
6 

Circuit depth optimization by BDD based 
function decomposition 

Alexander I. Kornilov, Tatiana Yu. Isaeva 
Research Institute of VLSI CAD Systems, 
8a, Mazhorov per., Moscow E-023, 105023 RUSSIA, 
phone: 7 (095) 369 19 75 fax: 7 (095) 369 51 07 
e-mail: korn@sapran.msk.su 

Abstract 
We present a BDD-based algorithm for logic functions' decomposition that is aimed at speed-up 
of circuits constructed as straightforward mapping of BDDs. Existing algorithms (including 
BDD-based) aimed at circuits' size optimization do not solve this problem. We propose a novel 
decomposition formula; BDDs' graphical properties are explicitly used. This allows to reduce 
circuits' performance sufficiently. A class of BDDs occurring in arithmetic units' synthesis is 
described for which the algorithm can be applied iteratively. 

Keywords 
High-performance circuits. functions' decomposition, Binary-Decision Diagrams. 

1 INTRODUCTION 

This paper is the result of the research carried out in the field of high-performance combina­
tional circuits synthesis. The proposed algorithm is based on Reduced Ordered Binary Decision 
Diagrams (further called BDD's for short) proposed by R.E.Bryant (Bryant,1986), that provide 
a convenient representation for most of the logic functions in practical use. We do not concern 
the problem of variable ordering since there exist several algorithms that find a good ordering if 
possible. This function representation is widely used in the field of logic synthesis. BDD's 
proved to be an effective structure for the implementation of the traditional synthesis methods 
such as function decomposition and factorization, ISOP form construction. Again several syn­
thesis algorithms were developed that construct a network as the straightforward mapping of its 
BDD structure (e.g., in static CMOS base, multiplexor base or FPGA base). For such circuits 
the assumed BDD depth directly defines their performance. However, a number of familiar 
modern algorithms minimize BDD size only, leaving behind the problem of depth optimization. 

G. Saucier et al. (eds.), Logic and Architecture Synthesis
© IFIP International Federation for Information Processing 1995



Circuit depth optimiZJllion by BDD based function decomposition 65 

Familiar methods of decomposition (including BDD-based decomposition) aimed at sim­
plification of Boolean functions do not solve the problem at least for such important class of 
Boolean functions as carry functions in arithmetic units. 

We made an attempt to take advantage of the fact that we use BDD structure both as the 
circuit model and as the function representation convenient for minimization. In this paper we 
describe a BDD based function decomposition algorithm aimed at the speed-up of the circuit 
constructed as the straightforward BDD implementation. The main goal of such decomposition 
is to assign a complicated function instead of a variable to the BDD root and hence reduce the 
BDD depth. 

In the first section we remind the familiar Shannon's decomposition. The second section is 
devoted to the proposed algorithm description. In the third section we describe a class of 
BDD's connected with arithmetic units for which the algorithm is especially good due to the 
opportunity to apply it iteratively. 

2 SHANNON'S DECOMPOSITION 

Consider the Shannon's decomposition formula with respect to the first k variables. 

(1) f(xl, ... ,x0 ) = V x1•1 & x2a2 & ... & xk•k & f(al>a2, ... ,ak,xk+l>···•xn). 
V(a1, ... ,ak), <ijE{O,l} 

We can rewrite this equivalence in the following way: 

(2) f(x 1 , ... ,x0 ) = V 
iel 

Here I={ 1, ... ,w}, where w is the number of different cofactors, H = {hi, ie} is the set of 
these cofactors and G = {gi, ie I} is the set of corresponding characteristic functions: 

1, 
0, 

if hi(xk+ 1 , ... ,x0 ) = f(a 1 ,a2, ... ,ak,xk+ 1 , ... ,x0 ) 

otherwise. 

Consider BDD implementing the function f for a certain variable ordering. For definite­
ness assume that the variables are ordered in the natural way: x1,x2, ... ,xn- Assume each internal 
BDD vertex v has an index of variable it is labeled, terminal vertices having index n+ 1. Let us 
denote this value index(v). 

From formula (2) we immediately obtain a disjunctive decomposition of function f. 
According to this formula we can draw a crossing line that divides function f BDD into higher 
and lower parts, the former consisting of vertices v such that index(v):::l:, and the latter consist­
ing of vertices v whose index(v)>k. Note that the lower part of the BDD implement the system 
of cofactors for a given k. 

There exist several BDD patterns that at once lead to good function decomposition. E.g., if 
there are only two cofactors and one of them is constant, the function is implemented as dis­
junction (for constant 1) or conjunctions (for constant 0) of two functions. If the two cofactors 
are complementary functions the function is implemented as EXOR of two functions. 

