
1

Boolean Optimization Using

Implicit Techniques

F. Poirot, G. Tarr,ou.x and R. Roane
Compass Design Automation
505, Route des Lucioles- 06560 Sophia-Antipolis, France.
tel: (+33) 92.94.46.21 -fax: (+33) 93.65.39.21
e-mail: franck@compass .fr

Abstract

The increasing complexity of industrial designs, and especially with the extensive use of high
level languages such as VHDL or Verilog, progressively obsoletes classical Boolean optimiza­
tion techniques. Thus, the application of Binary Decision Disgrams in Logic Synthesis becomes
an attractive alternative to push forward the limit of design complexity. In this paper, we have
developed new Optimization techniques only based on implicit techniques, and all classical
steps were fully reformulated to provide a powerful system providing better results than other
existing techniques.

Keywords

Logic Synthesis, Binary Decision Diagrams, Boolean Optimization, Implicit Techniques.

1. INTRODUCTION
The generalization of hardware description languages such as VHDL or Verilog and improve­
ments in technologies allow the designer to consider the possibility of defining bigger designs.
Also, to make these descriptions more readable and easily debuggable or back-annoted, design­
ers generally introduce local variables or signals to express their logic functions. These descrip­
tions yield to huge redundant and unoptimized Boolean networks which will be under optimized
or impractical to process with classical optimization algorithms.

To push forward these limitations, Binary Decision Diagrams have been introduced. BDDs
are dense representations of Boolean function based on Shannon decomposition (Bryant 86). If
a fixed input order for the successive Shannon decompositions is imposed, they become a
canonical representation (ROBDDs) widely used for verification purpose (Madre 90, Touati 91,
Jeo 91), testing (Akers 78), or direct technology mapping (Besson 92, Murgai 92).

G. Saucier et al. (eds.), Logic and Architecture Synthesis
© IFIP International Federation for Information Processing 1995

4 Part One Logic Minimization Based on BDD

In this paper, after some definitions, we are preliminary concerned with the description of
our implicit Boolean optimization system. This system completely redefines conventional
methods and pushes forward the complexity of designs to allow better optimizations. Efficient
and novel ideas are presented using dynamic manipulation of implicit structures during the opti­
mization process to allow the consideration of powerful techniques such as Boolean division
with a constant control of the memory usage. These techniques have been evaluated on standard
MCNC benchmarks and show a strong improvement compareri to other published methods.

2. DEFINITIONS

2.1. Binary Decision Diagrams

Given a Boolean function F(x 1, x2, ... , x0) the positive and negative cofactors off with respect
to x are defined by Fx = F(l, x2, ... , xJ and Fx = F(O, x2, ... , x0). The Shannon expansion with
respect to variable xis given by F = x.Fx+ x.Fx. A Binary Decision Diagram is a Direct Acyclic
Graph (DAG) representing a Boolean function. The construction of a BDD is based on the suc­
cessive Shannon decompositions of the function according to ~ splitting variable as shown in
figure I. Each non terminal node n rooted by a variable x, corresponds to a function F(n) and is
the origin of two arcs F(n)0 and F(n)1. The graph rooted at F(n)0 represents the negative cofactor
F(n)x and is called the Else Edge of n. The graph rooted at F(n)1 represents the positive cofactor
F(n)x and is called the Then Edge of n.

For an Ordered BDD (OBDD) a global ordering "<" over the set of variables is imposed.
On any path from a root to a terminal node the variables occur in the given order. The graph
may have redundant vertices and duplicated subgraphs. They are eliminated by repeatedly
applying transformations rules (Bryant 86). The BDD shown in figure I is in fact an OBDD
with the order a<b<c<d.

F

Figure 1: BDD for F=ab+cd

Fll
I

The maximally reduced graph is referred as Reduced Ordered BDD (ROBDD). For a given
Boolean function and a given ordering, this graph is unique and therefore constitutes a canonical
representation. This property presents crucial advantages for functional equivalence testing.
Figure 2 shows the ROBDD ofF= a xor b xor c.

