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Abstract 
One of the crucial problems multi-level logic synthesis techniques for multi-output boolean 
functions f = (fb ... ,Jm) : {0, l}n --+ {0, 1}m have to deal with is finding sublogic which 
can be shared by different outputs, i.e., finding boolean functions a = ( a1, ... , a h) : 
{0, 1}P--+ {0, 1}h which can be used as commonsublogicof good realizations of ft, ... ,Jm. 

In this paper we present an efficient ROBDD based implementation of this COMMON 
DECOMPOSITION FUNCTIONS PROBLEM (CDF). 

Formally, CDF is defined as follows: Given m boolean functions ft, ... ,fm: {0,1}n--+ 
{ 0, 1}, and two natural numbers p and h, find h boolean functions a1, ... , ah : { 0, 1 }P --+ 
{0, 1} such that \11 :::; k :::; m there is a decomposition of fk of the form 

fk(Xl, ... , Xn) = g(k)(al(Xt, · · ·, Xp), ... , ah(Xt, ... , Xp), 
aL~1 (x1, ... , xp), ... , a~~l(xt, ... , xp), Xp+t. ... , Xn) 

using a minimal number 1"k of single-output boolean decomposition functions. 

1 INTRODUCTION 

The long term goal for logic synthesis is the automatic transformation from a behavioral 
description of a boolean function to near-optimal netlists, whether the goal is minimum 
delay, minimum area, or some combination. Most of the approaches attacking the multi­
level logic synthesis problem use gate count as optimization criterion. A survey can be 
found in Brayton (1990). Alternatively, some recent papers (e.g. Hwang (1992), Lai (1993), 
Schlichtmann (1993)) propose an approach different from the one addressed above. This 
approach to multi-level logic synthesis which originates from Ashenhurst (1959), Curtis 
(1961), and Karp (1963) is based on minimizing communication complexity. The methods 
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f 

Figure 1 Decomposition of a boolean function f : {0, l}n---+ {0, 1} 

used to reduce communication complexity employ functional decomposition, i.e., given a 
boolean function f: {0, l}n---+ {0, 1} they are looking for boolean functions a and g, such 
that f( x1 , .•. , Xn) = g( a(x1, . .. , Xp), Xp+l> . .• , Xn) holds for all ( X1, . . . , Xn) E {0, l}n (see 
Figure 1 ). a = ( ab ... , a,): {0, 1 }" ---+ {0, 1 }' is a multi-output boolean function. The goal 
is to find decompositions where the number r of decomposition functions (i.e. the number 
of wires between block a and block g) is minimal. (If r < p, then the decomposition is 
called non-trivial.) 

A fundamental step in logic synthesis is the identification of common sublogic. Methods 
to identify common sublogic by (algebraic or boolean) division were developed by Brayton 
et a!. and included in the SIS package (Sentovich (1992)). In this paper we present a 
method to identify common sublogic for the case that boolean functions are realized 
by decomposition. This method comes into play when we have to process multi-output 
boolean functions f = (!1 , •.• , fm) :{0, 1 }n ---+ {0, 1 }m. Note that even if the original 
function f has only 1 output (m = 1), in most cases we need a generalization to multi­
output boolean functions when we apply functional decomposition recursively to a and 
g. 

All f; are decomposed as single-output functions, but in order to identify common 
sub logic we make use of our freedom in the choice of the decomposition functions to com­
pute such decomposition functions which can be used in the decomposition of as many J; 
as possible. Unlike Lai (1994) we avoid to compute the huge set of all possible decompo­
sition functions for all J; to choose common decomposition functions of the functions J; 
from these sets. We present an algorithm which directly computes a maximum number of 
common decomposition functions of JI, . .. , fm· 

In contrast to Molitor/Scholl (1994) , which was based on function tables and decom­
position charts, we efficiently make use of REDUCED ORDERED BINARY DECISION DI­
AGRAMS (ROBDD) during the computation of common decomposition functions. ROBDDs 
(Bryant (1986)) are compact representations for many of the boolean functions encoun­
tered in typical applications. In this paper we show that it is possible to carry out all 
necessary steps based on ROBDDs. This increases the efficiency of the approach in a high 
degree. In particular, we show that the computation of common decomposition functions 
for the decomposition of several single-output functions can be performed efficiently based 
on ROBDD's. 

Benchmarking results show the new method to be efficient with respect to layout size, 
signal delay and running time. 
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Figure 2 Charts and ROBDDs of the single-output boolean functions ft and h which 
are decomposed with respect to ( { Xt, x2, x3}, { x4, . .. , Xn} ). Each chart obviously consists 
of 8 rows. A row pattern is associated to each row. There are three (four) different row 
patterns in M(fl) (M(/2)) denoted by the numbers 1, 2, and 3 (1 to 4). Thus, r1 = r2 = 2 
holds. 

