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In the present paper, the wave theory of transverse impact upon Timoshenko beams 
is developed by the ray method, which was proposed by Achenbach and Reddy {1967) 
and has been extended by Rossikhin (1986) and Rossikhin and Shitikova (1992, 1993) to 
dynamic contact problems. 

2 DETERMINING RELATIONS OF THE RAY THEORY 
FOR A TIMOSHENKO BEAM 

The dynamic behaviour of an elastic homogeneous prismatic beam with due account for 
the rotary inertia and transverse shear deformations is described by the equations: 

8Mf8z- Q = -pi/3, 8Q/8z = pFW, 

M = -EI 8(:Jf8z, Q = KpF(8Wf8z- (:J), 

(1) 

(2) 

where M is the bending moment, Q is the transverse force, W is the transverse displace­
ment velocity of a beam central axis (velocity of deflection), (:J is the angular velocity of 
a cross section about the x-axis which is perpendicular to the plane of flexure y - z (the 
axes z and y are directed along the beam axis and vertically down, respectively), E is 
Young's modulus, 1-' is the shear modulus, p is the density, I is the moment of inertia 
about the x-axis (vibrations occur in the y-direction), F is the cross-section area, /{ is 
the shear coefficient depending on the form of a cross section, and an over dot denotes 
the derivative with respect to time t. 

Assume that as a result of the transverse impact upon the beam, a plane wave ~ of 
strong discontinuity propagates along the z-direction with the velocity G. Behind the wave 
surface~ up to the boundary of the contact region, a certain desired function Z(z,t) is 
represented by a series in terms of powers t- (z -l)G-1 ~ 0 

00 1 ( z- 1) k ( z -1) Z(z,t) = E k![Z,(k)) t- G H t- G , (3) 

where [ Z,(kj} = z,t) - Z,(k) = [EJk z I EJtk] are the jumps in kth derivatives of function z 
with respect to timet on the wave surface~. i.e. at t = z/G, the upper indices+ and­
signify that the value is calculated ahead of and behind the wave front, respectively, 21 is 
the length of the contact area, and H(t) is the Heavlside function. 

To determine coefficients of the ray series (3) for the desired functions, it is necessary 
to differentiate the governing Eqs.(1) k times with respect to time, take their difference 
on the different sides of the wave surface ~. and apply the condition of compatibility 
(Thomas, 1961) for discontinuities of (k + 1)th order derivatives of a certain function Z 
with respect to time 

G [az,(k)] = -[Z ) + d[Z,(kl] 
8z •(k+!) dt ' (4) 

where d/ dt is the total time derivative of a function defined on the moving surface ~. As 
a result we obtain 

I (1- __£) [(:J ] = -2EIG_zd[,B,(kj]- J( FG-![W ] + EIG_zdz[,B,(k-1)] 
P pGz ,(k+!) dt 1-' ,(kl dt 2 
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+K FG-1 d[W,(k-1) J - K F[(J J p. dt p. ,(k-1) ' 

( Kp.) pF 1 - pG2 [W,(k+l)] == 

(5) 

_ 2K pQ-2 d(W,(k)] + G[(J J + dl[W,(k-1)] _ 0 d[fJ,(k-1)]. 
p. dt ,(k) dt2 dt (6) 

From Eqs.(5) and (6), one can obtain the values [(J,(k)] and [W,(kJ] (k == -1,0,1, .. ) with 
an accuracy of arbitrary constants on the two waves: quasi-flexural wave and quasi-shear 
wave propagating with the velocities Q(l) == (E/p) 112 and Q(2) == (Kp./p)112 , respectively. 
Arbitrary constants are determined from the condition of compatibility for deformations 
on the boundaries of the contact region. 

3 IMPACT OF A THIN BAR UPON A TIMOSHENKO BEAM 

Let a thin elastic bar of a rectangular cross section, whose axis coincides with the y-axis, 
move along this axis with the velocity V and bump by its end against the centre of a 
Timoshenko beam. 

During impact two types of plane waves propagate along the beam, behind the wave 
fronts up to the contact area boundary the solution is determined by Eq.(3). At the same 
time, a longitudinal wave propagates along the thin bar with the velocity Gb == (Eb/ Pb) 112 

(Eb and Pb are the Young's modulus and density of the striking bar, respectively), rep­
resenting itself a plane of strong discontinuity. In virtue of the fact that the jumps of 
derivatives of the displacement velocities of the bar's particles [V,(k) J == const, on this 
wave plane the dynamic condition of compatibility is satisfied what allows one to connect 
the stress u- and displacement velocity V behind the wave front with each other at every 
instant of time. Specifically, in the contact area, i.e. at y == 0, we have 

(7) 

where u' == uiy=O is the contact stress, W == Vly=O is the displacement velocity of the 
beam part being in contact. 