ROBDD with negative edge is a more compact representation (Madre 88). In this represen­
tation, not only common subtrees corresponding to the classical notion of subfunctions (SF) are
identified, but the complemented subtrees (SF) are also detected. The subtree and its comple­
ment will be represented only once and a negative edge can be considered as an inverter. Figure
3 shows the ROBDD with negative edges of F= a xor b xor c. In this paper the term BDD
denotes ROBDD with negative edges.

Boolean optimization using implicit techniques

Fi!!,ure 2: ROBDD or
T • a xor b xor e

Figure 3: ROBDD with
negati~e edges or F

2.2 Dynamic Improvement of the Ordering

5

After each garbage collection, before starting operations, the variable ordering is dynamically
improved with the algorithm proposed in (Rudell 93). This step reduces the current node count,
and makes the future operations faster to perform. It also allows to build BDDs which could not
be :.:-uilt with any fixed ordering, as any given ordering fails during the construl-iion. This swap­
ping is performed on adjacent variables v; and vi+ I · This allows to only change the part of the
DAG containing V; and vi+ I• instead of re-building the whole graph. Figure 8 gives the general
case of the method when F0 and F 1 are printed more than once. Note that new built nodes have
to be made canonical and be looked-up in the node hash table before physically creating them.
The interesting property of an adjacent swapping is that the top and bottom parts of the DAG,
respectively built from v1 to vi-I and from v;+2 to vn are unchanged before and after the trans­
formation. Indeed, referring to figure 4, considering F, F0, F1 as inputs, top part of the DAG
denotes the same BDDs with the same input ordering, before and after the swapping. Thus, the
canonicity property of BDDs involves that the DAG obtained after swapping vi and vi+! is

homomorphic to the initial one. Now considering Fij• (i,j) E {0,1 }2, as outputs, the bottom part
of the DAG denotes the same BDDs with the same ordering before and after swapping.

,....-,,Jk,,lr,~..vf;,..,yi.2

L----------'YD

Figure 4: Adjacent swapping

2.3. Cube Set Manipulation and Implicit minimization

Classical approaches are based on Sum-of-Products (SOPs) structures which quickly appears to
be very greedy in memory usage and unsuitable for logic operations like inverting or equiva­
lence testing. So, in conjunction with BDDs which lead to a more efficient representation of
Boolean functions than logic trees, an efficient cube set representation was also necessary to
pert'orrn the minimization process. Madre and Coudert (Coude1t 92) have proposed a BDD
based meta-product structure, which requires two variables (oi• si) to denote the occurrence and

6 Part One Logic Minimiztllion Based on BDD

the sign of each input X;. In a such BDD, each !-path starting from the root node denotes a cube.
The paths rooted by the Then-Edge of O; contains an occurrence of X;. Then, s; expressed if X;

occurs in its direct (Then-Edge) or complemented form (Else-Edge). This structure has the
advantage to be compact and canonical for prime sets, and its size is not related to the number
of cubes it denotes. In (Coudert 92) a breakthrough method was given to compute primes and
essential primes of so large functions that they have never been handle before, and (Coudert
93b) provided a new logic minimization algorithm resolving cyclic core of all the hard Espress·_.
problem. Nevertheless, for sparse networks like some ISCAS benchmarks the meta-products
structure could blow up, even if the BDDs of these networks can be built. Minato proposed in
(Minato 93a) a new cube set structure called Zero-Suppressed BDDs, or ZBDD (for Cube Set),
based on new reduction rules on BDDs. This structure is definitively more suitable for cube set
manipulation than meta-products, especially for sparse networks. In this structure, one variable
is used to denote in which cube an input X; appears, and an other variable denote in which cube
xr appears. The major improvement consists on a new reduction rule which eliminates from the
graph the variables which does not appear in the cubes to whose path they belong, namely the
variables whose Then-Edge points to the "0" terminal node. Figure 7 gives the algorithm
described with meta-products in (Coudert 93a), adapted here with ZBDDs using the principle
of MotTeale's algo:ithm (Morreale 70).

