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Abstract. Design tasks typically deal with incomplete information and involve 
flexible reasoning patterns for which sophisticated control strategies are needed. As a 
result, the reasoning patterns are highly dynamic and non-monotonic. The logical 
framework introduced provides formal semantics of state descriptions of design processes 
based on (compositional) partial models and formal semantics of the reasoning 
behaviour based on (compositional) partial temporal models. 

1. Introduction 

In the area of diagnosis, a number of well-established logical theories have 
been developed and are acknowledged as valuable contributions to the field, 
such as Reiter (1987), and Console and Torasso (1990). For design (e.g., 
Brown and Chandrasekaran, 1989; French and Mostow, 1985; Logan, Come, 
and Smithers, 1992; Takeda, Veerkamp, Tomiyama, and Yoshikawa, 1990) 
the situation differs. Although models for design have been proposed using 
logic as a vehicle (e.g., Coyne, 1988), and general design theories have been 
proposed (e.g., Tomiyama and Yoshikawa, 1987), formal semantics of both 
static aspects (Le., characteristics of an individual state) of the design process 
and dynamic aspects (i.e., the reasoning behaviour) have yet to be defined. 
Design tasks typically reason with incomplete and inconsistent knowledge of 
requirements and design object descriptions: they reason non-monotonically 
with and about, for example, (default) assumptions, contradictory 
information, and new design knowledge. To handle such dynamic reasoning 
patterns, knowledge of tactics and strategies is needed. The formulation of 
the logical foundations (including formal semantics) of these patterns goes 
beyond classical logic. 

In the current paper, a logical foundation is introduced in which formal 
semantics for both static and dynamic aspects of design are based on partial 
models (e.g., Langholm, 1988; Blarney, 1986). Partial models are a means to 
formalise information states, representing incomplete world descriptions 
(e.g., Langen and Treur, 1989); types of world descriptions relevant for 
design are design object descriptions and requirement sets. To obtain formal 
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semantics of reasoning behaviour in design tasks, a recently developed 
approach based on partial temporal models is adopted, which has shown to 
be applicable to different types of (non-monotonic) reasoning (see Engel­
friet and Treur, 1994; Gavrila and Treur, 1994; Treur, 1994). Semantics of a 
reasoning process is formalised by a set of (alternative) reasoning traces, 
represented by a partial temporal model, i.e., a sequence of partial models. 
As the partial models representing information states are used to provide 
semantics of the static aspects, a structural connection between the semantics 
of static aspects and of dynamic aspects is obtained. In Brazier, Langen, 
Ruttkay, and Treur (1994), the static aspects of design have been formalised; 
this paper elaborates upon that work with a formalisation of the dynamic 
aspects. Since a design task is complex (involving integration of different 
views and perspectives, and often different agents) and consists of a number 
of subtasks, the information states also have a compositional structure. 

In Brazier, Langen, Ruttkay, and Treur (1994), an approach is presented 
to the development of intelligent design support systems based on a high­
level formal specification language, as well as a generic task model of design 
specified in this formal specification language. This generic task model has 
been developed on the basis of the analysis of task models for the develop­
ment of design support systems (e.g., Brumsen, Pannekeet and Treur, 1992; 
Geelen and Kowalczyk, 1992) and has been employed for the development 
of new design support systems (e.g., Brazier, Langen, Treur, Willems and 
Wijngaards, 1994). The logical foundations presented in this paper provide 
formal semantics for both the static and dynamic aspects of design tasks 
modelled by the generic task model. Moreover, the logical foundations can 
be used to establish (and prove) properties of design support systems, such 
as consistency, correctness, and completeness (see Treur and Willems, 1994a; 
1994b), and to develop automated tools to support verification and 
validation of these properties. In most current frameworks such properties 
are basically static: they do not refer to the behaviour of the system. 
However, in interactive systems dynamic properties are also important (e.g., 
if under certain circumstances a particular type of behaviour of the system 
has been rejected by the user in the past, it should not be repeated in the 
present). Expressing dynamic properties requires a logical foundation for 
reasoning behaviour of a system (in interaction with the user)-this paper 
proposes a framework for this purpose. 

In Section 2 of this paper, the notions of design process and design space 
are explained. In Sections 3 and 4, static and dynamic aspects of design 
processes are presented, respectively. In Section 5, an example of a design 
process is given. In Section 6, the logical theory of design is discussed and 
conclusions are drawn. 
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2. Design Processes and the Design Space 

In design, requirement qualification sets and design object descriptions are 
manipulated. Requirement qualifications are qualitative expressions of the 
extent to which (individual or groups of) requirements must be met, either in 
isolation or in relation to each other.· A design object description is a 
specification of the object to be created. A design process is described by a 
sequence of design decisions (and their rationale) concerning modifications 
to sets of requirements and their qualifications and to (partial) design object 
descriptions. 

Figure 1 shows an example of a design process in the two-dimensional 
design space spanned by requirement qualification sets and design object 
descriptions. Note that the notions of space and dimension are used inform­
ally here: the choice of metric on the design space is left open. (A possibility 
would be to measure the distance between two points in a dimension by the 
number of differences between the descriptions denoted by these points.) 

t 
requirement 
qualification 

sets 

2 
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5 

design object 
descriptions 

6 

7 

Figure 1. Example of a design process in the design space. 

