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Abstract 
The aim of this paper is to give a sufficient condition in order that a subset of a Banach 
space be a viability domain for a semilinear differential inclusion. 
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1 INTRODUCTION AND MAIN RESULT 

Let X be a Banach space, D a nonempty subset of X, F: D-+ X a multifunction with 
nonempty values and A the infinitesimal generator of a Co semigroup S(t) on X. Consider 
the differential inclusion 

x'(t) E Ax(t) + F(x(t)). (1) 

By a viable solution to (1) we mean a continuous function x : (0, u] -+ X which satisfies 
x(t) E D for all t E (0, u] and there exists a strongly measurable function f from [0, u] 
into X with f(s) E F(x(s)) a.e., such that 

x(t)=S(t)x(O)+ ls(t-s)f(s)ds, VtE[O,u]. 

The set D is called a viability domain for the differential inclusion (1) if for every xo E D 
there exists a viable solution to (1) with x(O) = x0 • The viability problem is to give 
conditions in order that the set D be a viability domain for (1). 

In the finite dimensional case (where A= 0, hence S(t) = I), the main viability result is 
due to Gautier (1973) and Haddad (1981). See also Aubin and Cellina (1984), Carja and 
Ursescu (1993). It asserts that ifF is upper semicontinuous with compact convex values 
and Dis locally closed, then D is a viability domain for (1) if and only if the tangency 
condition 

F(x) n Tv(x) # 0, Vx ED, (2) 
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is satisfied. Here the tangency concept Tv is that of Bouligand and Severi: u E Tv(x) <===? 

liminft!O ~d(x + ty, D)= 0. where d(a, B)= inf II a- bll. 
bEB 

The viability result mentioned above has served as a main tool in a general study of the 
characteristics method for a first order partial differential equation (see Carja and Ursescu 
(1993)). In particular, this leads to a study of the Hamilton-Jacobi-Bellman equations 
from the point of view of contingent solutions (see Carja (1996)). In infinite dimensions, 
for differential inclusion of type (1) we mention two important results. The first one is due 
to Pavel and Vrabie (1979) (see also Pavel (1984), Chapter 5), where S(t) is compact, F 
is locally bounded, demiclosed with closed convex values, and D is locally closed. They 
got viable solutions to (1) for every x0 ED from the tangency condition 

lim !d(S(t)x + ty, D) = 0, Vx E D, Vy E F(x ). 
t!O t 

(3) 

The second result is due to ShiShuzhong (1989), where S(t) is a compact differentiable 
semigroup, D is compact and F is upper semicontinuous with compact convex values. 
He proved that under these conditions D is a viability domain for (1) if and only if the 
tangency condition 

F(x) n T~(x) =fi 0, Vx ED, 

is satisfied, where the tangency concept Tfy is defined by 

u E T~(x) <===? liminf !d(S(t)x + tu, D)= 0. 
t!O t 

(4) 

(5) 

In many situations, especially in the study of the Bellman equation associated with 
control problems, the hypotheses in ShiShuzhong (1989) that D is compact and F has 
compact values are too strong. A very simple example is the linear control system x'(t) E 
Ax(t)+BU, where U is a bounded closed convex set and B is a linear continuous operator. 

On the other hand, the tangency condition in Pavel and Vrabie (1979) is also too strong 
in comparison to that of the finite dimensional case. 

The aim of this note is to show that the tangency condition (3) in Pavel and Vrabie 
(1979) can be replaced by the weaker condition ( 4). The price to be paid is to strengthen 
the conditions on F. Namely, in addition to the other hypotheses we assume that F is 
"strongly-weakly" lower semicontinuous. Precisely, we have 

Theorem 1 Let X be a reflexive Banach space and D a locally closed subset of X. As­
sume: S(t) is compact fort > 0; F is locally bounded, demiclosed and lower semicon­
tinuous with closed convex values; the tangency condition {4) holds true. Then for every 
x 0 E D there exists a viable solution to the differential inclusion {1}. 

Let us define the notions lower semicontinuous and demiclosed. 
We say that the multifunction F : D __... X is lower semicontinuous in x E D if 

\fy E F(x), V(xn) E D,xn __... x, there exists Yn E F(xn) such that Yn ~ y. 

We say that the multifunction F is demiclosed if the hypotheses: Yn E F(xn), with 
Xn E D,xn __...X and Yn ~ y imply xED andy E F(x). 
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Mention that we use the same idea of proof as in Pavel and Vrabie (1979) and Pavel 
(1984), therefore some steps will only be sketched. Finally, note that in Pavel and Vrabie 
(1979) and Pavel (1984) both D and F depend on t but we consider the autonomous case 
here for simplicity only. 

2 PROOF OF THE MAIN RESULT 

As we remarked earlier, we follow the same line as in Pavel and Vrabie (1979) and Pavel 
(1984). By the nonexpansivity of the distance function it follows that the tangency concept 
Tfi defined in (5} is equivalent to the following one: 

u E T5(x) <===? liminf(1/h}d(S(h)x + fh S(h- s)uds,D) = 0. (6) 
h!O lo 

Since F is locally bounded and D is locally closed, for x0 E D there are constants 
M > 0, r > 0 such that B( Xo, r) n D is closed and 
Jlf(y)JI ~ M, Vy E B(xo,r} n D, Vf(y) E F(y). (7) 

Here B(xo,r} is the closed ball of center x0 and radius r. 
Let T be sufficiently small such that 

max IIS(t)xo- xoJI + T(M + 1}K ~ r, 
0:5f:5T 

where /{ = C exp(wT) and C ~ 1, w ~ 0 are such that JIS(t}JI ~ C exp(wt) fort ~ 0. 