lrr(F.Fsup)
if F-<mptySc/lhen n:tum(<mptyS</)
if Fsup-ba.u:Sc11htn n:tum(bar<Sc/)
S, :- lr~.~(FsupJ ••• (FsupJ,)
S., :-lrr(F.,.-[Fsup!,. JFsup).,)
Sd :- lrr(F.,.-(S. ,)+F,.-(S,).

x·F- JFsup).,.(Fsup),)

return(-.A x)

[_xs
Figure 7: lrrcdundant Prime Conr Generation

3. BOOLEAN NETWORK DECOMPOSITION

3.1. State of the Art

The decomposition of the Boolean network is of prime importance in logic synthesis as it
directly impacts on the quality of the synthesized circuit. Even if the quality criteria is measured
in terms of area, speed, power or testability, it has been proven that the literal count is a good
predictor. Algebraic methods to optimize combinational circuitry have been already proposed
in the early 1950's. These methods were only suitable for small networks not exceeding I 0 vari­
ables. They were nicely enhanced in the 1980's by more sophisticated techniques (Brayton 84).

Nevenheless, all these research sntdies were mainly driven by initial works targeted on
PLA implementation. Clearly, the sum-of-products representation was very attractive to deal
with Boolean networks as the programming data structure was compact, and the algorithms may
usc the efticiency of classical programming languages (mask on operators, and, or, xor between
bytes representing the covers). Therefore, most designs of that period were handled in an eftl­
cient way as long as PLAs was an interesting issue, and the design complexity relatively small.

Boolean optimizlltion using implicit techniques 7

But the introduction and the generalization of hardware languages such as Verilog, VHDL,
and the improvements in the technologies, significantly increases the size of Boolean networks.
Then, industrial applications became more and more impractical to process with standard SOPs
approaches. They usually consume huge memory and take large CPU time which is not com­
patible with the time to market criteria becoming a key of success for CAD companies. Of
course, numerous heuristics solve these weaknesses but they seriously impact on the quality of
the final circuitry.

The introduction of implicit techniques was a complete breakthrough in this field and cre­
ates new motivations to reconsider conventional techniques with these powerful structures.
They represent the next generation in synthesis. Minimization was already successfully
addressed by (Coudert 92) and (Minato 92), but the decomposition still remained a bottleneck
in the flow.

Minato (Minato 93b), introduced algebraic techniques but they were very limited. In fact,
Brayton's kernel extraction (Brayton 87) method was rewritten with implicit techniques and
was based on the most occurring literals. Also, only algebraic division was applied, and the
algorithm only considered one single function avoiding the sharing of identical logic within sev­
eral functions.

Recently, Stanion (Stanion 94) proposed a more sophisticated method by producing a more
complete set of divisors. Unfortunately, the weighting of these candidates was based on BDD's
I path which is neither prime nor irredundant. So, they could not correctly link the candidate
extraction to their final goal. Moreover, they provided a more sophisticated division than
Minato with Boolean consideration by using cofactor techniques, but these methods could not
provide the same quality than a fully Boolean division. Finally, as in the previous method, they
only deal with single functions.

The method that we propose tries to cover the previous weaknesses by taking advantage of
the efficiency of our new BDD and ZBDD package presented before. In fact, our goal is to
develop implicit techniques allowing to consider a complete Boolean network as input of our
BDD optimizer. Then, it may run sophisticated decomposition techniques (divisor extraction,
exact weighting, Boolean division) on industrial networks with fast execution time.