Figure 1 shows a nine-step sequence of modifications to requirement 
qualification set and design object description. The first step in the sequence, 
depicted by the arrow labelled '1', represents a modification to the initial 
requirement qualification set only. The initial design object description is 
modified in steps 2 and 3. After step 3 (i.e., at the point in which the arrow 
labelled '3' ends), modification of the design object description halts for 
some reason: maybe the design object description satisfies all requirements 
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of the current requirement qualification set, or maybe there is reason to 
believe that no design object description can be made that satisfies all 
requirements. In each case, the requirement qualification set is modified in 
step 4, taking into account the reason why modification of the design object 
description stopped. After the modifications in steps 5 to 8, the design 
process reaches an interesting state: the sequence of modifications has led to 
a requirement qualification set and a design object description that in 
combination are equivalent to the result of step 2. Therefore another 
direction is sought, which differs from the one chosen in step 3, leading in 
step 9 to a modification to the requirement qualification set. In summary, 
there are five requirement qualification set modifications (steps 1, 4, 6, 8 and 
9) and four design object description modifications (steps 2, 3, 5 and 7). 

In general, a large (and possibly infinite) number of new points in the 
design space could be generated by modification to either the requirement 
qualification set or the design object description that correspond to a given 
point. In practice, only a few of these new points are of interest, because they 
are the ones that 'make sense' -these are the possible alternative choices for 
the next step in the design process. To describe the dynamics of the design 
process, knowledge of tactics and strategies, needed to guide the design 
process, must be made explicit. 

3. Static Aspects of Design Processes 

In design, manipulation of requirement sets, of their qualifications, and of 
design object descriptions plays a crucial role. A design process can be 
regarded as a sequence of design decisions concerning requirements, their 
qualifications and (partial) design object descriptions. The current state of 
the design process changes continually: requirements can be added or 
withdrawn, requirement qualifications can be changed, and partial design 
object descriptions can be added or retracted. During design, often different 
(alternative) requirement sets (and their qualifications) and design object 
descriptions are considered. 

Steps in the design process can be represented by transitions of two types: 
transitions modifying design object descriptions and those modifying 
requirement qualification sets. Note that no commitment is made to model 
design as a search process. Steps in the design process can be controlled 
completely, depending on the strategic knowledge used. 

The logical analysis of the static aspects of design processes is discussed 
below in Sections 3.2, 3.3, and 3.4. In Section 3.1, the basic terminology 
employed is introduced. Throughout Section 3 and Section 4, the example 
of designing a house will be used to illustrate the logical analysis. 
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3.1. BASIC APPROACH AND TERMINOLOGY ON STATIC ASPECTS 

It is assumed that the reader is familiar with many-sorted first-order 
predicate logic, an essential element in our approach. In Langen and Treur, 
(1989), formal definitions of semantics fo~ many-sorted partial models are 
presented. For an overview of partial logic, see Blamey (1986) and 
Langholm (1988). 

Definition. A signature for many-sorted first-order predicate logic is a tuple 
!: = (S, C, F, P) with sorts S, constants C, functions F and predicates P. 

In the sequel, !: denotes a signature, At(!:) the set of all ground atoms 
of !: and Wff(!:) the set of all closed well-formed formulae over !:. 

Definition. A partial model for !: is a mapping M: At(!:) ~ { 0, 1, u }. An 
atom a E At(!:) is true in M if M(a) = 1,false in M if M(a) = 0, and 
undefined or unknown in M if M(a) = u. A partial model M is complete if 
for all a E At(!:), either M(a) = 0 or M(a) = 1. 

Definition. The model space Mod(!:)is the set of all partial models for !:. 

Definition. The satisfaction relation t= on Mod(!:) x Wff(!:) is defined for 
all atomic well-formed formulae a E At(!:) as: 

M t=+ a iff M(a) = 1 
M t=- a iff M(a) = 0 
M~+a iff M(a) * 1 
M ~- a iff M(a) *0. 

For the logical connectives "A, V, ~ and ¢::>, the strong Kleene 
semantics is adopted (Blamey, 1986; LaIigholm, 1988), of which the truth 
tables are shown in Figure 2. 

Definition. The refinement relation :s; on Mod(!:) x Mod(!:) is such that for 
all M, M' E Mod(!:), M :s; M' holds if for all a E At(!:), M(a):S; M'(a) (with 
o :s; 0, u :s; 0, 1 :s; 1, U :s; 1, U :s; u). 

Definition. A theory for!: is a set T c Wff(!:). 

Definition. Let M be a partial model for Land T a theory for L. The 
class of models defined by M with T is the set { N E Mod(L) I N is 
complete, M:S; N, and N t= T }. 
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Figure 2. Kleene's strong three-valued connectives. 

3.2. STATIC ASPECTS OF DESIGN OBJECT DESCRIPTIONS 

To describe a design object, a language is needed in which properties and 
their values can be named and relations between properties can be expressed. 

Definition. A design object description lexicon is a signature LOOO = (5, C, 
F, P), where {Parameters, Values} ~ 5 and {eq c Parameters x Values} ~ 
P. 

In other words, the signature should at least contain the sorts Parameters 
and Values for denoting design parameters and values, respectively, and 
should contain a relation eq on Parameters x Values for denoting the fact 
that a certain design parameter has a certain value. Common relations used 
in design object ontologies, such as the 'part-of' relation by means of which 
the components and parts of a design object can be described, can also be 
included. 

During design, not all properties of a design object are considered simul­
taneously: the description of a design object is often partial. In the sequel, 
LOOO denotes a design object description lexicon. 