2 BASIC DEFINITIONS 

Definition 1 A decomposition of a multi-output boolean function f : {0, 1 }" --+ {0, qm 
with respect to the input partition {Xt.Xd (X1 = {x1, . . . ,xp},X2 = {xp+1, . .. ,xp+q}, 
p+q=n) is a representation off of the form 
fk(x!, . . . ,xn)=g(kl(a~k)(Xt), . .. ,a~~)(Xl),X2) (1:/k E {1, . . . ,m}), 

k 

with functions alk) : {0, l}P --+ {0, 1}, and g(k) : {0, l}r~+q --+ {0, 1}. alk) are called 
decomposition functions of fk· g(k) is called composition function of fk· 

With respect to a given input partition {Xt,X2 }, a single-output function fk can be 
represented as a 2P x 2q matrix M(fk), the decomposition matrix of fk or the chart of fk 
with respect to { X1, X2} . (For illustration see Figure 2.) Each row and column of M(fk) is 
associated with a distinct assignment of values to the inputs in X 1 and X 2 , respectively, 
such that fk(Xt. X2) = M(/k)[X1, X2] where M(fk)[Xt. X2] represents the element of 
M(fk) which lies in the row associated with X1 and the column associated with X 2 • 

Note that ( a~k), ... , a~~)) of definition 1 encodes the rows of chart M(fk)· Of course, 
k 

the following property has to hold. 
Encoding Property: If the row pattern of row ( Vt, . .. , vp) E {0, 1 }P differs from the 

row pattern of row ( v;, . . . , vP') E {0, 1 }P, then ( a\k), . .. , a(~)) has to assign different codes r, 
to (vt, ... ,vp) and (v;, . . . ,v~). 

The minimum number of communication wires required between the subcircuit which 
encodes the rows of M(fk) and the composition function g(k) is flogp~k)l where p\k) is the 

number of distinct row patterns in M(fk)· rk will denote value flog p\k)l in the following. In 
the following we will always consider decompositions with minimal number rk = flog p~k)l 
of decomposition functions . 

If fk is given by a ROBDD bddk, the minimal number of decomposition functions can be 
determined in an easy way too: For all ( Vt, .. . , vp) E {0, 1 }P the row pattern belonging to 
row ( v1 , .. . , vp) of M(fk) equals the function table of the cofactor (/k)x~~ ..... x;• (with x? = 

Xi and x: = x;). Thus the problem of determining the number p~k) of different row patterns 
of M(fk) is equivalent to the problem of computing the number of different cofactors 
(fk)x;l ... . ·x? · The ROBDD of the cofactor (!k)x;~ ..... x;• is given by the sub-bdd of bddk whose 



60 Part Two Cell Assignment Based on BDD 

root is reached by starting at the root of bddk and then following the path corresponding 
to ( Vt, ... , Vp). The roots of these cofactors are called linking nodes (the shaded nodes 
in Figure 2). Since /k is given by a ROBDD, the number of different linking nodes of 
bddk obviously equals the number of different cofactors. The computational complexity 
of determining the number of different linking nodes is at most linear in the size of bddk 
since it can be determined by traversing bddk in a depth first search manner. 

The rows of chart M(fk) induce a partition of {0, 1}~' into equivalence classes Klkl, ... , 
K(Z2) such that v, v' E {0, 1 }~' belong to the same class KJk) if and only if the two corre­

P, 

sponding row patterns of M(Jk) are identical. We denote the corresponding equivalence 

relation by =k and the set of the equivalence classes { K}kl, .. . , K(Z2)} by {0, 1 }~' / =•. 
P, 

Since every equivalence class KY' is associated to exactly one linking node n}k) and 

vice versa, we are able to compute K)k) from the ROBDD bddk for fk· We receive a BDD 

for the characteristic function of KY) if we replace nY) by the constant 1 and all other 
linking nodes by constant 0. 

3 CDF 

To compute decomposition functions (with domain X1 ) of a multi-output function f which 
are used by different single-output functions fk, we have to consider the following problem 
which will be denoted by CDF. 

Given: Let f =(/I, ... , fm) : {0, l}n --> {0, l}m be a multi-output boolean function, 
A= {X1,X2} with Xl={xl>···,xp} and X2={xp+l>···,xn} be an input partition, and 

h be a natural number with h::; rk (= [logptk)l) (Vk). 
Find: h single-output boolean functions a1, ... , ah, which can be used as decomposi­

tion functions of every single-output function /k for k = 1, ... , m such that there is a 
decomposition of fk with minimal number rk decomposition functions of the form 

/k(xl, ... , Xn) =g(k)(a1(X!), ... ,ah(XI), a~~1 (X!), ... , a~~l(XI), X2). 
Of course, such h boolean functions need not to exist. We have proven the problem whether 
such functions <l't, •.. , ah exist to be NP-complete. Nevertheless, we have to solve CDFt. 

