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Abstract 
We analyse a mixed finite element discretization of a system of equations describing the 
stationary, isothermic flow of a mixture with nonlinear barodiffusion. Using Taylor-Hood 
elements for velocity and pressure, and linear elements for concentration, we provide 
results on existence, uniqueness and approximation for derived discrete problem. 
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1 INTRODUCTION 

The stationary isothermic flow of a mixture of two incompressible viscous fluids with 
diffusion is described by the boundary value problem (Petrosyan, 1984), (Lukaszewicz, 
1991): 

-v~u + (u. V')u + V'p = f + cg inn, 

divu = 0 inn, 

-div(D(c)V'c) + u · V'c = div(I<(c)V'p) inn, 

U = Uo on an, 
c =Co on an. 

(1) 
(2) 

(3) 
(4) 
(5) 

Here, n denotes a bounded open subset in R,3 or R2• The unknowns are: the mean mass 
velocity vector u, the pressure p in the mixture and the first component concentration c. 
The vectors j, g denote external forces acting on the components of the mixture, D and 
I< denote diffusion and barodiffusion coefficients, dependent on the concentration c. We 
assume that the viscosity v is positive and constant. The boundary conditions on u and 
C are imposed by the trace of given functions Uo, Co, defined on entire n. 

The above system of PDEs appears, for example, in mathematical models of the flow 
of some suspensions, such as blood (Popel et al., 1974). Existence and uniqueness of weak 
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solutions to (1)- (5) has been investigated in (Lukaszewicz, 1991). This system is a basis 
for analysis of more advanced models of suspensions (e.g. (Krzyzanowski, 1994), where 
the micropolar fluid mixture is considered). 

In case when the velocity is relatively small, it is physically reasonable to skip the 
nonlinear term in the N aver - Stokes equations, obtaining the following system: 

-vilu + 'Vp = f + cg in n, 
divu = 0 inn, 

-div(D(c)Vc) + u · Vc = div(K(c)Vp) inn, 

U = Uo on an, 
c =Co on an. 

(6) 
(7) 
(8) 
(9) 

(10) 

In this paper we present an analysis of finite element approximation of the solution of 
system (6)- (10), with additional assumption that the diffusion coefficient Dis a positive 
constant. For simplicity, we also assume homogeneous boundary condition on u. 

Throughout the paper we assume, unless otherwise stated, that n is a bounded polygon 
in R2 or a bounded polyhedron in Jll. 

1.1 Notation 

We shall use several function spaces, which properties are described, for example, in 
(Adams, 1975). By Wk·P(n) we shall denote the usual Sobolev spaces, identifying W0·P(n) 
with the £P(n) space of measurable functions with their p-th power Lebesgue integrable. 
The standard norm in Wk,p shall be denoted by II · ll.~:,p, while the seminorm - by I · lk,p· 
For the space W!:•2(n) we shall use a symbol Hk(n), and the norm in that space we shall 
abbreviate as II· 11.~:-

By HJ(!l) we shall understand the subspace of H 1 (!l) of functions with their trace on 
an equal to zero. By L~(!l) we denote the subspace of L2(!l), defined as 

We denote the inner product in L2(!l) by brackets: 

(u,v) := k uvdx 

for any u, v E L2(n). Following (Temam, 1979), we also introduce a trilinear form 

b(u, v, w) := ~ ((u · V'v, w)- (u · V'w, v)) 

for any u, v, wE H 1(!l). This continuous form is by definition antisymmetric with respect 
to the last two arguments (which reflects the antisymmetry of (u · V'v, w) on the solution 
u of (6)-(10)). In particular, we have 

b(u,v,v)=O. (11) 
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By symbol "Const " we denote generic constant, independent of h, which, where neces­
sary, we shall distinguish by subscripts. 

Where there is no risk of confusion, we shall write Wk,p, Hk, HJ, L~ instead of w~<•'(n), 
n~<(n), HJ(n), LMn). 

1.2 General assumptions. 

We shall assume there holds the following regularity condition: 

(R1) For every f E L2(n) the weak solution (u,p) of Stokes equation 

-Lh + \lp = f in {}, 

divu = 0 in n, 
(12) 
(13) 

with homogeneous Dirichlet boundary condition on u, and with In p = 0, belongs 
to (H2(n) n HJ(n)) X H1(n) and 

llull2 + IIPih ~ Const 11/llo· 

for some Const independent of f. 

For example, if n c R2 is a convex polygon, then assumption (R1) holds (Kellogg and 
Osborn, 1976). 

We shall make the following assumptions on the data (see also (Lukaszewicz, 1991)): 

(A1) J,g E £ 3 ; 

(A2) Co E H 2 and 0 ~ eo(x) ~ 1 for x Eon; 
(A3) K: R--+ R is Lipschitz continuous function: 

IK(s)- K(t)l ~ LKis- tl, Vt,s E R 

and such that K(s)::: 0 for s ~ (0, 1). 

