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Abstract 
The concept of hysteresis operator is outlined, and some simple models are illustrated. 
Some differential equations with hysteresis are also briefly discussed. 
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1 HYSTERESIS 

Hysteresis appears in several phenomena, in physics, engineering, chemistry, biology, eco­
nomics, and others. Typical examples are plasticity, ferromagnetism, ferroelectricity, and 
so on. 

A Hysteresis Loop. Let us consider the continuous hysteresis loop outlined in Figure 1. 

Figure 1 A continuous hysteresis loop. 

If u increases from u1 to u2, then the pair ( u, w) moves along the curve ABC; conversely, 
K. Malanowski et al. (eds.), Modelling and Optimization of Distributed Parameter Systems Applications to engineering
© Springer Science+Business Media Dordrecht 1996



72 Part One Invited Lectures 

if u decreases from u2 to u1, then ( u, w) moves along the path CD A. Moreover, if u inverts 
its motion when u1 < u(t) < u2, then (u,w) moves into the interior of! (the region 
bounded by ABCDA) along a curve which must be prescribed by the specific hysteresis 
model. 

At any instant t, w(t) depends on the previous evolution of u (memory elfect), and on 
the initial state of the system. In the most simple setting one assumes a dependence of 
the form 

w(t) = [F(u)] (t) Vt E [O,T]. (I) 

Here :F represents an operator acting in an appropriate space of time dependent functions, 
e.g. 0°([0, T)). Obviously :F must be causal: the output w(t) may not depend on ul)t,T]" 
The definition of F must include information about a desired initial state, which may 
then be modified because of the value of v(O). For instance, an initial value w0 such that 
(v(O),w0 ) f/.! cannot be attained; one may then set [F(v)](O) equal to the projection of 
w0 onto {(v(O),w) E!: wE R}. 

Here it is implicitly assumed that the pair (u(t),w(t)) characterizes the initial state 
of the system at any instant t. However in several cases the state also depends on inner 
variables, whose initial value must then be specified. 

Rate Independence. This means that the pair (u(t),w(t)) is invariant with respect to 
any increasing 0 00-diffeomorphism r.p: [O,T]-+ [O,T]: 

F( u o r.p) = F( u) o r.p in [O,T]. (2) 

This property is the characteristic feature of hysteresis. Any rate independent and causal 
operator will be named a hysteresis operator. 

This concept raises several problems: the formulation of examples, their adequacy to 
represent specific applicative phenomena, the analysis of their properties (continuity in 
various functional spaces, construction of the closure of the graph of discontinuous oper­
ators), their characterization, the identification of parameters, and so on. 

Hysteresis is often associated with irreversibility and dissipation. As we shall see, it 
may have a regularizing effect. 

2 CONTINUOUS HYSTERESIS 

Here we review the main features of some simple hysteresis models. 

Stop and Play. The classical Prandtl model of elasto-plasticity, also named stop, can 
be represented by the following variational inequality 

lwl :5 I, (du dw) --- (w-v)>O 
dt dt -

Vv, lvl:::; 1, (3) 

cf. Figure 2(a). For any u E W1•1(0, T) and w0 E [-1, 1], there exists one and only one 
w := !,l(u) which fulfils (3) and the initial condition w(O) = w0 • 
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The play operator can be also represented by a variational inequality: 

ju-wj $1, 
dw 
-(u-w-v) > 0 
dt - Vv,lvl $1, (4) 

cf. Figure 2(b). For any u E W1•1(0,T) and w0 E R, such that jw0 - u(O)I $ 1, there 
exists one and only one w := &(u) which fulfils (4) and such that w(O) = w0 • 

(a) 

. . 

w 

. . • . . . . 

w 

u 

(b) 

Figure 2 Prandtl's model (or stop) (a), and play (b). 

u 

Theorem 1 g, t: are continuous hysteresis operator acting in C0([0, T]). Moreover 

t: : C0((0, T]) --+ C0 ((0, T]) n BV(O, T). (5) 

In fact &( u) is piecewise monotone, since the uniformly continuous function u cannot have 
an infinite number of oscillations of amplitude larger than 1. 

