
5

Efficient ROBDD based
computation of common
decomposition functions of
multi-output boolean functions *

Christoph Scholl t, Paul Molitor t
t Universitiit des Saarlandes
Department of Computer Science, D 66041 Saarbrucken, FRG.
t Martin-Luther Universitiit Halle
Department of Computer Science, D 06099 Halle (Saale), FRG.

Abstract
One of the crucial problems multi-level logic synthesis techniques for multi-output boolean
functions f = (fb ... ,Jm) : {0, l}n --+ {0, 1}m have to deal with is finding sublogic which
can be shared by different outputs, i.e., finding boolean functions a = (a1, ... , a h) :
{0, 1}P--+ {0, 1}h which can be used as commonsublogicof good realizations of ft, ... ,Jm.

In this paper we present an efficient ROBDD based implementation of this COMMON
DECOMPOSITION FUNCTIONS PROBLEM (CDF).

Formally, CDF is defined as follows: Given m boolean functions ft, ... ,fm: {0,1}n--+
{ 0, 1}, and two natural numbers p and h, find h boolean functions a1, ... , ah : { 0, 1 }P --+
{0, 1} such that \11 :::; k :::; m there is a decomposition of fk of the form

fk(Xl, ... , Xn) = g(k)(al(Xt, · · ·, Xp), ... , ah(Xt, ... , Xp),
aL~1 (x1, ... , xp), ... , a~~l(xt, ... , xp), Xp+t. ... , Xn)

using a minimal number 1"k of single-output boolean decomposition functions.

1 INTRODUCTION

The long term goal for logic synthesis is the automatic transformation from a behavioral
description of a boolean function to near-optimal netlists, whether the goal is minimum
delay, minimum area, or some combination. Most of the approaches attacking the multi­
level logic synthesis problem use gate count as optimization criterion. A survey can be
found in Brayton (1990). Alternatively, some recent papers (e.g. Hwang (1992), Lai (1993),
Schlichtmann (1993)) propose an approach different from the one addressed above. This
approach to multi-level logic synthesis which originates from Ashenhurst (1959), Curtis
(1961), and Karp (1963) is based on minimizing communication complexity. The methods

•This work was supported in part by DFG grant SFB 124 and the Graduiertenkolleg of the Universitat
des Saarlandes

G. Saucier et al. (eds.), Logic and Architecture Synthesis
© IFIP International Federation for Information Processing 1995

58 Part Two Cell Assignment Based on BDD

f

Figure 1 Decomposition of a boolean function f : {0, l}n---+ {0, 1}

used to reduce communication complexity employ functional decomposition, i.e., given a
boolean function f: {0, l}n---+ {0, 1} they are looking for boolean functions a and g, such
that f(x1 , .•. , Xn) = g(a(x1, . .. , Xp), Xp+l> . .• , Xn) holds for all (X1, . . . , Xn) E {0, l}n (see
Figure 1). a = (ab ... , a,): {0, 1 }" ---+ {0, 1 }' is a multi-output boolean function. The goal
is to find decompositions where the number r of decomposition functions (i.e. the number
of wires between block a and block g) is minimal. (If r < p, then the decomposition is
called non-trivial.)

A fundamental step in logic synthesis is the identification of common sublogic. Methods
to identify common sublogic by (algebraic or boolean) division were developed by Brayton
et a!. and included in the SIS package (Sentovich (1992)). In this paper we present a
method to identify common sublogic for the case that boolean functions are realized
by decomposition. This method comes into play when we have to process multi-output
boolean functions f = (!1 , •.• , fm) :{0, 1 }n ---+ {0, 1 }m. Note that even if the original
function f has only 1 output (m = 1), in most cases we need a generalization to multi­
output boolean functions when we apply functional decomposition recursively to a and
g.

All f; are decomposed as single-output functions, but in order to identify common
sub logic we make use of our freedom in the choice of the decomposition functions to com­
pute such decomposition functions which can be used in the decomposition of as many J;
as possible. Unlike Lai (1994) we avoid to compute the huge set of all possible decompo­
sition functions for all J; to choose common decomposition functions of the functions J;
from these sets. We present an algorithm which directly computes a maximum number of
common decomposition functions of JI, . .. , fm·

In contrast to Molitor/Scholl (1994) , which was based on function tables and decom­
position charts, we efficiently make use of REDUCED ORDERED BINARY DECISION DI­
AGRAMS (ROBDD) during the computation of common decomposition functions. ROBDDs
(Bryant (1986)) are compact representations for many of the boolean functions encoun­
tered in typical applications. In this paper we show that it is possible to carry out all
necessary steps based on ROBDDs. This increases the efficiency of the approach in a high
degree. In particular, we show that the computation of common decomposition functions
for the decomposition of several single-output functions can be performed efficiently based
on ROBDD's.