An algorithm which is applicable from the practical point of view (as shown by the bench­
marking results) is presented in this section. 

3.1 Theoretical Background 

We start with a theoretical result working towards a solution to CDF. It gives a condition 
necessary and sufficient that h single-output functions a 1, ... , <l'h : { 0, 1 }P --> { 0, 1} are 
common decomposition functions of JI, ... , fm· It is a generalization of a lemma shown by 

Karp (1963). For this, we need the following notations: Let (J(k) : {0, 1}~'--> {1, ... ,p\k)} 

be the function which maps v E {0, 1 }P to the index j of the class KY) to which it belongs. 

I The (maximal) value of parameter h of CDF is determined by logarithmic search. After that we solve CDF 

for subsets of {ft, ... , fm), but only for such subsets {/;., ... , J;,} where all pairs/;; and/;, have at least 
one common decomposition function. Note that this question is not NP-complete, but can be decided 
efficiently by dynamic programming. Also note that the algorithms for the computation of common 
decomposition functions given in this paper can be generalized in a canonical manner for the case that 

some of the decomposition functions aY) (i >h) are already predetermined. More details of how the CDF 

algorithm is integrated in the tool can be found in Molitor/Scholl (1994). 
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Furthermore, for given a 1, ... ,h t and all a E {0, 1 }\ let S£kl be the set { (J(k)( v ); a 1, ... ,h( v) = 
a} of those classes which contain a row mapped to a by a1, ... ,h· (a1, ... ,h is not able to tell 

these rows apart (see the Encoding Property).) Note that S£kl and S~~l need not to be 
disjoint for a -j. a', and that the number I S£kl I of elements of S!k) equals the number of 
distinct row patterns of M(fk) mapped to a by a1, ... ,h· 

Lemma 1 ab ... , ah are common decomposition functions of JI, ... , fm with respect to 
{X1,X2 } such that there is a decomposition of fk with minimal number of decomposition 
functions of the form 
fk(xb···,xn) = g(kl(al(XI), ... ,ah(XI),a~~1 (XI), ... ,a~z>(XI),X2) VkE {1, ... ,m} 
if and only ifmax{IS£kll; a E {0,1}h} is:::; 2r,-h (Vk). 

Proof. Since ( a 1, ... ,h, a~~l, ... ,r.) has to assign different values to rows of chart M(fk) with 

different row patterns (see the Encoding Property), a~~l, ... ,r, has to assign different values 

to those rows which cannot be told apart by a 1, ... ,h· As a~~l .... ,r, can produce at most 2r,-h 
different values, the statement of the lemma follows. D 

3.2 Solution 

h common decomposition functions a1. ... , ah can be computed (on principle) by a (sim­
plified) branch and bound algorithm (see also Molitor/Scholl 1994). It constructs the 
function table of a 1, ... ,h row by row (assigning function values to all elements of {0, l}P). 
Branches are pruned as soon as the condition of lemma 1 is violated for the initial part 
of the function table of a 1, ... ,h constructed so far. 

In order to speed up the branch and bound algorithm and to receive 'simpler' decom­
positon functions we restrict our search for common decomposition functions to a subclass 
of functions, which we will call 'equivalence preserving decomposition functions'§: 

Definition 2 A decomposition function a; : {0, 1 }P --> {0, 1} of a boolean function fk 
{ 0, l}n --> {0, 1} is said to preserve equivalences if a;( v) = a;( v') holds for every v, v' E 
{0, 1}P with v '=k v'. 

Common equivalence preserving decomposition functions a1, ... , ah of /I, ... , fm have to 
assign the same value to v and v' E { 0, 1 }P whenever there is a k E { 1, ... , m} such that 
the rows of M(fk) corresponding to v and v' have identical row patterns. More formally, 
let 
v~v' ~ (31:Sk:Sm)v=kv', 
then the corresponding equivalence relation partitions the rows, i.e. {0, 1}P, into equiva­
lence classes E 1 , ... , E1 such that common equivalence preserving decomposition functions 
have to assign the same value to each vEE;. We will denote the set of these equivalence 
classes by {0, 1 }P / ~· 

Now we can modify our branch and bound algorithm, such that it makes assignments 
not to single elements of {0, 1 }P but to whole classes E;. Since l mostly is much smaller 
than 2P, this approach considerably reduces the running time (see also section 4). 

ia1, ... ,h denotes the tuple (<> 1 , ... , ah). 
hn practical applications functions fk often have some desirable properties like symmetry in some vari­
ables or independence of some variables. Equivalence preserving decomposition functions 'preserve such 
properties'. 
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Table 1 Experimental results. 