In general, if the number of cofactors is comparatively small we obtain a good function 
implementation. This case (disjunctive decomposition) was described in (Lai,l993), as well as 
a nondisjunctive decomposition algorithm for size optimization. 

Function f may just be implemented as the independent implementation of system of char­
acteristic functions G, system of cofactors H and formula (2). The total depth of this imple-



66 Pan Two CeU Assignment Based on BDD 

mentation is the sum of depths of f01mula (2) implementation (=log2w, if it is implemented as 
a pyramidal structure) and maximal depth for the systems G and H (for these systems can be 
implemented in parallel). System His implemented as the lower part of the initial BDD. Imple­
mentation for each of the functions gi can be obtained from the upper part of the initial BDD. 
Thus we finally obtain implementation of less depth, not exceeding log2w+max(k,n-k). 

Unfortunately if the number of different cofactors is big this implementation is impractical 
both for size and depth minimization. 

3 DECOMPOSITION ALGORITHM FOR DEPfH REDUCTION 

In this section we describe the advanced decomposition algorithm for depth reduction. 
Let us transform the formula (2) in the following way: 

(3) v 
ie Io, 

where Io is a subset of I, the function 

v 
ieN0. 

and the function 

v 
ho(x 1, ... ,x0 ) ={ ieN0, 

don't care, otherwise. 

Note that unlike the previous case this formula contains only a subset of cofactors and 
characteristic functions; and the rest of them are gathered in the last term, that includes the spe­
cial function ho. depending on the whole set of input variables. 

We choose the set of indexes 10 so that to break only long paths in the BDD. Further we 
describe how we do this. 

•t--------~~~~ 

•z--------~~----~f4-

·3--===.t.:::.~~:=t= 
·4------~~F-~-----+--

DEPTH = 5 

r - x.l(X.:z15 V x;x3x;x5) V x1(x.ix3x4x5 V xz"i5) 

Figure 1. BDD example: k = 2; 10 = 3; I= { 1,2,3 ); 10 = { 1 ). 

Definition The edge cutset Ek of the BDD Fat level k is the set of edges (v1,v2) for which 
index(v1)<=k, and index(v2)>k. 



Circuit depth optimizalio11 by BDD based jiulctio11 decompositio11 67 

That is. if we draw a line dividing the BDD into upper and lower parts, the former consist­
ing of the vertices with indexes less or equal thank, and the latter-- of the vertices with the 
indexes greater thank, Ek is the set of all the BDD edges, crossing that line. r--, r 

, c1 +-----~----­
t __ J bo o 

"1 -t-:t---""""'i'---

r ·e1 b 1 v E0 110 a,-&0 - "1"1 v "1"1 

Figure. 2. Resulting implementation for the example function. 

Given a set E of BDD edges denote Ends(E) the set of all the end vertices of the edges 
from E. Clear that the set Ends(Ek) is the set of all the BDD vertices corresponding to the func­
tions from H. Let us set the critical length !0 

Definition Ek(lo) is the set of edges from Ek, belonging to the paths that are longer than 10. 
Clear that Ends(Ek(lo)) s;;; Ends(Ek), and in many cases these sets are not the same. In Fig­

ure.! an example of such a BDD is given. We choose 10 as the set of indexes of the cofactors 
corresponding to the BDD vertices from Ends(Ek(lo)). 

As in the previous case the system of cofactors H0 = {hi, ie Iol is implemented by the 
lower part of BDD, and BOD's for the system of characteristic functions 0 0 = {gi, ie I0u{O)) 
can be built using the upper part of the BDD. Let us describe construction of these BOD's in 
more details. 

Each of the characteristic functions can be considered as the reachability function (as 
defined by N. Ishiura in (lshiura,1992)) between the initial BDD root and the BDD vertex rep­
resenting the corresponding cofactor. We can build BDD for a function gi (i;eO) in the follow­
ing way: 

- consider a sub graph consisting of all the paths connecting BDD root to the vertex repre-
senting cofactor hi (preserving all the labels); 

- consider the initial BDD root as the new BDD root; 
-replace the vertex corresponding to the cofactor hi with the terminal vertex 1; 
- add missing complementary edges directing them to the terminal vertex 0. 
Function g0 is implemented as the other characteristic function save that we replace by ter­

minal vertex I all the vertices corresponding to the cofactors hi, ie No. 
We can see that the depths of the BOD's for the cofactors and the characteristic functions 

are determined by the path's' lengths in the lower and upper BDD parts, and thus we can just 
estimate them as the number of input variables of these functions. 

Unlike these functions, the special function ho depends on the whole set of input variables. 
Of course, some of them can be insufficient, but we don't know that beforehand. But for this 
function we can explicitly build BDD with depth not exceeding the chosen critical depth. 