3.2. Decomposition flow

A typical decomposition flow is represented in the figure 8. The first phase consists of comput­
ing a set of candidates which can be used to divide one or more functions in the Boolean net­
work and obviously, if no candidate is found the decomposition is ended. Afte1wards, on or
more candidates have to be selected as divisor and it is important to define an accurate selecting
criteria which COITectly represents the goal of the optimization. In the technology independent
optimization the more suitable criteria is the number of literals in a Boolean function. Then, for
each candidate we compute a weight which represents exactly the number of literals saved in
the Boolean network when this candidate is used as divisor. Moreover, in order to have a more
powc11'ul decomposition, we develop and usc in our t1ow a method to determine the best com­
patible set of candidates. This allows to divide the Boolean network by several candidates in the
same iteration instead of using only one. To divide the Boolean network we have develop both
Boolean and algebraic divisions based on ZBDD structure. The power of these two new divi­
sions allows us to run both of them for each candidates and keep the best result without a large
cpu time penalty. All algorithm used in our tlow arc described more precisely in the following
paragraphs.

8 Pan One Logic Minimization Based on BDD

Mapping

Figure 8: Decomposition flow

3.3. Divisor extraction

The most popular method for the identification of common sub-expressions in the Boolean net­
work has been proposed by Brayton and Mcmullen at ISCAS '82. Here again, the problem is
similar to the creation of optimal code for a compiler and the SOPs appear a very suitable rep­
resentation for a limited complexity. In this paper, the notion of kernels of a logic expression
was introduced to provide an efficient means of fmding common sub-expressions. A kernel K
of a function F is defmed as the cube free quotient ofF by a cube C.

In our flow, we have developed a new algorithm taking full advantage of the implicit stmc­
ture to get alllevel-0 kernels of a function. One main advantage of this procedure versus clas­
sical SOP ones is that during the examination of the implicit structure graph only effective
inputs are considered while SOPs require the evaluation of all inputs which allows to generate
the set of level-0 kernel in a little cpu time. The pseudo code of the level-0 kernel extraction
procedure is given in figure 9.

kemelO(zbdd, lit)
{ if nbLiterals(zhdd) < 2 then return

while (lit-nextlnput(zhdd,lit))
{ if not literallsSevera!Times(zhdd. lit) then continue;

zbddVar :- gctZBDDVai{lit);
zbddl :- subSetWhenVarlsl (zbdd, zbddVar);

cubeFactor :- largestCubcFactor(zhddl, zhddVar);

if cubeFactor=emptySet then continue;

if cubeFactor<>baseSer
tltcn zhddl :- divideAigZBDD(zbddl, cubcFactor);

updatcCandidatList(zhdd l);
keme!O(zbddl, lit);

Figure 9: kernel 0 extraction procedure

Using only level-0 kernel candidates is not enough to have an efficient decomposition
because some other candidates can be very good divisors like intersecting level-0 kernels or
common cubes. Intersecting level-0 kernels are computed from the level-0 kemcl set generated
with the procedure previously described. For instance, if the two following level-0 kemels
kl=a+b+c and k2=a+b+d are found, the intersectKemel procedure described below will tind the

Boolean optimiVJiion using implicit techniques 9

candidate a+b which will be put in the candidate list. In the same way, if in the Boolean network
there are two functions f and g such as f=a.b.c.d + e.f.g and g=a.b.c.e + f.g.h, we can easily see
that the cubes a.b.c and f.g are shared by f and g. The procedure commonCube extracting com­
mon cubes in the Boolean network is described below.