In view of Eq.(7), the equation of motion of the beam part, which is in contact with 
the bar, may be written as 

(8) 

where a is the width of the beam. 
The quantities W and Q entering into Eq.(8) are defined by Eqs.(3) where z == l. It is 

necessary to add the initial condition 

Wlt=o == 0, (9) 
as well as the relation 

8W/ 8zlz=l == 0 (10) 
to Eq.(8). Substituting (3) into Eqs.(8) and (10) with due account of (9), and equating 
the coefficients associated with the same powers oft, we can find all necessary arbitrary 
constants. Thus the approximate solution of our problem can be obtained. As an example, 
we consider the transverse impact of a steel bar of the length s ==120 mm and rectangular 
cross section 38.1 x 38.1 mm upon an aluminum beam with 38.1 x 38.1 mm cross section. 
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The initial velocity of impact is V =1 mfs. After calculation of ray series coefficients, 
the truncated ray series for the beam transverse displacement w, transverse force Q, and 
bending moment M can be written at z =I, respectively, as 

w = 3.9105~- 3.071011% + 3.621017~, 
Q = -1.161010t + 9.11W5%- 8.121021 %, 
M = 1.12 103 - 8.84 108t + 7.05 1014~ - 6.55 1020 %. 

4 IMPACT OF A SPHERE UPON A TIMOSHENKO BEAM 

Let an elastic sphere of the radius R and mass m move along the y-axis with the constant 
velocity Vo towards an elastic beam. The impact occurs at t = 0. 

When t > 0, the sphere displacement may be represented as 

y=w+a. (11) 

Then the equation of motion of the beam part being in contact without regard for an 
inertia term (due to infinitesimal of the contact region), and the equation of the sphere 
motion have the form 
2Q + P(t) = 0, (12) 

my= -P(t). (13) 
Equations (12) and (13) are solved with the following initial conditions to be taken into 

account: 
Ylt=O = 0, !ilt=O = Vo, wlt=O = 0, Wlt=O = 0. (14) 

The relation between the contact force P(t) and penetration a(t) has the form 

P = ka3f2, (15) 

where k = 4R112 /31r(k, + kb), k, = (1 - v;)f E., kb = (1 - v2 )/ E, 11 is the Poisson's 
ratio, and the indices s and b concern the sphere and beam, respectively. 

The value Q entering into Eq.(12) is determined by the dynamic condition of compati­
bility as 

Q = -pFG<2lW. (16) 

This condition can be obtained if we interpret the discontinuity surface as the limiting 
layer of the width h at h ---> 0, wherein the value Z to be found changes monotonically 
and infinitely from the magnitude z+ to the magnitude z-. Considering that on the wave 
surface (Thomas, 1961) 

fJ d ~ = -G!:_ 
fJz = dn' fJt dn' 

(17) 

where dfdn is the derivative with respect to the normal to the wave surface, and changing 
the partial derivatives in the second equation of (1) by its expressions (17), after the 
integration of the resulting relations with respect to n from -h/2 to h/2 and passage to 
the limit at h ---> 0 we are led to the formula (16). 

Substituting Eqs.(ll ), (15), and (16) into Eqs.(12)-(13), we arrive at the differential 
equation about the value a(t): 
.. + k 3/2 + 3 b. 1/2 0 
a ma "2 aa = , 

k 
b = 2pFG<2l. (18) 
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Introducing A = a and converting from the variable t to the new independent variable 
a, we are led to the equation 

AdA + ~bAal/2 = _!!__a3/2 (19) 
da 2 m 

with the initial conditions 

ait=O = 0, irlt=O = VO· (20) 
Note that Eq.(19) is the Abel equation of the second kind (Kamke, 1959). 

We seek the solution to Eq.(19) in the form 
7 7 

A= Vo + Ea;a(2i+l)/2 + L:b;a; + O(a8 ). (21) 
i=l i=l 

Substituting (21) into (19) and equating coefficients at equal powers of a, we determine 
the coefficients to be found 

2 k 
a1 = -b, a2 = -5Vom' a3 = a4 = b1 = b2 = ~ = bs = 0, 

5 1 2 11 
b4 = -Sa1a2/Vo, bs = -2a2/Vo, b1 = - 14 a1as/Vo, 

8 (10 ) 2 as= -llb4a1/Vo, as=- 13 atbs + a2b4 /Vo, ar = -3a2bs/Vo. (22) 

To obtain connection between the value a and the time, it is necessary to integrate 
Eq.(21). 

The coefficients a1 and a2 are defined by the two processes being caused by the shock 
interaction: the coefficient a1 is responsible for the dynamic processes arising in the beam 
during the propagation of the surfaces of discontinuity, but the coefficient a2 answers for 
the quasi-static processes occurring at local bearing of the material due to the Hertz's 
contact theory. If a1 --+ 0, what realizes at an infinitely large velocity of shear wave 
propagation (Bernoulli-Euler beam), then the solution (21) for small a goes over into the 
quasi-static solution obtained by Timoshenko (1928). 
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