Consider all the paths in the initial BDD connecting its root to the terminal vertices passing 
through the BDD vertices from the set Ends(Ek)\Ends(Ek(i0)). These vertices correspond to the 
cofactors that are not implemented separately. These paths form a directed acyclic graph that is 
not a BDD for some of the complementary edges are missing, including the edges from Ek(I0) . 

For every vertex with only one pull-down edge let us insert an edge directed to the same vertex 
as its complementary edge. Thus we obtain a new non reduced BDD implementing the func-



68 Part Two Ct!ll Assignml!nt Based on BDD 

tion h0 (setting its don't care values). Its depth does not exceed the critical depth because all the 
edges from the critical paths cutset are removed, and the inserted edges do not bring in long 
paths. 

The total implementation depth is defined by the depth of the formula (3) implementation 
(=log21Iol); the depth of BOD's for the systems 0 0 and H0; the depth of function h0 BDD. Thus 
it does not exceed log21Iol+max(l0,k,n-k). If k=n/2 the depth is =log2JI0i+max(Io,n/2). Taking 
advantage of function ho don't care values often leads to the reduction by 1 of its BDD depth 
(See Figure.2). 

It is important that for fixed crossing line level k and critical depth 10 the time complexity 
of the proposed algorithm is linear on the number of BDD vertices. But of course to minimize 
the particular implementation depth a certain search may be carried out, e.g., a minimal cutting 
set may be found. 

4 ALGORITHM APPLICATION FOR ARITHMETIC UNITS 

There is a BDD type that often occurs in arithmetic units synthesis -- BOD's, that contain a sin­
gle long path, the subBDD's at the ends of the complement edges along this path being of con­
stant depth (e.g., subBDD's representing input variables and their complements). In this 
particular case the BDD edge cutset consists of a single edge, and the formula (3) can be 
rewritten as follows: 

BOD's for the functions h1, g1 and ho are of the same type as for the function f. This allows 
the iterative use of the method, thus yielding pyramidal structure instead of the initial linear 
structure. The structure depth is reduced from O(n) to O(log2n) while its size just slightly 
increases. 

Basing on these principles we have developed a methodology to synthesize high-perfor­
mance arithmetic units. We have designed a look ahead carry generator (LACG) as one of the 
applications of this methodology. 

Let us consider a well known LACG (Motorola) based on the traditional 2-level synthesis 
principles for the purpose of comparison. To implement this generator in a basis of static 
CMOS circuits 116 transistors are required. Two 4-input NAND elements are connected 
sequentially in this circuit and produce the main part of the whole delay that is rather high. 

Our LACG is based on the BDD technology principles (Kornilov,l988). To implement this 
generator in a basis of static CMOS circuits only 80 transistors are required. In this case the 
delay producing circuit consists of two sequentially connected passive multiplexors and two 
invertors with performance approximately equivalent to a performance of 3-inputs NAND gate 
(it also has the depth equal 3). Hence we can claim that the proposed generator is at least two 
times faster than first one and requires for its implementation approximately 30% less transis­
tors. 

Thble 1: Comparison of the LACG implementations for different synthesis styles. 

ay 

The developed methodology enables to construct high-performance arithmetic units with-



Circuit depth optimization by BDD based function decomposition 69 

out using LACG. 
This particular algorithm was described in (Komilov,l990). 

5 CONCLUSIONS 

The proposed algorithm allows to reduce sufficiently the BOD representation depth without 
big size increase, and thus optimize performance of the circuits obtained by straightforward 
mapping algorithms. In some cases the structure depth may be reduced from linear to logarith­
mic in the number of input variables. 

REFERENCES 

Bryant R. E. (1986) Graph-Based Algorithms, IEEE Trans. Comput., Vol. C-35, no.8, Aug. 
1986, 677-691. 

Lai Yung-Te, Pedram Massound (1993) BOD Based Decomposition of Logic Function with 
Application to FPGA Synthesis, Proceedings of 30th ACM/IEEE Design Automation Con­
ference, 1993, 642-647. 

Ishiura N. (1992) Synthesis of Multi-Level Logic Circuits from Binary Decision Diagrams. 
Synthesis and Simulation Meeting and International Interchange, Proceedings of SASIMI-
92, 1992, 74-83. 

Motorola H4C Series Design Reference Guide, 7-165. 
Komilov A. I. et al. (1988) A Carry Forming Device, Inventor's Certificate of the USSR No. 

1608648, G 06 F 7150. 
Komilov A. I. (1990) High Performance Arithmetic Device Construction Using a Universal 

Logical Base, Communication Facilities Engineering. Ser. Microelectronic Hardware, Vol. 
1-2 (12-13), 1990, 41-47(inRussian). 