Definition. A design object description based on LOoo is a partial model 
for LOOO. 

Example. Suppose the designer has placed the living-room and the kitchen 
on the ground-floor (floor 0) and one bedroom (bedroom 1) on the first 
floor (floor 1). Whether the first bathroom (bathroom 1) and the second 
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bedroom (bedroom 2) should be placed on the ground-floor or on the first 
floor is, as yet, undecided. This can be expressed by means of the following 
design object description DOD1: 

DOD1 (eq(floor-of(living-room(1 », 0» = 1 
DOD1(eq(floor-of(kitchen(1», 0» = 1 
DOD1 (eq(floor-of(bedroom(1 », 1» = 1 
DOD1(eq(floor-of(bedroom(2», 1» = U 

DOD1 (eq(floor-of(bathroom(1 », 0» = U 

DOD1(eq(floor-of(bathroom(1», 1» = u. 

An abbreviated notation for DOD1 is: 

{ eq(floor-of(living-room(1», 0), 
eq(floor-of(kitchen(1 », 0), 
eq(floor-of(bedroom(1», 1) }. 

A design object description can be seen as one element of the set of all 
partial or complete design object descriptions. 

Definition. The design object description space DOD based on LOoo is the 
set of tuples of models from MOd(LoOO). 

During design the number of properties of the design object that have 
been determined may increase or decrease. Both types of modification can 
be described by means of the following refinement relation. 

Definition. The design object refinement relation based on LOOO is the 
refinement relation ::;; on Mod(LOOO) x Mod(LOOO). Furthermore, for any 
two tuples Sand T that are elements of DOD, the combined design object 
refinement relation S::;; T holds if for all M E S there is an NET with 
M ::;; N and for all NET there is an ME S with M::;; N. 

Example. Suppose the designer, after allocating rooms as in the previous 
example, designs a kitchen with an area of 9 m2. This can be expressed by 
means of the design object description DOD2: 

{ eq(floor-of(living-room(1 », 0), eq(floor-of(kitchen(1 », 0), 
eq(floor-of(bedroom(1 », 1), eq(area(kitchen(1), m2), 9) }. 
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To design an object, knowledge of the properties and the relations 
between the properties is essential. In practice, not all knowledge is available 
and has to be acquired during the design process. 

Definition. A design object theory based on l:DOD is a theory TDOD for 
l:DOD· 

Example. Assume that general house design knowledge is that the area of a 
floor equals the sum of the areas of the rooms on that floor, and that a room 
can be allocated to one floor only. This can be expressed by means of the 
design object theory TDOD: 

'v'f E Floors 'v'u E AreaUnits: 
eq(area(f, u», 

La E Areas: :3r E Rooms (eq(floor-of(r), f) 1\ eq(area(r, u), a» 

'v'r E Rooms 'v'f1, f2 E Floors: 
(eq(floor-of(r), f1) 1\ eq(floor-of(r), f2» ~ f1 = f2. 

(L k: <p(k) is the sum over each k satisfying <p, such that if k satisfies exactly 

N quantifier-free instances of <p, then k appears exactly N times in the sum. 
The symbol '=' is the symmetric, reflexive and transitive equality relation 
on values.) 

3.3. STATIC ASPECTS OF REQUIREMENT QUALIFICATION SETS 

Before and during the process of design, knowledge of necessary and 
desired properties of the object to be designed (within a given context) is of 
importance. These necessary and desired properties are the requirements 
placed upon a design. 

Definition. Let l:DOD be a design object description lexicon. A requirement 
is a well-formed formula over l:DOD. 

To describe requirements, a language is needed in which requirements, 
qualifications and relations between qualifications can be expressed. 

Definition. A requirement qualification lexicon is an extension of the 
signature l:RQS = (5, C, F, P), where 

5: Sorts, 
Vars, 

/* sorts in l:DOD */ 
/* variables over l:DOD */ 
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VarSets, 1* variable sets over l:DOD *1 
Wffs, 1* well-formed formulae over l:DOD *1 
WffTuples, 
QualificationNames, 
Parameters, 
Values; 

1* well-formed formula tuples over l:DOD *1 
1* names for qualifications *1 
1* design parameters *1 
1* values of design parameters *1 

C : A: WffTuples; 
0: VarSets; 

1* the empty tuple *1 
1* the empty set *1 

F : ( , ): Wffs x WffTuples ~ WffTuples; 
{ , }: Vars x VarSets ~ VarSets; 
eq: Parameters x Values ~ Wffs; 
and, or, implies: Wffs x Wffs ~ Wffs; 
not: Wffs ~ Wffs; 
for-all, exists: VarSets x Sorts x Wffs ~ Wffs; 

1* written as ( , ... , ) *1 
1* written as { , ... , } *1 

P: rq c WffTuples x QualificationNames; 1* requirement qualification *1. 

The meaning of the above functions representing logical connectives is 
intuitive; see (Langen and Treur, 1989) for a definition. In the sequel, l:RQS 
denotes a requirement qualification lexicon. 

Definition. A requirement qualification set based on l:RQS is a partial 
model for l:RQS. 

