis(current -description-is-incomplete),
method(revision) }.

Step 20. The designer proceeds with the design of the two-storey house and
need not throw any parts away. The only thing he/she does is to place a bath­
room on the first floor, with an area of 3 m2:

DOD4= DOD3U
{ eq(floor-of(bathroom(2), 1), eq(area(bathroom(2), m2), 3) }.

Step 21. The current design object description is analysed, and it is found
that it can be further refined by extending it with all logical consequences
that follow from the available theory of the domain (ToOO, Section 3.2):

{ analysis(current-description-can-be-refined),
methode deductive-refinement) }.

Step 22. The current design object description is deductively refined by
means of Tooo:

DODS: DOD4U
{ eq(area(floor(O), m2), 31), eq(area(floor(1), m2), 15) }.

Step 23. The current design object description is analysed and, since it is
complete and satisfies all requirements, no more problems are found:

A LOGICAL THEORY OF DESIGN 265

{ -, analysis(current-description-is-incorrect),
-, analysis(current-description-is-incomplete) }.

6. Discussion and Conclusions

A logical framework, capturing both static and dynamic aspects of design
has been presented in this paper. It constitutes a logical theory of design
which can be (and has been) instantiated for different types of design tasks
(cf. Geelen and Kowalczyk, 1992; Brumsen, Pannekeet, and Treur, 1992).

The formal analysis of the dynamic aspects of design processes provides
an explicit means to model design strategies. Declarative specifications of
strategies provide a basis for interaction between autonomous systems on, for
example, the strategy employed during design. As expert designers often
wish to determine the design strategy employed, flexibility is mandatory. By
formally defining the strategies involved, design support systems can be
designed within which the user is given the freedom to determine how a task
is to be approached. Formal specifications, together with well-defined
semantics, provide a basis for such flexibility and a basis for the verification
and validation of design support systems' behaviour.

Current research focusses on fundamental issues with respect to the
formalisation of design strategies, (non-monotonic) reasoning patterns,
verification, validation and knowledge acquisition.

Acknowledgements

This research has been partially supported by the Dutch Foundation for
Knowledge-Based Systems (SKBS) within the A3 project "An environment
for modular knowledge-based systems (based on meta-knowledge) for
design tasks." The constructive comments and suggestions for improve­
ments provided by Tim Smithers have been much appreciated.

References

Blarney, S.: 1986, Partial logic, in D. Gabbay and F. Giinthner (eds). Handbook of
Philosophical Logic, Reidel, Dordrecht, III, pp. 1-70.

Brazier, F. M. T., Langen, P. H. G. van, Ruttkay, Zs., and Treur, J.: 1994, On formal
specification of design tasks, in J. S. Gero and F. Sudweeks (eds), Proceedings Artificial
Intelligence in Design '94, K1uwer, Dordrecht, pp. 535-552.

Brazier, F. M. T., Langen, P. H. G. van, Treur, J., Wijngaards, N. 1. E., and Willems, M.:
1994, Modelling a design task in DESIRE: The VT example, Technical Report IR-377.
Artificial Intelligence Group, Department of Mathematics and Computer Science, Vrije
Universiteit, Amsterdam. Also in A. Th. Schreiber and W. Birmingham (eds) (1995),
International Journal on Human-Computer Studies, Special Issue on Sisyphus.

Brown, D. C. and Chandrasekaran, B.: 1989, Design Problem Solving: Knowledge Structures
and Control Strategies, Pitman, London.

266 FRANCES BRAZIER, PIETER V AN LANGEN AND JAN TREUR

Brumsen, H. A., Pannekeet, 1. H. M., and Treur, 1.: 1992, A compositional knowledge-based
architecture modelling process aspects of design tasks, Proceedings of the Twelfth
International Conference on Artificial Intelligence, Expert Systems and Natural Language
(Avignon-92), EC2, Nanterre, Vol. 1, pp. 283-294.

Console, L., and Torasso, P.: 1990, Hypothetical reasoning in causal models, International
lournal of Intelligent Systems, 5(1), 83-124.

Coyne, R. D.: 1988, Logic Models of Design, Pitman, London.
Engelfriet, 1. and Treur, J.: 1994, Temporal theories of reasoning, Proceedings of the Fourth

European Workshop on Logics in Artificial Intelligence (lELIA '94), Springer-Verlag,
Berlin.

French, R. and Mostow, J.: 1985, Toward better models of the design process, Al Magazine,
6(1), 44-57.

Gavrila, 1. S. and Treur, J.: 1994, A formal model for the dynamics of compositional
reasoning systems, in A. G. Cohn (ed.), Proceedings of the Eleventh European
Conference on Artificial Intelligence (ECA! '94), John Wiley, Chichester, pp. 307-311.

Geelen, P. A. and Kowalczyk, W.: 1992, A knowledge-based system for the routing of
international blank payment orders, Proceedings Twelfth International Conference on
Artificial Intelligence, Expert Systems and Natural Language (Avignon-92), EC2,
Nanterre, Vol. 2, pp. 669-677.

Langen, P. H. G. van, and Treur, J.: 1989, Representing World Situations and Information
States by Many-Sorted Partial Models, Technical Report PE8904, Programming Research
Group, Department of Mathematics and Computer Science, University of Amsterdam,
Amsterdam.

Langholm, T.: 1988, Partiality, Truth and Persistence, CSLI Lecture Notes No. 15, Stanford
University, Stanford, CA.

Logan, B. S., Corne, D. W., and Smithers, T.: 1992, Enduring support: on defeasible
reasoning in design support systems, in J. S. Gero (ed.), Artificial Intelligence in Design
'92, Kluwer, Dordrecht, pp. 433-454.

Reiter, R.: 1987, A theory of diagnosis from first principles, Artificial Intelligence, 32, 57-
95.

Takeda, H., Veerkamp, P. J., Tomiyama, T. and Yoshikawa, H.: 1990, Modelling design
processes, A! Magazine, 11(4), 37-48.

Tomiyama, T. and Yoshikawa, H.: 1987, Extended general design theory, in H. Yoshikawa
and E. A. Warman (eds), Proceedings IFfP WG 5.2 Working Conference on Design Theory
for CAD, North-Holland, Amsterdam, pp. 95-125.

Treur, J.: 1991, A logical framework for design processes, in P. J. W. ten Hagen and P. J.
Veerkamp (eds), Intelligent CAD Systems Ill, Proceedings of the Third Eurographics
Workshop on Intelligent CAD Systems, Springer-Verlag, Berlin, pp. 3-20.

Treur, J.: 1994, Temporal semantics of meta-level architectures for dynamic control of
reasoning, Proceedings of the Fourth International Workshop on Meta-Programming in
Logic (META '94), Springer-Verlag, Berlin, Lecture Notes in Computer Science 883.

Treur, J., and Willems, M.: 1994a, A logical foundation for verification, in A. G. Cohn (ed.),
Proceedings of the Eleventh European Conference on Artificial Intelligence (ECA! '94),
John Wiley, Chichester, pp. 745-749.

Treur, J., and Willems, M.: 1994b, On verification in compositional knowledge-based
systems, in A. Preece (ed.), Proceedings of the ECA! '94 Workshop on Validation of
Knowledge-Based Systems, Amsterdam, pp. 4-20. Also: Formal notions for verification
of dynamics of knowledge-based systems, in M.-C. Rousset and M. Ayel (eds.) (1995),
Proceedings of the European Symposium on Validation and Verification of KBSs
(EUROVAV '95), Chambery.