Therefore, our candidate computation phase based on ZBDD generates a list of candidates
containing level-0 kernels, intersecting kernels and common cubes which allows us to chose the
best candidate among a large set of candidates.

kernellntersectO
{ for i:=lto (nbKernel0-1)

3.4. Divisor selection

{ for j:={i+l) to nbKerne!O
{ newKernel := intersection(kerneli, kernelj);

if newKernel<>emptySel
then updatelntersectList(newKernel);

}

Figure 10: kernel intersecting procedure

After getting the set of candidates for decomposition, we compute the weight of each of
them. The candidate's weight is the number of literals saved in the Boolean network when the
network is divided by this candidate. During the weight computing phase, we divide all func­
tions in the Boolean network by the candidate and its complement by using both algebraic and
Boolean division. Obviously, the weight of a candidate is the sum of the best weights got for
each divided function ..

conunonQtbe(f, g. cube, lit)
{ if (f-baseSet OR g-baseS<t) AND nbLit(cube)> 1

then updateCubeList(cube);
while Oit-nextlnjXJt(f, lit))
{ zbddLit :- getZBDDVar(lil);

if nbLit(g)-1 then
if g-zbddLit

then zhddVa!(}:-baseSct
else zhddVat{}:-cmptySet

else zbddVa!(}:-subSetWhen Varls 1 (g,zbddLit);
if zbddVat{}-emptySet tl1en continue;
ifnbLit(f)-1 tl1en

if f-zhddLit
then zhddVarF:-IKtseSet
else zhddVarF:-cmptySct

else zbddVarF:-subSetWhenVarls1(F,zbddLil);
commrnCubc(zbddVarF, zbddVarG,

zbddMultiply(cube,zbddLit), lit):

commonCubesExtract()
{ for all funei and funcj

commonCubc(funci.fWJcj, bczscScr. 0);

Figure 11: common cube extraction procedure

Afte1wards, we have to select the best candidate and divide the Boolean network by it. In
fact, in order to have a powertul decomposition in terms of quality and cpu time, we select a set

10 Part One Logic Minimiltllion Based on BDD

of candidates instead of using only one candidate at each iteration (figure 8). To select a set of
candidates by keeping the right knowledge on the literal saving, we introduce the term of com­
patibility between candidates. Then, we say that 2 candidates cl and c2 are compatible if and
only if the entire Boolean network can be divided in the same way by {c 1, c2} and {c2,c 1 }. In
other work, cl and c2 are compatible if the parts of Boolean functions affected are disjoint
which means that the weight of c2 (c I) computed before and after dividing the Boolean network
by cl (c2) is the same. Then, after computing all compatibilities we build a compatihility graph
and use an algorithm to find the best weighted clique which represents a set of compatible can­
didates.

3.5. Boolean division

The Boolean division problem is a complex problem to solve because it requires the computa­
tion of Boolean operations which may have a high complexity under some data structures. It is
mainly because classical methods such MIS (Brayton 87) solve this problem by expressing the
divisor as the don't care of its expression by its variable. Moreover, this method has the disad­
vantage to compute the complement of a divisor which is of an exponential complexity with
sum of product structures instead of being immediate with BDDs. Therefore, methods using
SOP shc,..~ld include a bunch of heuristics to handle large designs which badly impact ihe quality
of the results. Additionally, most industrial tools make only use of algebraic techniques since
they consider Boolean ones too costly. Even with the BDD structure this problem is not easy to
solve since Boolean division creates a large number of nodes in the BDD structure which may
easily blows up the system if no memory control is done.

In our method, we consider the Boolean division with a novel approach (figure 12). This
method uses the principle of the implicit minimizer and computes the best bounds of the remain­
der and the dividend. First the smallest remainder is computed with smallest lower bound
(Rmin) and largest upper bounds (Rmax) to increase the Boolean space. Afterwards, bounds for
the dividend are computed by taking into account the result of the remainder. The figure 12
shows the principle of our Boolean division and the figure 13 shows an example of division.

Fmax

f=POtR

0 < Q < -D + Fmax; Fmin.-(Q.O) < R < Fmax

Rmin- Fmin.-D; Rmax- Fmax R
Qmin- Fmin.-R: Qmax - Fmax + -0 .. Q

Figure 12: Boolean lkcompositlon

Note that during execution of these operations, dynamic ordering and garbage collector
control the memory used in order to avoid over size due to the creation of internal BOD nodes.