Example. The customer's requirements for the design of the house are that: 
(1) there must always be a bathroom on the same floor as a bedroom, (2) the 
house has one kitchen, one living-room, three bedrooms of which one is on 
the ground-floor, and one bathroom and (3) the ground-floor area is at most 
36 m2. These are all hard requirements, i.e., a design must satisfy them all. 
This can be expressed by means of the requirement qualification set RQS1: 

{ rq( (for-all( {f}, Floors, for-all( {n}, RoomNrs, 
implies( eq(floor-of(bedroom(n», f), 
exists({m}, RoomNrs, eq(floor-of(bathroom(m», f))), hard), 

rq( (exists( {f}, Floors, eq(floor-of(kitchen(1», fn), hard), 
rq( (for-all( {n }, RoomNrs, 

implies(exists( {f}, Floors, eq(floor-of(kitchen(n», f), n=1»), hard), 
rq«exists({f}, Floors, eq(floor-of(living-room(1», f)), hard), 
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rq( (for-all( {n}, RoomNrs, 
implies( exists( {f}, Floors, eq(floor-of(living-room(n», f)), n=1) », 

hard), 
rq«eq(floor-of(bedroom(1», 0», hard), 
rq«exists( {f}, Floors, eq(floor-of(bedroom(2», f)), hard), 
rq«exists( {f}, Floors, eq(floor-of(bedroom(3», f)), hard), 
rq( (for-all( {n}, RoomNrs, 

implies(exists({f}, Floors, eq(floor-of(bedroom(n», f», 
and(1:::;n, n:::;3»», 

hard), 
rq( (exists( {f}, Floors, eq(floor-of(bathroom(1», f)), hard), 
rq( (for-all( {n}, RoomNrs, 

implies(exists( {f}, Floors, eq(floor-of(bathroom(n», f», n=1 »), hard), 
rq( (for-all( {a}, Areas, 

implies(eq(area(floor(O), m2), a), ge(36, a»»), hard) } 

(where ge denotes the relation 'greater than or equal to'). 

Definition. The requirement qualifications space RQS based on LRQS is 
the set of tuples from Mod(LRQS). 

Comparison of requirement qualification sets is necessary to guide the 
design process: knowledge is required of how qualifications are related and 
what the implications of the relations are. 

Definition. A requirement qualification theory based on LRQS is a theory 
TRQS for LRQS. 

Example. Suppose that general building requirements require that there 
must be a hall on the ground-floor and that the minimum area of (1) a hall 
is 2 m2, (2) a kitchen is 4 m2, (3) a living-room is 16 m2, (4) a bathroom is 3 
m2, and (5) a bedroom is 6 m2. Furthermore, in general if the customer 
wants the kitchen on the ground-floor, then an additional requirement is that 
the living-room also be on the ground-floor. These hard requirements can 
be expressed by means of the requirement qualification theory T' RQS: 

rq«exists( {n}, RoomNrs, eq(floor-of(hall(n», 0»), hard) 
rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 

implies(eq(area(hall(n), m2), a), ge(a, 2»)))), hard) 
rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 

implies(eq(area(kitchen(n), m2), a), ge(a, 4»»), hard) 
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rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 
implies(eq(area(living-room(n), m2), a), ge(a, 16)))), hard) 

rq( (for-all( {n}, RoomNrs, for-all( { a}, Areas, 
implies(eq(area(bathroom(n), m2), a), ge(a, 3))))), hard) 

rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 
implies(eq(area(bedroom(n), m2), a), ge(a, 6»)))), hard) 

'lim,n E RoomNrs: 
rq(eq(floor-of(kitchen(m», 0», hard) :::::} 
rq( (eq(floor-of(living-room(n», 0», hard). 

3.4. STATIC ASPECTS OF THE DESIGN PROCESS AS A WHOLE 
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Given a number of requirement qualifications, specific tactics and strategies 
can be chosen to guide the overall design process (when to reason about 
requirements and their qualifications and when to reason about design object 
descriptions). These tactics and strategies determine on which requirements 
the design process is to (possibly temporarily) focus: a commitment is made 
to satisfy these requirements. In the sequel, LOOO denotes a design object 
description lexicon and LROS a requirement qualification lexicon. 

Definition. A commitment mapping from LROS to LOoo is a mapping of 
partial models in Mod(LROS) onto sets of well-formed formulae in 
Wff(LOOO)· 

The qualifications placed on requirements may be comparable. If one set 
of requirement qualifications specifies precisely the same as another, but in 
addition specifies extra requirement qualifications, the first is seen as a 
specialisation of the second. 

Definition. Let TOOO be a design object theory based on LOOO and 
commit a commitment mapping from LROS to LOOO. The requirement 
qualification specialisation relation based on LROS with TOOO and 
commit is a relation ~ on Mod(LROS) X Mod(LROS) such that for all rqs 1, 
rqs2 E Mod(LROS): 

rqs1 ~ rqs2 if for all dod E Mod(Looo) such that dod F T 000, 
dod F commit(rqs2) implies dod F commit(rqs1). 

As in the design object description space, this refinement relation can be 
extended to the requirements qualification space RQS, consisting of tuples. 

Example. Suppose the requirement qualification set RQS1 is refined to 
RQS2 by applying the requirement qualification theory T'ROS to RQS1. 
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Suppose further that for the design only hard requirements are taken into 
account. This commitment can be expressed by means of the following 
mapping Commit': 

Vrqs E Mod(1:RQS) Vwff E Wffs: 
rq«wff), hard) E rqs ~ Commit'(rqs) 1= wff. 

Then ROS1 ~ ROS2 with Tooo and Commit'. 
A design problem can be seen as a problem of generating a description 

or modifying an existing description of a design object, given a number of 
requirement qualifications. 

Definition. A design problem description is a pair (dod, rqs) with dod E 

Mod(1:ooo) and rqs E Mod(1:RQS). 