Plays and stops are closely related. Denoting the identity by ld, it is easy to see that 

t: + g = ld, 2(1d + &)-1 = ld +g. (6) 

The Duhem Model. A model of hysteresis was proposed by Duhem about a century 
ago. In a simplified form, it reads as follows. Let 91 and 92 be given nonnegative continuous 
functions. For any u E W1•1(0, T) and w0 E R, consider the following Cauchy problem 

{ 
dw (du)+ (du)-dt = 9t(u, w) dt - 92(u, w) dt 

w(O) = w 0 • 

in ]O,T(, 
(7) 
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Here it is implicitly assumed that dt > 0: as we said, hysteresis is irreversible. Hence 
dividing both members by~. formally we get the equivalent condition 

dw = { 9t(u,w) 

du 92(u,w) 

if du > 0, 

if du < 0, 
in)O,T[. (8) 

Under appropriate regularity conditions, two systems of curves in the ( u, w )-plane are 
then obtained by integrating the fields g1 and g2 • They represent the paths of evolution 
of the pair ( u, w) for increasing and decreasing u, respectively, and may span the whole 
plane R 2• 

A more interesting setting is obtained when ( u, w) is confined to a region C C R 2, 

bounded by the graphs of two nondecreasing continuous functions "'ft, 'Yr : R-+ [-oo, +oo] 
("'f. $ 'Yt)· 

Theorem 2 Assume that 9t. g2 are continuous, and 

(9) 

with L : R-+ R+ continuous. Then for any u E W 1•1(0, T) and any w0 E R, there exists 
a unique solution w E W 1•1(0, T) of {7), such that w(O) = w0 • 

The hysteresis operator 1J : u ~--+ w is strongly continuous in W 1•P(O, T), for any p E 
[l,+oo]. 

This operator is piecewise monotone; in general it is not continuous with respect to the 
weak topology of W 1·P(O, T), for any p E [1, +oo], and has no continuous extension to 
C0([0,T]). 

Note that in this model at any instant t the state is characterized by the pair (u(t), w(t)), 
with no inner variable. This is not always satisfactory for applications, for ferromagnetism 
for instance. 

Further features of these models and other examples of hysteresis operators are discussed 
in Visintin (1994). 

3 DISCONTINUOUS HYSTERESIS 

Relay Operator. For any pair p := (Pt. p2) E R 2 (p1 < p2), we introduce the (delayed) 
relay operator 

hp: C0([0,T]) X {-1,1}-+ BV(O,T). (10) 

For any u E C0([0, T]) and any ~ = ±1, the function w = hp( u, 0 : [0, T] -+ { -1, 1} is 
defined as follows: 

{ 
-1 

w(O) := i if u(O) $Pt. 
if Pt < u(O) < P2. 
if u(O) ~ P2i 

(11) 
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for any t E]O,T], setting Xt := {r E]O,t]: u(r) =PI or p2}, 

J w(O) 
w(t) := l ;1 

if Xt = 0, 
if X1 =J 0 and u(maxXt) = p~, 
if Xt =J 0 and u(maxXt) = P2· 

75 

(12) 

Thus w is uniquely defined in [0, T]. For instance, let u(O) < Pii then w(O) = -1, and 
w(t) = -1 as long as u(t) < P2i if at some instant u reaches p2, then w jumps up to 1, 
where it remains as long as u(t) > p1 ; if later u reaches PI, then w jumps down to -1; 
and so on, cf. Figure 3. 

~= . . . . . 

w 

u 

-- -1 

Figure 3 Relay operator. 

For any function u E C0 ([0, T]), the number of oscillations of u between PI and p2 is 
necessarily finite, because of the uniform continuity; hence w can just have a finite number 
of jumps between -1 and 1, if any. Therefore w is piecewise constant and its total variation 
in [0, T] is finite. 

It is straightforward to check that w is also continuous on the right in [0, T[, and that 
hP is rate independent. Thus hP is a (discontinuous) hysteresis operator. 

Remark 1 Generally speaking, hysteresis is strictly related to multistability: it can be 
regarded as a rule for selecting the actual value on the basis of previous evolution. In the 
case of the relay w tends to stay constant, as long as the value of u allows w = ±1. 