1.3 Discrete problem 

We shall work with the following function spaces: 

V := HJ(n)d, where d = 2, 3 is the dimension of n c Rd, 
w := L~(n), 
X:= HJ(n), 
X(co) :=X+ Co· 

For homogeneous Dirichlet boundary condition on u, the variational formulation of the 
simplified problem (6) - (10) is as follows: 
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Problem 1 Find (u,p,c) E V x (W n H 1) x X(CtJ), such that 

v(Vu, Vv)- (p, divv) = (! + cg, v) Vv E V, 

(divu,w) = 0 Vw E W, 
D(Vc, V{) + b(u,c,{) = -(K(c)Vp, V{) V{ EX. 

(14) 
(15) 
(16) 

This problem has a unique solution for sufficiently small and regular data in regular 
domains, and the proof is similar to that in (Lukaszewicz, 1991), where full problem (I) 
-(5) is considered. 

We approximate Problem 1 in finite dimensional subspaces V,. C V, W,. C W, X,. C X, 
X~o(co) :=X,. +co, where co is a (finite element) approximation of the boundary condition 
C{), using mixed method: 

v(Vu,., Vv,.) - (p,., divv~o) = (! + c,.g, v~o) Vv,. E V,., 
( divu,., w,.) = 0 Vw,. E W,., 
D(Vc,., V{~o) + b(u,.,c,.,{,.) = -(K(c~o)Vp,., V{~o) V{~o EX,.. 

1.4 Finite element assumptions. 

(17) 

(18) 
(19) 

In our analysis we shall assume that the finite dimensional spaces V,., W,., X,. are spe­
cific finite element spaces. We cover fi with a quasi-uniform, shape regular triangulation 
(Ciarlet, 1991) 1i., dividing fi into triangles K (or tetrahedra in three dimensional case) 

so thij.t any K E 1i. has at least one vertex not on an (Bercovier and Pironneau, 1979). 
The mesh parameter h is defined as 

h = max diam K. 
KeT,. 

Let Pi ( K) denote the space of polynomials of degree not greater than j on single triangle 
K E 'Ji.. We define the finite element spaces l-'1., W,.,X,. as follows. 

For approximation of the velocity and pressure we use the Taylor - Hood finite elements 
(Brezzi and Fortin, 1991), 

and 

Continuous finite element approximation of the pressure is necessary in our case, due to 
the Vph term in (17). 
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As concerns the space in which we approximate the concentration c, we shall consider 
X,. consisting of linear elements, i.e. 

Properties of the above finite element spaces may be found in, for example, ( Ciarlet, 
1991). 

We choose the finite element approximation~ E C(O) of the boundary condition eo so 
that ~IKE P1(K) for all K E 7,. and such that in the nodal points x of triangulation 7,. 
we have 

_ ( ) _ { eo(x) 
Co X - O 

if x E an, 
otherwise. 

1.5 Main result 

Theorem 1 Suppose Problem 1 admits a solution ( u, p, c) E ( H 3 n V) X ( H 2 n W) X 

(H2 n X(~)) satisfying max{llulb, IIPib, llcll2} ~ Const 1 • Under assumptions from para­
graphs 1.2 and 1.4, there exist H > 0 and some polynomial P : It ~ R, with positive 
coefficients and with property P(O, 0, 0, 0, 0, 0) = 0, such that if the data of the problem 
satisfy condition 

(20) 

then for any 0 < h < H there exists a unique solution ( u,., Ph, c,.) of Problem 2, which 
satisfies the following error estimate: 

(21) 

Let us comment on this theorem. The coefficients of polynomial P depend only on n, 
Const1 and H. Since P vanishes at (0, 0, 0, 0, 0, 0), then, by continuity, condition (20) is 
satisfied for sufficiently small values of n-I, v-1 , IKioo, llfllo,3, llgllo,3, lleoll1· Hence, (20) 
is kind of small data requirement. This condition, evidently, might be replaced by simpler 
expression, like D-1 + v-1 + IKioo + llfllo,3 + llgllo,3 + lleolh ~ Const2, but polynomial 
condition is more descriptive, as it contains information that "smallness" of the data is 
relative one to another. Similar polynomial condition appears within uniqueness theorem 
for Problem 1 (Lukaszewicz, 1991 ), but, apparently, is weaker than derived here. 

In our case we explicitly restrict ourselves only to the class of solutions which are 
uniformly bounded by Const 1 • However, if the domain boundary was smoother, then the 
assumption max{llulb, IIPib llclb} ~ Const1 could have been replaced by "small data" 
requirement again. This follows from continuous dependence on data in above norms 
(Lukaszewicz, 1991). 

The remaining of the paper is devoted to the proof of Theorem 1, and is organized 
as follows. In the next section, we briefly discuss a linearization of Problem 2, which 
decouples the system into two independent ones. Then in Section 3 we outline the proof 
of the existence statement of Theorem 1, based on Brouwer's fixed point theorem. Section 
4 contains a scheme of the proof of the approximation part of Theorem 1, while in Section 
5 we sketch the proof of the uniqueness result. 
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2 LINEARIZED DISCRETE PROBLEM 

Let us introduce an auxiliary linear problem: 

Problem 3 Given cj; E X,.(co}, find (u,.,p,.,c,.) E V,. x W,. x X,.(co), such that 

v(V'u,., V'v,.) - (p,., divv,.) = (! + cj,g, v,.) Vv,. E v;., 
( divu,., w,.) = 0 Vw,. E W,., 
D(V'c,., ve,.) + b(u,.,c,.,e,.) = -(K(ci,)V'p,., ve,.) ve,. EX,.. 