The solution to a design problem is a design object description which 
fulfils the requirements chosen and which complies with the knowledge of 
the domain. 

Definition. Let dodO and dod be design object descriptions based on 
1:000, Tooo a design object theory based on 1:000, rqs a requirement 
qualification set based on 1:RQS and commit a commitment mapping from 
1:RQS to 1:000. dod is a design solution of the design problem description 
(dodO, rqs) with TOOO and commit if (1) dodO ~ dod, (2) the class of 
models defined by dod with Tooo is non-empty, and (3) for each element 
dod' of that class, dod' 1= commit(rqs). 

Example. The design object description 0002 is not a design solution of 
the design problem description (0001, ROS2) with Tooo and Commit'. 

4. Dynamic Aspects of Design Processes 

To describe the dynamic aspects of a design process, the circumstances 
under which specific choices are to be made must be specified in relation to 
the alternatives. Strategic and tactical knowledge is required to steer the 
design process: that is, to determine along which of the two dimensions of 
the design space the design process should continue, and to determine how 
to proceed. 

Section 4.1 defines the general basic concepts underlying the formal­
isation of the dynamic aspects of design: information states, transitions 
between information states and traces generated by these transitions. In 
Section 4.2 the notion of information state is more specifically defined for 
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the information states relevant for design: design object (description) states, 
requirement qualification (set) states and overall control states. In Section 
4.3 the related transitions are defined and in Section 4.4 the reasoning traces 
(temporal models of design process behaviour) based on the transitions are 
presented. 

4.1. BASIC APPROACH AND TERMINOLOGY ON DYNAMIC ASPECTS 

To define the dynamic aspects of a design process, a notion of state is 
required. In our logical approach, a state is the current state of the 
information acquired or derived so far, including information about in­
completeness or partiality of the design process information. 

Definition. An information state for signature l: is a (partial) model M for 
l:. The set of all information states for signature l: is denoted by IS(l:). 

An information state formalised as a partial model reflects all ground 
literal conclusions that have been derived at a certain moment in time. This 
approach can also be used to model inference relations such as SLD 
resolution or chaining. 

Definition. A transition between information states for signature l: is a pair 
of partial models for l:; i.e., an element (5, 5') of IS(l:) x IS(l:). A transit­
ion relation is defined as a set of transitions, i.e. a relation on IS(l:) x IS(l:). 
If this relation is defined as a mapping from IS(l:) into IS(l:), it is called a 
transition function. 

Definition. A trace or partial temporal model for signature l: is a sequence 
of information states (Mt)t E I'T in IS(l:). The set of all partial temporal 
models is denoted by IS(l:)i'T, or Traces(l:). 

Traces generated by repeatedly applying a tranSItion function on the 
current information state can be interpreted as partial temporal models. 
These partial temporal models provide a declarative description of the 
semantics of the behaviour of the design process; the set of these models can 
be viewed as the required behaviour of the design process. 

If a design process is modelled as a compositional structure, then the 
information state is a combination of information (sub-)states of each of the 
components of the structure. Transitions from one information state to 
another are specified in a similar way by their effect on the different 
information sub states. The overall partial temporal model, that models the 
behaviour of the design process, can be constructed as a composition of 
partial temporal models of each of the components. 
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4.2. STATES IN A DESIGN PROCESS 

An information state of the design process comprises information on a 
design object description and a requirement qualification set. The 
abbreviations used below are DOD for design object description space and 
RQS for requirement qualification set space. 

Definition. (design object states and requirement qualification states) 
a) A design object state is an element of ISOOO = ISoooobject x ISOOometa, 
where ISoooobject = IS(~oOoobject) and ISOOometa = IS(~OOometa), with 
~oooobject and ~OOometa signatures for the object-information and meta­
information about design object descriptions, respectively. 
b) A requirement qualification state is an element of ISRQS = ISRQSobject x 
ISRQSmeta, where ISRQSobject = IS(~RQSobject) and ISRQSmeta = 
IS(~RQSmeta), with ~RQSobject and ~RQSmeta signatures for the object 
information and meta-information about requirement qualification sets, 
respectively. 

Example. The designer often needs to reason at a meta-level about a partial 
design object description, for instance with respect to completeness. For 
example (cf. 0001), the designer knows that the living-room and the kitchen 
are on the ground-floor and not on the first floor and that the first bedroom 
is on the first floor and not on the ground-floor. In addition, he/she knows 
that the floor for a second bedroom has not yet been decided. This can be 
expressed by means of the following design object state IS'OOO: 

( { eq(floor-of(living-room), 0), 
eq(floor-of(kitchen), 0), 
eq(floor-of(bedroom(1 », 1) }, 

{ true(eq(floor-of(living-room), 0», 
false( eq(floor-of(living-room), 1», 
true(eq(floor-of(kitchen), 0», 
false( eq(floor-of(kitchen), 1», 
true( eq(floor-of(bedroom(1 », 1 », 
false( eq(floor-of(bedroom(1», 0», 
-, known( eq(floor-of(bedroom(2», 0», 
-, known(eq(floor-of(bedroom(2», 1»} ). 