Closure of the Relay Operator. For any~ E { -1, 1}, the graph of the operator hp(·,O 
is not closed with respect to the strong topology of C0([0, T]) for the input u, and the 
weak star topology of BV(O, T) for the output w. As a counterexample it suffices to take 

~ = -1, {un 7 P2- ~}nEN: 
On the basis of the latter remark, we introduce the muJtivaJued operator 

hp: C0([0,T]) X {-1,1}--+ P(BV(O,T)) (power set), (13) 
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defined as follows. For any u E C0 ([0, T]) and any e E { -1, 1}, w E hp( u, e) if and only if 

{ 

{-1} 
{-1,e} 

w(O) E {e} 
{e,1} 
{1} 

if u(O) < P~> 
if u(O) =Pt. 
if Pt < u(O) < P2, 
if u(O) = p2, 
if u(O) > P2 

and, for any t E [0, T], 

{ 
{-1} 

w(t)E {-1,1} 
{1} 

{ 
if u(t) =f. Pt.P2• 
if u(t) =Pt. 
if u(t) = p2, 

if u(t) < PI 
if PI :<:; u(t) :<:; P2 
if u(t) > P2 

then w is constant in a neighbourhood of t, 
then w is nonincreasing in a neighbourhood of t, 
then w is nondecreasing in a neighbourhood of t. 

Such a function w exists, is measurable, and belongs to BV(O, T). 

(14) 

{15) 

{16) 

Loosely speaking, the graph of hp in the ( u, w )-plane is obtained by adding the points 
(p11 1) and {p2, -1) to the graph of hp, and then imposing the restrictions {16}2, {16}3. 

Theorem 3 (Closure) For any e E { -1, 1}, hp( ·, {) is the closure of hp(-, {) with respect 
to the strong topology of C0([0, T]) for the input u, and the weak star topology of BV(O, T) 
for the output w. 

4 HYSTERESIS, REGULARIZATION FOR O.D.E.S 

A Simple O.D.E. without Hysteresis. Ordinary and partial differential equations 
(O.D.E.s and P.D.E.s) can be coupled with hysteresis laws, which can be represented by 
means of hysteresis operators. 

Let us first consider a simple O.D.E. without hysteresis: 

~~ + signo(y) = f(t) in]O,T[, (17) 

where f E LI(O, T), and sign0({) := -1 if { < 0, sign0 (0) := 0, sign0 ({) := 1 if { > 0. 
This equation can represent evolution of temperature (without diffusion), in presence 

of a source of intensity f and of a thermostat (without hysteresis), which tends to force 
the temperature y = 0. Here sign0(y) = -1 (sign0 (y) = 1, respect.) means that the 
thermostat is providing (subtracting, respect.) heat, and sign0 (y) = 0 that it is switched 
off. 

Now for a large class of functions f, e.g. for f =Constant E]-1, O[U]O, 1[, the problem 
obtained coupling (17) with the initial condition y(O) = 0 has no solution y E WI•1(0, T). 

This formulation can be easily modified, to allow for existence of a solution; but modi­
fications must be justified from the modelling viewpoint. For instance one might replace 
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the single-valued function sign0 by the maximal monotone multivalued function sign (with 
sign(O) := (-1, 1], the whole interval). However values w rl. { -1, 0, 1} require an interpre­
tation. 

Hysteresis Regularization. It looks more sensible to account for some hysteresis in the 
behavior of the thermostat, as it is often evident in practice. Let us fix any p := (Pt. p2) 

(p1 < 0 < p2), define hp as in Sect. 3, and replace (17) by 

in]O,T(. (18) 

By the closure property stated Theorem 3, for any f E L1(0,T) the Cauchy problem 
governed by (18) has one (and only one) solution, which also depends continuously on the 
data. Note that after a transient y periodically oscillates between the values Pt. p2, and 
that dyfdt E BV(O,T) iff E L1(0,T). 

Generalization. Let us consider an equation of the form 

~~ + cp(y) = f(t) in ]O,T(. (19) 

This equation has a solution whenever cp is bounded and is of the form cp = Et=o cp;. Here 
cp0 is a continuous function, cp1 is a maximal monotone graph, Cf/2 is an antimonotone 
function (taking two values at the point of discontinuity), cp3 and -cp4 are relay operators. 
It can also be shown that if cp3 = 0 then there exist a maximal and a minimal solution. 