Benchmarking results show the new method to be efficient with respect to layout size,
signal delay and running time.

EjJicienl ROBDD based computation of common decomposition functions 59

•• 00 •• 00 bdd, bdd2
r, x5 00

12
•• 00

"" 01
Xn 01

x1x~3 x1x2x3
000 row pattern 1 0 0 0 row pattern 1
0 0 1 row pattern 1 0 0 1 rowpattem2
0 1 0 row panem 2 0 1 0 rowpattem3
0 1 1 row pattern 2 0 1 1 row pattern •
1 0 0 rowpanem3 1 0 0 row pattern 2
1 0 1 rowpanem 3 1 0 1 row pattern 2
1 1 0 rowpanem 3 1 1 0 row pattern 1
111 rowpanem2 111 rowpattem4

Figure 2 Charts and ROBDDs of the single-output boolean functions ft and h which
are decomposed with respect to ({ Xt, x2, x3}, { x4, . .. , Xn}). Each chart obviously consists
of 8 rows. A row pattern is associated to each row. There are three (four) different row
patterns in M(fl) (M(/2)) denoted by the numbers 1, 2, and 3 (1 to 4). Thus, r1 = r2 = 2
holds.

2 BASIC DEFINITIONS

Definition 1 A decomposition of a multi-output boolean function f : {0, 1 }" --+ {0, qm
with respect to the input partition {Xt.Xd (X1 = {x1, . . . ,xp},X2 = {xp+1, . .. ,xp+q},
p+q=n) is a representation off of the form
fk(x!, . . . ,xn)=g(kl(a~k)(Xt), . .. ,a~~)(Xl),X2) (1:/k E {1, . . . ,m}),

k

with functions alk) : {0, l}P --+ {0, 1}, and g(k) : {0, l}r~+q --+ {0, 1}. alk) are called
decomposition functions of fk· g(k) is called composition function of fk·

With respect to a given input partition {Xt,X2 }, a single-output function fk can be
represented as a 2P x 2q matrix M(fk), the decomposition matrix of fk or the chart of fk
with respect to { X1, X2} . (For illustration see Figure 2.) Each row and column of M(fk) is
associated with a distinct assignment of values to the inputs in X 1 and X 2 , respectively,
such that fk(Xt. X2) = M(/k)[X1, X2] where M(fk)[Xt. X2] represents the element of
M(fk) which lies in the row associated with X1 and the column associated with X 2 •

Note that (a~k), ... , a~~)) of definition 1 encodes the rows of chart M(fk)· Of course,
k

the following property has to hold.
Encoding Property: If the row pattern of row (Vt, . .. , vp) E {0, 1 }P differs from the

row pattern of row (v;, . . . , vP') E {0, 1 }P, then (a\k), . .. , a(~)) has to assign different codes r,
to (vt, ... ,vp) and (v;, . . . ,v~).

The minimum number of communication wires required between the subcircuit which
encodes the rows of M(fk) and the composition function g(k) is flogp~k)l where p\k) is the

number of distinct row patterns in M(fk)· rk will denote value flog p\k)l in the following. In
the following we will always consider decompositions with minimal number rk = flog p~k)l
of decomposition functions .

If fk is given by a ROBDD bddk, the minimal number of decomposition functions can be
determined in an easy way too: For all (Vt, .. . , vp) E {0, 1 }P the row pattern belonging to
row (v1 , .. . , vp) of M(fk) equals the function table of the cofactor (/k)x~~ x;• (with x? =

Xi and x: = x;). Thus the problem of determining the number p~k) of different row patterns
of M(fk) is equivalent to the problem of computing the number of different cofactors
(fk)x;l ·x? · The ROBDD of the cofactor (!k)x;~ x;• is given by the sub-bdd of bddk whose

60 Part Two Cell Assignment Based on BDD

root is reached by starting at the root of bddk and then following the path corresponding
to (Vt, ... , Vp). The roots of these cofactors are called linking nodes (the shaded nodes
in Figure 2). Since /k is given by a ROBDD, the number of different linking nodes of
bddk obviously equals the number of different cofactors. The computational complexity
of determining the number of different linking nodes is at most linear in the size of bddk
since it can be determined by traversing bddk in a depth first search manner.