(22} 

(23} 
(24} 

This problem may be seen as a linearization scheme for Problem 2, and may be used 
as a basis for an algorithm for iterative solution of Problem 2, with Stokes and diffu­
sion equations decoupled. We shall use this linearization for the proof of existence and 
uniqueness of Problem 2. 

Lemma 2 There exists exactly one solution (u,.,p,., c,.) E v;. x W,. x X,.(co) of Problem 3. 
Moreover, 

Dllc,.lh ~ 2DIIcolh + IKiooiiV'p,.llo + Constiiuhihllcolh· (25} 

Proof The existence follows from (Girault and Raviart, 1986} and (Ciarlet, 1991}. Taking 
e = c- Co in (24}, we easily get (25). 

3 EXISTENCE OF SOLUTIONS TO DISCRETE PROBLEM 

Let us introduce a mapping il> : X,. -+ X,., defined as 

where c,. E X,.(co) is the solution of Problem 3 for given ci; E Xh(co). According to 
Lemma 2, this mapping is well defined. 

First, we show that il> is continuous. To this end, we consider the difference il>( ci- co)­
il>(c2- co) for arbitrary cr,c2 E X,.(co). By definition, this difference is equal to c1 - c2, 

where cl> c2 are the solutions of Problem 3 with given cr, c2, respectively. Subtracting 
equations (24} we observe that c = c1 - c2 satisfies 

for every e E Xh. Taking e = c we obtain, due to (11} and imbedding H1 <--+ L6 , 

Using inverse inequalities (Ciarlet, 1991} and estimates on solutions of discrete Stokes 
equations (Girault and Raviart, 1986}, we obtain 
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with constant M = M(h,j,g,C'o,v,I<,ci), whence the continuity of cJ1. Next, we show 
that, for sufficiently small data (in the sense of Theorem 1), there exists a ball M C X,. 
such that ci1(M) C M and the diameter of M is independent of h. 

We estimate llci1(ci:- co)lh in terms of !lei:- colh, obtaining 

llcll(ci:- co)lh :5 A ·llci:- colh + B, 

where 

A= Co~st3 (ll~lh + IKioo) ll9llo,3, 

B = C~st (ll~ll 1 + IKioo) ll!llo,3 +(A+ 1)11colh· 

Now, we take any positive real Ao such that Ao < 1. We define polynomial P1 as 

Suppose P1(D-l, v-I, II<Ioo, llfllo,3, ll9llo,3, Ileal h) :5 1, that is, the data are small enough 
in the sense of Theorem 1. Then there exists r > 0, such that c) maps the ball M = 
{ e E X,. : lie I h $ r} into itself. Let us stress that this invariant ball is independent of the 
mesh parameter h, so Brouwer's fixed point theorem yields the existence of solutions of 
Problem 2 for any value of h. 

4 ERROR ESTIMATE 

In this section we outline the derivation of estimate (21 ). We shall assume that Prob­
lem 1 admits solution (u,p,c) E (H3 n V) X (H2 n W) X (H2 n X( co)). Without loss of 
generality we can assume that the boundary condition on c is represented exactly by co, 
since the solutions of Problem 1 depend continuously (Lukaszewicz, 1991) on co, and co 
approximates eo on the boundary in H112-norm with order O(h). 

Suppose there exists a solution (u,.,p,.,c,.) of Problem 2. Using standard procedures 
and approximation results on discrete solutions of Stokes equations (Girault and Raviart, 
1986), (Bercovier and Pironneau, 1979) we obtain 

and 

Dllch- clh < (2D + Const lluhiii)hllcll2 + LKConst4IPI1,4llc- chlh 

+Const sllclllllu- uhll1 + Const sii<IooiiP- Phi It· 

(27) 

(28) 
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Substituting {27) and {28) and using imbedding H" <-+ w"-1•6 , k = 1, 2, we conclude that 
if the data are small in the sense of Theorem 1, namely, if 

then lie- c,,lh = O(h), whence, using (27) and (28) again, we obtain (21). 

Remark 1 In view of approximation properties of Vh, it seems that the approximation 
error in UJ. is not optimal in h (contrary to liP-Phlh and lie- chlh, which are of optimal 
order). However, there are chances that the actual order of approximation of the velocity 
may be improved, or, in case of more regular data, even restored to optimal level, since by 
(27} this error depends on a ch error in a norm which doesn't involve derivatives. 

5 UNIQUENESS OF APPROXIMATE SOLUTIONS 

We estimate the difference between two possibly different solutions c1 , c2 E M for the 
same data. The ball M is defined as in Section 3. 

Using (26), (21) and estimates of discrete solutions to Stokes equations, we conclude 
that, for data and h sufficiently small in the sense of Theorem 1, the difference c = c1 - c2 

satisfies llclh $ 0, so the solution must be unique. 
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