(8} 

The following lemma concerns the construction of an approximate solution to (1} on 
[0, T). This is the main step of the proof of Theorem 1. 

Lemma 1 Suppose that the hypotheses of Theorem 1 hold. Let xo E D and chooser, T, M 
as in (7} and (8}. Then there is an (1/n)-approximate solution Xn to (1} on [O,T} in the 
following sense: For each positive integer n, there is an infinite partition { tf };;::0 of [0, T) 
with the following properties: 

(P1} t0 = 0, ti-t1 - ti := df E (0, *], lim; ..... oo tf = T; 
(P2} Xn(O} = Xo, Xn(ti) := xf E B(xo, r} n D; 
(P3} xn(t) = S(t- t';')xf + ft~ S(t- s )f(xf) ds + (t- tf)pf E B(xo, r} fort E [tf, tf+1] 

with JlpfJI ~ *' where f(x';') E F(xf). 

Proof. To simplify notation, suppress n as a superscript fort;, d;, x; and p;. The construc­
tion is by induction. Set t0 = 0, Xn(O} = x0 , and assume that Xn is constructed on [0, t;). 
If t; = T, set t;+l = t;. Consider now the case t; < T. Taking into account that x; E D, 
by (4} and (6) there exists f(x;) E F(x;) such that 

liminf(1/h}d(S(h)x; + fh S(h- s)f(x;) ds, D)= 0. 
h~ k 

This implies the existence of h; E (0, 1/n) with t; + h; ~ T such that 

rh· h· 
d(S(h;}x;+ lo S(h;-s)f(x;)ds,D) ~ 2~. 
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We can thus define 

6; ==sup{ h E (0, ~]; t; + h ~ T, 3f(x;) E F(x;), 
d(S(h)x; + J/; S(h- s)f(x;) ds, D)~ f.J. (9) 

Therefore, there exist d; E (¥, 6;], 0 < d; ~ ~' t; + d; ~ T and f(x;) E F(x;) such that 
fd; d· 

d(S( d;)x;+ Jo S(d;- s )f(x;) ds, D) < 2~. (10) 

Set ti+1 :== t; + d;. By (10), there exists x;+l E D such that 

Ld; d· 
IIS(d;)x;+ S(d;- s)f(x;) ds- Xi+IIi ~ ....!., 

o n 

i.e., l t;+> 
x;+l == S(ti+l- t;)x; + S(ti+l- s)f(x;) ds + (ti+I- t;)p;, with lip; II~~-

t; 

Define Xn on [t;, t;+I] as indicated in (P3). It is easy to see that 

Xn(t) == S(t)xo + l S(t- s)fn(s)ds + 9n(t), t E [O,ti+l], 

where 

fn(s) == f(x;), s E [tj, tj+I], j == 0, · · ·, i 

and 

9n(t) == z:{:~(tk+I- tk)S(t- tk+l)Pk + (t- ti)Pi, t E [tj, ti+l], j == 1, · · ·, i, 
9n(t) == tpo, t E [0, t1]. 

(11) 

(12) 

(13) 

By induction hypothesis, Xn(t) E B(x0 ,r) fortE [O,t;]. We have to prove that xn(t) E 
B(x0 , r) fort E [t;, t;+d· Indeed, fortE [t;, t;+I], 

TI< 
llxn(t) - xoll ~ IIS(t)xo- X oil + T M I<+- ~ r 

n 

because of (7), (8) and the fact that 

I<t 
IIYn(t)ll ~ -. 

n 

Therefore, if t* :== lim;_.00 t;, we can define Xn(t) by (11) for every t E [0, t*) where fn is 
given by (12) for every j E Nand 9n is given by (13) for every j E N. As results from 
Pavel (1984), (x;) is a Cauchy sequence, and let x* be its limit. Clearly, x* E B(x0 ,r)nD. 

We prove now that t* == T. It is this step where we use the fact that F is lower 
semicontinuous instead of the condition (3). suppose to the contrary that t* < T. By (2), 
there exist h* E (0, ~] with h* + t* < T and f* E F(x*) such that 

h* h* 
d(S(h*)x*+ 1 S(h*-s)f*ds,D)~ 4n. (14) 
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Since d; ---+ 0, O; ---+ 0 hence there exists i0 such that for i ~ i0 , h* > 0;. Because F is 
lower semicontinuous, there exists y; E F(x;) such that y; ~ f*. Since t; :'S t*, we have 
h* + t; < T. Along with h* > 0;, the very definition of O; implies 

h* h* 
d(S(h*)x;+1 S(h*-s)y;ds,D)> 2n, i~i0• (15) 

On the other hand by a standard argument, 

h* h* 
1 S(h*-s)y;ds-+ 1 S(h*-s)f*ds. 

Passing to limit in (15) we get a contradiction with (14). Therefore t* = T as claimed. 
This ends the proof of Lemma 1. 
Proof of Theorem 1. It follows as in Pavel (1984), p.190. One proves that the sequence 
(xn) constructed in Lemma 1 has a convergent subsequence in C([O, T]; X) to a solution 
of (1 ). The Ascoli-Arzela theorem and a result of Kato are the main tools. 
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