<p(y) 

-----:: 
: J: :1 t! :J , 1' ' ' : :'/ v ~ 

y 

Figure 4 Example of function cp such that equation (19) has a solution. 
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5 P.D.E.S WITH HYSTERESIS 

Two Classes of P.D.E.s with Hysteresis. Let n be a domain of RN, A an elliptic 
operator, :F a (continuous) hysteresis operator, and consider the equations 

a 
at [u + :F(u)] +Au= f in Ox]O,T[, (20) 

a 
atu+Au+:F(u) = f in nx]O,T[, (21) 

where f is a given function. Of course each of these equations must be coupled with 
suitable limit conditions. 

For A = curl2 if N = 3 (A = -/l;r if N = 1), (20) can represent the evolution of a 
ferromagnetic system. (21) is a model of heat diffusion in presence of a distribution of 
thermostats. 

Hysteresis and Monotonicity. A natural question concerns the classification of equa­
tion (20). If the operator :F fulfils some monotonicity property, then (21) can be regarded 
as forward parabolic, and it is then natural to impose an initial condition on u + :F( u ). 

The standard L2-monotonicity is too strong a requirement for hysteresis operators. In 
fact it is easy to find a counterexample whenever a rate independent loop can occur. 

In several cases, but not always, order preservation is fulfilled: 

V( Ut. w~),( u2, w~) E Dom(:F), Vt E ]0, T], 

if u1 $ u2 in [0, t] and w~ $ w~, then 

[:F(ut, wn](t) $ [:F(u2, w~)] (t). 

(22) 

The following property of piecewise monotonicity preservation (more briefly, piecewise 
monotonicity) seems to be especially appropriate for hysteresis operators: 

{ 
Vv E C0([0, T]), V[tt. t2] C [0, T], 

if vis either nondecreasing or nonincreasing in [tt. t2], then 

{[:F(v)](t2)- [:F(v)](t1)} [v(t2)- v(t1)] ~ 0. 

(23) 

That is, ~~11; ~ 0 a.e. in ]O,T[, whenever u,w := :F(u) E W1•1(0,T). This means that 
hysteresis branches are nondecreasing. 

6 AN EXISTENCE RESULT 

Let n c RN (N ~ 1) be a bounded domain of Lipschitz class, T > 0, and set Q := 
Ox]O,T[. Let 

(24) 
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be a causal and continuous operator, that is, 

v { Vn E C0([0, T])} nEN' if Vn ---+ v uniformly in [0, T] 

then F( vn) ---+ F( v) uniformly in [0, T]. 
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(25) 

(26) 

Model Problem. We set V := HJ(O), identify the space L2(0) to its dual L2(0)', and 
the latter to a subspace of V'. This yields the Hilbert triplet V C L2(0) = L2(0)' C V', 
with continuous, dense and compact injections. We define the operator A : V ---+ V' by 

v•(Au, v)v :=in V'u · V'vdx Vu, v E V, 

so that Au= -~u in 'D'(O). We assume that 

f E L2{0, T; V'). 

Problem 1. To find u : n ---+ C0 ([0, T]) measurable, such that 

u E L2(0, T; V), F(u) E L2(Q), u + F(u) E H1(0, T;V'), 

a 
at [u + F(u)] +Au= f in V', a. e. in ]0, T[, 

[u + F(u)] lt=O = u0 + w0 in V'. 

Obviously {29) is a weak formulation of (20). 

{27) 

(28) 

(29) 

(30) 

Theorem 4 {Existence) Assume that {24} - {27} hold. Let F be piecewise monotone, cf. 
{23}, and affinely bounded, i.e., 

3L, M E R+ : Vv E C0 ([0, T]), IIF( v )llco([o,T]) ::; Lllvllco([o,T]) + M. (31) 

Moreover let 

{32) 

Then Problem 1 has at least one solution such that 

(33) 

For the proof we refer to Visintin (1994; Chap. IX). 

For a large class of hysteresis operators (including plays, for instance) the previous 
assumptions are fulfilled, and continuous and monotone dependence on the data (whence 
uniqueness of the solution) can be proved. 

In case of discontinuous hysteresis operators some modifications of the setting of Prob­
lem 1 are needed. In that case however well-posedness can also be proved. 
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