In a similar way, a requirement qualification state IS'RQS can be defined as a 
pair (Sobject. Smeta), where Sobject equals, for example, the requirement 
qualification set RQS1 (cf. Section 2.3) and Smeta comprises the meta­
information about RQS1 that all requirement qualifications in RQS1 are 
known to be true. 
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As can been seen in the above example, one part of the meta-information 
about a design object description or a requirement qualification set concerns 
epistemic information (i.e., information about what is known). The full 
epistemic information ISe associated with an object information state ISo is: 

ISo(a) = 1 ~ ( ISe(true(a» = 1 A ISe(false(a)) = 0 A ISe(known(a)) = 1 ) 
ISo(a) = 0 ~ ( ISe(true(a» = 0 A ISe(false(a» = 1 A ISe(known(a» = 1 ) 
ISo(a) = u ~ ( ISe(true(a)) = 0 A ISe(false(a» = 0 A ISe(known(a» = 0 ). 

Besides epistemic information, the meta-information also includes local 
control information, which directs the design process within either the design 
object description space or the requirement qualifications space. 

Overall design process coordination is needed to determine in which of 
these two spaces the design process is to continue. Therefore, a third state of 
design process coordination information is defined, expressed in terms taken 
from an overall control lexicon ~oScontrol. For the design system, the 
abbreviation OS is used. 

Definition. (states of a design process) 
a) A basic state of a design process is a pair consisting of a design object 
state and a requirement qualification state, i.e., an element of ISoSbasic = 
ISooo x ISRQS. 
b) An overall state of a design process is a pair consisting of a basic state of 
the design process and an overall control state, i.e., an element of 
ISoSoverall = ISosbasic x ISoScontrol, where ISoScontrol = IS(~OScontrol). 

4.3. DESIGN STEPS 

Having defined states, design steps can be defined by transitions from one 
state to another. This can be described in the following compositional 
manner. 

Definition. (transitions in the two spaces) 
a) A transition in the design object space is a pair of design object states, 
i.e., an element of ISOOO x ISOOO. 
b) A transition in the requirement qualification space is a pair of 
requirement qualification states, i.e., an element of ISRQS x ISRQS. 

Definition. (basic and overall design transitions) 
a) A basic design transition is a pair of basic design states, i.e., an element 
of ISOSbasic x ISOSbasic that is induced by a transition in either the design 
object space or the requirement qualification space. 
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b) An overall control transition is a pair of control states, i.e., an element of 
ISoscontrol x ISoscontrol. 
c) An upward control interaction transition is a pair consisting of a basic 
design state and a control state, i.e., an element of ISOSbasic x ISOSoverall 
that is induced by a transition in either the design object space or the 
requirement qualification space. 
d) A downward control interaction transition is a pair consisting of a 
control state and a basic design state, i.e., an element of ISOSoverall x 
ISOSbasic that is induced by a transition in either the design object space or 
the requirement qualification space. 
e) An overall transition is a pair consisting of two overall design states, i.e., 
an element of ISOSoverall x ISOSoverall that is induced by one of the above 
transition types. 

For each of these types of transitions, it holds that if an individual 
transition is element of S x S', a transition relation of that type is defined as 
a subset of S x S'. Furthermore, if this relation is defined as a mapping from 
S into S', it is called a transition function. It will be assumed that in upward 
and downward control interactions, only the meta-level information of the 
basic design states is involved. Examples of basic design transitions are 
shown in Section 5. 

4.4. TRACES AND TEMPORAL MODELS OF A DESIGN PROCESS 

Having defined states and transitions in a compositional manner, traces can 
be defined. 

Definition. (overall temporal model) Let Tracesos = (lSosoverall)Ii. An 
overall trace is an element (Mt>. E IT E TracesoS. Such a trace (Mt>. E II 

is a temporal model of a design system if for all time points t the step from 
Mt to Mt+1 is defined in accordance with an overall transition. The set 
BehMod of temporal models forms a subset of Tracesos. 

A trace defines a complete design history. In most systems only part of 
the design history is actually represented (see for instance (Brazier, Langen, 
Treur, Willems, and Wijngaards, 1994), where it was sufficient for devising an 
elevator configuration to remember the previous state of the configuration). 
An overall temporal model describes a trace representing possible (intended) 
behaviour of the design process. From every initial information setting, 
traces can be generated by the transitions. All generated traces together form 
the set BehMod. The transition functions in fact define a set of (temporal) 
axioms BehTheory on temporal models in TracesoS. The possible 
behavioural alternatives are given by the set of the temporal models 
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satisfying these temporal axioms. A design process is correct with respect to 
the specified transitions if each generated trace (from BehMod) satisfies the 
theory BehTheory. This can be used for purposes of verification or proving 
properties of a specification. For example, proof techniques in temporal 
logic can be used to derive whether a design system is able to generate a 
given design object description on the basis of a given set of requirement 
qualifications. For more details on verification, see (Treur and Willems, 
1994a; 1994b). 

5. Example of a Design Process 

In this section, the example of designing a house is pursued to show an 
overall trace of a design process. In this example, a customer and a designer 
cooperate in the design: the customer by stating his/her wishes with regards 
to rooms, floors and room areas, and the designer by allocating rooms to 
floors and determining the areas of rooms. 

The sample process proceeds as follows. First, the customer states his/her 
wishes, which are then translated into requirements and qualifications (cf. the 
set ROS1 in Section 3.3). After this, the designer tries to design a bungalow 
that fulfils the requirements. This, however, results in a design with too large 
a ground-floor area. The designer cannot remedy this problem: adding one 
storey to the house and putting a bedroom on the first floor also entails put­
ting a bathroom on that floor, but that would mean there would be more 
bathrooms than the customer wanted. To resolve this problem, the customer 
decides to allow for more than one bathroom. The designer then designs a 
two-storey house that pleases the customer. 