Running time Layout size Signal delay 
Circuit mu/op mulopll ratio CDF SIS mu/opii ratio sis mulopll ratio 

9symml 1.40 1.23 1.14 0.69% 1194336 201400 5.93 27.6 13.6 2.03 
C17 0.32 0.15 2.13 0.01% 28800 31744 0.91 4.2 4.2 1.00 
cm138a 1.01 0.18 5.61 0.89% 103896 87480 1.19 5.8 6.8 0.85 
cm151a 4.16 1.09 3.82 0.13% 95312 177712 0.54 12.6 16.4 0.77 
cm152a 2.15 0.50 4.30 0.36% 85536 106704 0.80 10.0 13.2 0.76 
cm162a 350.65 3.32 105.62 0.26% 131976 192000 0.69 12.0 13.2 0.91 
cm163a 2923.31 2.35 1243.96 0.08% 144008 164416 0.88 13.0 10.4 1.25 
cm82a 0.38 0.21 1.81 0.01% 74784 61600 1.21 7.2 7.0 1.03 
cm85a 7.46 3.73 2.00 0.27% 165456 180000 0.92 10.2 11.0 0.93 
cmb 1836.13 2.52 728.62 0.05% 204792 123496 1.66 9.4 6.8 1.38 
decod 26.15 2.56 10.21 1.93% 140448 119496 1.18 6.2 5.0 1.24 
f51m 3.14 1.83 1.71 0.28% 561184 251392 2.23 51.0 18.4 2.77 
majority 0.44 0.08 5.50 0.01% 42200 39168 1.00 7.8 6.6 1.18 
parity 111.06 1.37 81.07 0.00% 99408 96976 1.03 5.0 5.0 1.00 
z4m1 0.66 0.76 0.87 0.16% 156288 103896 1.50 16.2 9.8 1.65 

L: 3228K 1937K 1.67 198.2 147.4 1.34 

As already mentioned in section 2 ROBDDs bddik), . .. , bdd(~~l for the characteristic func­
P, 

tions of the equivalence classes K!k), ... , K(t2, with respect to =k can easily be computed 
P, 

from the ROBDDs of the fk· To compute the characteristic functions of the equivalence 
classes with respect to ~, we implicitely construct a graph G = (V, E) where the set V 

of vertices is given by the ROBDDs bdd}k) representing the equivalence classes KY). At 

the end, there is an undirected edge {bdd~:d,bdd~~2 )} if and only if bdd~:l) 1\ bdd~~>) =f- 0, 

i.e., iff K};d n KJ~2 ) =f- 0. Obviously, there is a one-to-one relation between the set of the 

connected components (in the graph-theoretical sense) of G and the set of the equivalence 

classes {0, 1 }P / ~· For every class E;, there is a connected component CC; of G such that 

the logical-or of the ROBDDs bdd~k) (for any fixed k) corresponding to vertices of CC; 
results in a representation of E; and vice versa. 

4 EXPERIMENTAL RESULTS 

We applied our tool, which uses the CDF algorithm described above as basis, to a number 
of benchmarks of the 1991 MCNC multi-levellogic benchmark set. We will call the ROBDD 
based implementation of our tool mulopll. Our former implementation working on charts 
will be called mulop (Molitor/Scholl1994). 

Columns 1-3 of Table 1 show running times (in CPU seconds, measured on a SPARC­
station 10/30 (64 MByte RAM)) of our ROBDD based implementation m.ulopl/ compared 
to those of our former version mulop. Experiments prove our ROBDD based version to be 
much more efficient than the former version. 

The next column of Table 1 shows the fraction of running time which is used in the 
computation of common decomposition functions compared to the total running time of 
the tool mulopl/. It shows that only a very small fraction of the total running time is 
used for the computation of common decomposition functions. The running time is dom-
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inated by the computation of good input partitions, not by the computation of common 
decomposition functions. This confirms our approach to compute common decomposition 
functions rather than to encode linking nodes in a straightforward manner. 

Columns 5-7 of Table 1 show a comparison between sis (Sentovich (1992)) and mulopll 
with respect to layout size 9f. For almost two thirds of the benchmark set, our approach 
dominates (or is as good as) that of sis with respect to layout size. Nevertheless, the signal 
delays of our realizations for more than two thirds of the circuits considered are better 
(or equal) than those of the realizations synthesized by sis (see columns 8-10 of Table 1). 

5 CONCLUSION 

We have presented a ROBDD based technique for computing common decomposition func­
tions of multi-output boolean functions. This algorithm has been integrated in our multi­
level synthesis tool which has been presented in Molitor/Scholl (1994) where more details 
of how the CDF algorithm is integrated can be found. The benchmarking results show 
that most of the circuits constructed by our synthesis tool are very efficient. They also 
prove it to be applicable in terms of running time. 
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