The rows of chart M(fk) induce a partition of {0, 1}~' into equivalence classes Klkl, ... ,
K(Z2) such that v, v' E {0, 1 }~' belong to the same class KJk) if and only if the two corre­

P,

sponding row patterns of M(Jk) are identical. We denote the corresponding equivalence

relation by =k and the set of the equivalence classes { K}kl, .. . , K(Z2)} by {0, 1 }~' / =•.
P,

Since every equivalence class KY' is associated to exactly one linking node n}k) and

vice versa, we are able to compute K)k) from the ROBDD bddk for fk· We receive a BDD

for the characteristic function of KY) if we replace nY) by the constant 1 and all other
linking nodes by constant 0.

3 CDF

To compute decomposition functions (with domain X1) of a multi-output function f which
are used by different single-output functions fk, we have to consider the following problem
which will be denoted by CDF.

Given: Let f =(/I, ... , fm) : {0, l}n --> {0, l}m be a multi-output boolean function,
A= {X1,X2} with Xl={xl>···,xp} and X2={xp+l>···,xn} be an input partition, and

h be a natural number with h::; rk (= [logptk)l) (Vk).
Find: h single-output boolean functions a1, ... , ah, which can be used as decomposi­

tion functions of every single-output function /k for k = 1, ... , m such that there is a
decomposition of fk with minimal number rk decomposition functions of the form

/k(xl, ... , Xn) =g(k)(a1(X!), ... ,ah(XI), a~~1 (X!), ... , a~~l(XI), X2).
Of course, such h boolean functions need not to exist. We have proven the problem whether
such functions <l't, •.. , ah exist to be NP-complete. Nevertheless, we have to solve CDFt.

An algorithm which is applicable from the practical point of view (as shown by the bench­
marking results) is presented in this section.

3.1 Theoretical Background

We start with a theoretical result working towards a solution to CDF. It gives a condition
necessary and sufficient that h single-output functions a 1, ... , <l'h : { 0, 1 }P --> { 0, 1} are
common decomposition functions of JI, ... , fm· It is a generalization of a lemma shown by

Karp (1963). For this, we need the following notations: Let (J(k) : {0, 1}~'--> {1, ... ,p\k)}

be the function which maps v E {0, 1 }P to the index j of the class KY) to which it belongs.

I The (maximal) value of parameter h of CDF is determined by logarithmic search. After that we solve CDF

for subsets of {ft, ... , fm), but only for such subsets {/;., ... , J;,} where all pairs/;; and/;, have at least
one common decomposition function. Note that this question is not NP-complete, but can be decided
efficiently by dynamic programming. Also note that the algorithms for the computation of common
decomposition functions given in this paper can be generalized in a canonical manner for the case that

some of the decomposition functions aY) (i >h) are already predetermined. More details of how the CDF

algorithm is integrated in the tool can be found in Molitor/Scholl (1994).

Efficient ROBDD based computation of common decomposition functions 61

Furthermore, for given a 1, ... ,h t and all a E {0, 1 }\ let S£kl be the set { (J(k)(v); a 1, ... ,h(v) =
a} of those classes which contain a row mapped to a by a1, ... ,h· (a1, ... ,h is not able to tell

these rows apart (see the Encoding Property).) Note that S£kl and S~~l need not to be
disjoint for a -j. a', and that the number I S£kl I of elements of S!k) equals the number of
distinct row patterns of M(fk) mapped to a by a1, ... ,h·

Lemma 1 ab ... , ah are common decomposition functions of JI, ... , fm with respect to
{X1,X2 } such that there is a decomposition of fk with minimal number of decomposition
functions of the form
fk(xb···,xn) = g(kl(al(XI), ... ,ah(XI),a~~1 (XI), ... ,a~z>(XI),X2) VkE {1, ... ,m}
if and only ifmax{IS£kll; a E {0,1}h} is:::; 2r,-h (Vk).