A (partial) overall trace of this process is shown below. Of each element 
(Mt)t E H from this trace, the contents of its five components, ISoooobject, 
ISOOometa, ISRQSobject, ISRQSmeta, and ISOScontrol, are shown. Together, 
these states (in chronological order) form the design history. 

The requirement qualification sets that are generated during the design 
process are written as ROSj E I'J, and similarly, the design object descriptions 
as DODj E I+ Note that initially, ROSo = 0 and 0000 = 0. For the sake of 
convenience, the meta-information in states of ISooometa and ISRQSmeta 
is restricted to the (partial) results of analysis of the corresponding object­
information and the chosen method of modification. Similarly, the overall 
control information in states of ISoScontrol is restricted to information 
about which description to be manipulated next and how. 

Step 1. The customer states his/her wishes, which are translated into a set of 
requirements for the design of the house ('u' is the set union operation): 
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ROS1 = ROSa u 
{ /* there must always be a bathroom on the same floor as a bedroom */ 
rq( (for-all( {f}, Floors, for-all( {n}, RoomNrs, . 

implies( eq(floor-of(bedroom(n», f), 
exists( {m}, RoomNrs, eq(floor-of(bathroom(m», f»»», hard), 

1* the house has one kitchen */ 
rq«exists({f}, Floors, eq(floor-of(kitchen(1», f»), hard), 
rq( (for-all( {n}, RoomNrs, 

implies( exists( {f}, Floors, eq(floor-of(kitchen(n», f», n=1 »), hard), 

/* the house has one living-room *1 
rq«exists( {f}, Floors, eq(floor-of(living-room(1 », f»), hard), 
rq( (for-all( {n}, RoomNrs, 

implies( exists( {f}, Floors, eq(floor-of(living-room(n», f», n=1»), 
hard), 

/* the house has three bedrooms of which one is on the ground-floor */ 
rq«eq(floor-of(bedroom(1 », 0», hard), 
rq( (exists( {f}, Floors, eq(floor-of(bedroom(2», f»), hard), 
rq«exists({f}, Floors, eq(floor-of(bedroom(3», f»), hard), 
rq«for-all({n}, RoomNrs, 

implies(exists( {f}, Floors, eq(floor-of(bedroom(n», f», 
and(1::;;n, n::;;3»», 

hard), 

/* the house has one bathroom */ 
rq«exists({f}, Floors, eq(floor-of(bathroom(1», f»), hard), 
rq( (for-all( {n }, RoomNrs, 

implies( exists( {f}, Floors, eq(floor-of(bathroom(n», f», n=1 »), hard), 

1* the ground-floor area is at most 36 m2 */ 
rq( (for-all( {a}, Areas, 

implies(eq(area(floor(O), m2), a), ge(36, a»»), hard) }. 

Step 2. The current requirement qualification set is analysed, and it is found 
that it can be further refined by extending it with all logical consequences 
that follow from the available theory of the domain (T'RQS, Section 3.3): 

{ analysis( current-description-can-be-refined), 
methode deductive-refinement) }. 
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Step 3. The current requirement qualification set is deductively refined by 
means of TROS: 

ROS2 = ROS1 U 

{ 1* there must be a hall on the ground-floor *1 
rq«exists({n}, RoomNrs, eq(floor-of(hall(n)), 0), hard), 

1* the minimum area of a hall is 2 m2 *1 
rq«for-all({n}, RoomNrs, for-all({a}, Areas, 

implies(eq(area(hall(n), m2), a), ge(a, 2))))), hard), 

1* the minimum area of a kitchen is 4 m2 *1 
rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 

implies(eq(area(kitchen(n), m2), a), ge(a, 4))))), hard), 

1* the minimum area of a living-room is 16 m2 *1 
rq( (for-all( {n}, RoomNrs, for-all ( {a}, Areas, 

implies(eq(area(living-room(n), m2), a), ge(a, 16))))), hard), 

1* the minimum area of a bathroom is 3 m2 *1 
rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 

implies(eq(area(bathroom(n), m2), a), ge(a, 3))))), hard), 

1* the minimum area of a bedroom is 6 m2 *1 
rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 

implies(eq(area(bedroom(n), m2), a), ge(a, 6))))), hard). 

Step 4. The current requirement qualification set is analysed and no further 
problems can be found: 

{ -, analysis(current-description-can-be-refined), 
-, analysis( current-description-is-too-restrictive) }. 

Step 5. The current design process is analysed, and it is determined that it is 
now time to refine the current design object description: 

{ to-manipulate-next(current-design-object-description), 
manipulation-type(refinement) }. 

Step 6. The current design object description is analysed, and it is found that 
it is incomplete and should be refined by making assumptions about useful 
extensions to the current description: 
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{ analysis( cu rrent-description-is-incomplete), 
method(refinement-by-assumptions) }. 

Step 7. The designer's first idea is to design a bungalow, with a kitchen of 4 
m2, a living-room of 16 m2, a hall of 2 m2, a bathroom of 3 m2, and three 
bedrooms, each of 6 m2: 

0001 = 0000 u 
{ eq(floor-of(kitchen(1 », 0), 
eq(area(kitchen(1), m2), 4), 
eq(floor-of(living-room(1 », 0), 
eq(area(living-room(1), m2), 16), 
eq(floor-of(hall(1 », 0), 
eq(area(hall(1), m2), 2), 
eq(floor-of(bathroom(1 », 0), 
eq(area(bathroom(1), m2), 3), 
eq(floor-of(bedroom(1 », 0), 
eq(area(bedroom(1), m2), 6), 
eq(floor-of(bedroom(2», 0), 
eq(area(bedroom(2), m2), 6), 
eq(floor-of(bedroom(3», 0), 
eq(area(bedroom(3), m2), 6) }. 