Proof. Since (a 1, ... ,h, a~~l, ... ,r.) has to assign different values to rows of chart M(fk) with

different row patterns (see the Encoding Property), a~~l, ... ,r, has to assign different values

to those rows which cannot be told apart by a 1, ... ,h· As a~~l ,r, can produce at most 2r,-h
different values, the statement of the lemma follows. D

3.2 Solution

h common decomposition functions a1. ... , ah can be computed (on principle) by a (sim­
plified) branch and bound algorithm (see also Molitor/Scholl 1994). It constructs the
function table of a 1, ... ,h row by row (assigning function values to all elements of {0, l}P).
Branches are pruned as soon as the condition of lemma 1 is violated for the initial part
of the function table of a 1, ... ,h constructed so far.

In order to speed up the branch and bound algorithm and to receive 'simpler' decom­
positon functions we restrict our search for common decomposition functions to a subclass
of functions, which we will call 'equivalence preserving decomposition functions'§:

Definition 2 A decomposition function a; : {0, 1 }P --> {0, 1} of a boolean function fk
{ 0, l}n --> {0, 1} is said to preserve equivalences if a;(v) = a;(v') holds for every v, v' E
{0, 1}P with v '=k v'.

Common equivalence preserving decomposition functions a1, ... , ah of /I, ... , fm have to
assign the same value to v and v' E { 0, 1 }P whenever there is a k E { 1, ... , m} such that
the rows of M(fk) corresponding to v and v' have identical row patterns. More formally,
let
v~v' ~ (31:Sk:Sm)v=kv',
then the corresponding equivalence relation partitions the rows, i.e. {0, 1}P, into equiva­
lence classes E 1 , ... , E1 such that common equivalence preserving decomposition functions
have to assign the same value to each vEE;. We will denote the set of these equivalence
classes by {0, 1 }P / ~·

Now we can modify our branch and bound algorithm, such that it makes assignments
not to single elements of {0, 1 }P but to whole classes E;. Since l mostly is much smaller
than 2P, this approach considerably reduces the running time (see also section 4).

ia1, ... ,h denotes the tuple (<> 1 , ... , ah).
hn practical applications functions fk often have some desirable properties like symmetry in some vari­
ables or independence of some variables. Equivalence preserving decomposition functions 'preserve such
properties'.

62 Part Two Cell Assignment Based on BDD

Table 1 Experimental results.

Running time Layout size Signal delay
Circuit mu/op mulopll ratio CDF SIS mu/opii ratio sis mulopll ratio

9symml 1.40 1.23 1.14 0.69% 1194336 201400 5.93 27.6 13.6 2.03
C17 0.32 0.15 2.13 0.01% 28800 31744 0.91 4.2 4.2 1.00
cm138a 1.01 0.18 5.61 0.89% 103896 87480 1.19 5.8 6.8 0.85
cm151a 4.16 1.09 3.82 0.13% 95312 177712 0.54 12.6 16.4 0.77
cm152a 2.15 0.50 4.30 0.36% 85536 106704 0.80 10.0 13.2 0.76
cm162a 350.65 3.32 105.62 0.26% 131976 192000 0.69 12.0 13.2 0.91
cm163a 2923.31 2.35 1243.96 0.08% 144008 164416 0.88 13.0 10.4 1.25
cm82a 0.38 0.21 1.81 0.01% 74784 61600 1.21 7.2 7.0 1.03
cm85a 7.46 3.73 2.00 0.27% 165456 180000 0.92 10.2 11.0 0.93
cmb 1836.13 2.52 728.62 0.05% 204792 123496 1.66 9.4 6.8 1.38
decod 26.15 2.56 10.21 1.93% 140448 119496 1.18 6.2 5.0 1.24
f51m 3.14 1.83 1.71 0.28% 561184 251392 2.23 51.0 18.4 2.77
majority 0.44 0.08 5.50 0.01% 42200 39168 1.00 7.8 6.6 1.18
parity 111.06 1.37 81.07 0.00% 99408 96976 1.03 5.0 5.0 1.00
z4m1 0.66 0.76 0.87 0.16% 156288 103896 1.50 16.2 9.8 1.65

L: 3228K 1937K 1.67 198.2 147.4 1.34

As already mentioned in section 2 ROBDDs bddik), . .. , bdd(~~l for the characteristic func­
P,

tions of the equivalence classes K!k), ... , K(t2, with respect to =k can easily be computed
P,

from the ROBDDs of the fk· To compute the characteristic functions of the equivalence
classes with respect to ~, we implicitely construct a graph G = (V, E) where the set V

of vertices is given by the ROBDDs bdd}k) representing the equivalence classes KY). At

the end, there is an undirected edge {bdd~:d,bdd~~2)} if and only if bdd~:l) 1\ bdd~~>) =f- 0,

i.e., iff K};d n KJ~2) =f- 0. Obviously, there is a one-to-one relation between the set of the

connected components (in the graph-theoretical sense) of G and the set of the equivalence

classes {0, 1 }P / ~· For every class E;, there is a connected component CC; of G such that

the logical-or of the ROBDDs bdd~k) (for any fixed k) corresponding to vertices of CC;
results in a representation of E; and vice versa.