Step 8. The current design object description is analysed, and it is found that 
it can be further refined by extending it with all logical consequences that 
follow from the available theory of the domain (Tooo, Section 3.2): 

{ analysis( current-description-can-be-refined), 
methode deductive-refinement) }. 

Step 9. The current design object description is deductively refined by 
means ofT'ooo: 

0002 = 0001 U { eq(area(floor(O), m2), 43) }. 

Step 10. The current design object description is analysed, and it is found 
that it is incorrect, because of a violation of requirements, in particular the 
requirement on the maximum floor area, and should therefore be revised: 

{ analysis( cu rrent-description-is-incorrect), 
method(revision) }. 
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Step 11. The designer understands that the idea of designing a bungalow is 
not so good, because the floor area will always remain a problem. Therefore, 
he/she now tries a two-storey house. The only difference with the bungalow 
design is that the two-storey house has two of the three bedrooms on the first 
floor rather than on the ground floor ('\' is the set difference operation): 

0003 = 0001 U 

{ eq(floor-of(bedroom(2)), 1), 
eq(floor-of(bedroom(3)), 1) } 

\ 
{ eq(floor-of(bedroom(2)), 0), 
eq(floor-of(bedroom(3)), 0) }. 

Step 12. The current design object description is analysed, and it is found 
that it is still incorrect, because of a violation of requirements, in particular 
the requirement on the number of bathrooms in the house, and should 
therefore be revised: 

{ analysis( current -description-is-incorrect), 
method(revision) }. 

Step 13. The designer does not know how to proceed: whatever he/she does, 
a violation of requirements seems unavoidable. Bedrooms on two floors also 
requires bathrooms on two floors, but there may only be one bathroom. 

Step 14. The current design process is analysed, and it is determined that it is 
now time to manipulate the current requirement qualification set: 

{ to-man i pu late-next( cu rrent -requi rement -q ualification-set), 
manipulation-type(revision) }. 

Step 15. The current requirement qualification set is analysed, and it is 
found that it is too restrictive to permit any design solution, which can be 
resolved by deleting one or more requirement qualifications: 

{ analysis( current-description-is-too-restrictive), 
method( deletion)}. 

Step 16. The customer, knowing the reason why the preliminary design of 
the two-storey house failed, drops the hard single-bathroom requirement: 

ROS3 = ROS2 \ 
{ rq( (for-all( {n}, RoomNrs, 
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implies(exists({f}, Floors, eq(floor-of(bathroom(n», f», n=1»), 
hard) }. 

Step 17. The current requirement qualification set is analysed and no further 
problems can be found: 

{ -, analysis(current-description-can-be-refined), 
-, analysis( current-description-is-too-restrictive) }. 

Step 18. The current design process is analysed, and it is determined that it is 
now time to revise the current design object description: 

{ to-manipulate-next( cu rrent-design-object-description), 
manipulation-type(revision) }. 

Step 19. The current design object description is analysed, and it is found 
that it is (still) incorrect and should be revised: 

{ analysis( current -description-is-incomplete), 
method(revision) }. 

Step 20. The designer proceeds with the design of the two-storey house and 
need not throw any parts away. The only thing he/she does is to place a bath­
room on the first floor, with an area of 3 m2: 

DOD4= DOD3U 
{ eq(floor-of(bathroom(2), 1), eq(area(bathroom(2), m2), 3) }. 

Step 21. The current design object description is analysed, and it is found 
that it can be further refined by extending it with all logical consequences 
that follow from the available theory of the domain (ToOO, Section 3.2): 

{ analysis( current-description-can-be-refined), 
methode deductive-refinement) }. 

Step 22. The current design object description is deductively refined by 
means of Tooo: 

DODS: DOD4U 
{ eq(area(floor(O), m2), 31), eq(area(floor(1), m2), 15) }. 

Step 23. The current design object description is analysed and, since it is 
complete and satisfies all requirements, no more problems are found: 
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{ -, analysis(current-description-is-incorrect), 
-, analysis(current-description-is-incomplete) }. 

6. Discussion and Conclusions 

A logical framework, capturing both static and dynamic aspects of design 
has been presented in this paper. It constitutes a logical theory of design 
which can be (and has been) instantiated for different types of design tasks 
(cf. Geelen and Kowalczyk, 1992; Brumsen, Pannekeet, and Treur, 1992). 

The formal analysis of the dynamic aspects of design processes provides 
an explicit means to model design strategies. Declarative specifications of 
strategies provide a basis for interaction between autonomous systems on, for 
example, the strategy employed during design. As expert designers often 
wish to determine the design strategy employed, flexibility is mandatory. By 
formally defining the strategies involved, design support systems can be 
designed within which the user is given the freedom to determine how a task 
is to be approached. Formal specifications, together with well-defined 
semantics, provide a basis for such flexibility and a basis for the verification 
and validation of design support systems' behaviour. 

Current research focusses on fundamental issues with respect to the 
formalisation of design strategies, (non-monotonic) reasoning patterns, 
verification, validation and knowledge acquisition. 
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