4 EXPERIMENTAL RESULTS

We applied our tool, which uses the CDF algorithm described above as basis, to a number
of benchmarks of the 1991 MCNC multi-levellogic benchmark set. We will call the ROBDD
based implementation of our tool mulopll. Our former implementation working on charts
will be called mulop (Molitor/Scholl1994).

Columns 1-3 of Table 1 show running times (in CPU seconds, measured on a SPARC­
station 10/30 (64 MByte RAM)) of our ROBDD based implementation m.ulopl/ compared
to those of our former version mulop. Experiments prove our ROBDD based version to be
much more efficient than the former version.

The next column of Table 1 shows the fraction of running time which is used in the
computation of common decomposition functions compared to the total running time of
the tool mulopl/. It shows that only a very small fraction of the total running time is
used for the computation of common decomposition functions. The running time is dom-

Efficient ROBDD based computation of common decomposition functions 63

inated by the computation of good input partitions, not by the computation of common
decomposition functions. This confirms our approach to compute common decomposition
functions rather than to encode linking nodes in a straightforward manner.

Columns 5-7 of Table 1 show a comparison between sis (Sentovich (1992)) and mulopll
with respect to layout size 9f. For almost two thirds of the benchmark set, our approach
dominates (or is as good as) that of sis with respect to layout size. Nevertheless, the signal
delays of our realizations for more than two thirds of the circuits considered are better
(or equal) than those of the realizations synthesized by sis (see columns 8-10 of Table 1).

5 CONCLUSION

We have presented a ROBDD based technique for computing common decomposition func­
tions of multi-output boolean functions. This algorithm has been integrated in our multi­
level synthesis tool which has been presented in Molitor/Scholl (1994) where more details
of how the CDF algorithm is integrated can be found. The benchmarking results show
that most of the circuits constructed by our synthesis tool are very efficient. They also
prove it to be applicable in terms of running time.

REFERENCES

R.L. Ashenhurst. The decomposition of switching functions. In Proceedings on an In­
ternational Symposium on the Theory of Switching held at Comp. Lab. of Harvard
University, pages 74-116, 1959.

R.K. Brayton, G.D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multilevel logic synthesis.
Proceedings of the IEEE, 78(2):264-300, February 1990.

R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
on Computers, C-35(8):677-691, August 1986.

H.A. Curtis. A generalized tree circuit. J. Assoc. Comput. Mach., 8:484-496, 1961.
T. Hwang, R.M. Owens, and M.J. Irwin. Efficient computing communication complexity

for multilevel logic synthesis. IEEE Trans. on CAD, CAD-11(5):545-554, May 1992.
R.M. Karp. Functional decomposition and switching circuit design. Journal of Society of

Industrial Applied Mathematics, 11(2):291-335, June 1963.
Y. Lai, M. Pedram, and S. Vrudhula. BDD based decomposition of logic functions with

application to FPGA synthesis. In IEEE/ACM Design Automation Conference DAC93,
pages 642-647, 1993.

Y. Lai, K. Pan, and M. Pedram. FPGA Synthesis using Function Decomposition. In
Proceedings of ICCD94, pages 30-35, 1994.

P. Molitor, C. Scholl. Communication based multilevel synthesis for multioutput boolean
functions. In Proceedings of the 4th Great Lakes Symposium on VLSI, Notre Dame,
Indiana, March 1994.

U. Schlichtmann. Boolean Matching and Disjoint Decomposition for FPGA Technology
Mapping. In Proceedings of the IFIP Workshop on Logic and Architecture Synthesis,
pages 83-102, 1993.

E. Sentovich et a!. SIS: a system for sequential circuit synthesis. Department of EE and
CS, UC Berkeley, May 1992.

, The technology library consists of the 2-input gates from stdcel/2_2.genlib available in octtools. Place­
ment and routing was done by Timber Wolf integrated in octtoo/s.