Boolean optimimtion using implicit techniques

F=a +b.c
D=a+c

Rmin - Fmin.-0
Rmax-Fmax

Qmin - Qmin.-R
Qmax- Fmax + -0

F= (a+ c).(a+ b)+ 0

- (a + b.c).-a.-c - 0 L-... R _ 0
-a+ b.c r----
-a+b.c ~
-a+ b.c +-a.-c -a+ b+-c Q

Fq:ure 13: Example

4. UNIFIED APPROACH WITH VERIFICATION

11

-a+b

Since time to market is of prime interest for EDA companies, it is mandatory to detect as soon
as possible any errors in the fmal implementation. For that purpose, formal verification tech­
niques has been widely developed and adopted (Madre 90, Touati 91).

These errors can be either introduced by the system itself or by the designer who may have
modified the schematic to respect a specific constraint. So, both aspect should be considered to
provide an convenient system which guarantees the correctness of the design without too much
CPU overhead.

The novelty of our system is to use the same data structure with its canonicity property to
optimize the network and verify if the final implementation is correct regarding the initial func­
tional description. So, there is no ovemead in the computation time.

In case of errors, a report clearly tells which signal is incorrect and the designer can easily
backannotate the functional description. Also, our system can be used as a prover. In that case,
the designer specifies properties (for instance a traftic light is not green and red at the same
time). These properties are converted in our data representation, and compared with in the spec­
ification. In that case, it provides the designer a powe1ful way of checking that his HDL descrip­
tion respects his specification.

5. EXPERIMENTAL RESULTS
This new Boolean optimization algorithm was implemented as part of the ASIC Synthesizer of
Compass Design Automation. This program was w1itten on Mainsail (MAINSAIL) on SPARC
1030. It was tested on standard MCNC benchmarks (MCNC 89) and compared with the factor­
ing results of MIS (Brayton 87) from Berkeley, and CATAMOUNT from the University of
Washington (Stanion 94). The first one uses classical sum of product representations, and the
latest the new Boolean techniques applied on BODs as previously described. As we arc prelim­
inary concerned by the number of literals, we usc this c1iteria to compare all methods. It has also
the interest of being independent of the mapping process and the target library, and so fair com­
parisons can be drawn.

Results are shown in table l. The first column gives the name of the benchmarks provided
by MCNC. The 2 others give information on the I/0 connection numbers. The MIS column pro­
vides results given in (Brayton 87), and the CAT (for CATAMOUNT) were given in (Stanion
94). COM gives the results for Compass. The ratio for MIS and CAT is computed as the differ­
ence of literals with COM divided by MIS and CAT respectively. It shows an average improve­
ment of 16.7% in terms of literals compared with MIS, and 10.5% compared with CAT. Run

12 Part One Logic Minimization Based on BDD

times to proceed these benchmarks are in a range of 10% compared to Catamount which is con­
sidered as similar for a user point of view.

Bencbmar
MIS CAT COM COMYS COMYS

k MIS(._) CAT(._)

rdSJ 70 68 60 -14.3 -11.8

misexl 86 ., 7S -12.8 -14.8

mise,.;l 164 163 117 -28.7 -28.2

fSJm 168 174 167 ·0.6 -4.0

s~pl 164 159 148 -9.8 ·6.9

z4ml 69 67 S6 -18.8 -16.4

saol 183 174 201 9.8 1S.S

9sym 258 116 139 -46.1 19.8

vgl 246 2S4 133 -45.9 -47.6

rd73 192 173 178 -7.3 2.9

bw 299 306 223 ·25.4 -27.1

9syDIDII 277 ?.7S 127 -54.2 -54.3

alupla 205 182 176 -14.1 -3.3

duke:Z 772 528 -31.6 -28.3

mi..V 1053 1010 1342 27.4 32.9

rd~ 381 319 149 ·60.9 -53.3

Sum 4587 4267 3819
average ·16.7 -10.5

Table 1: Results

We have also evaluated this method on industrial designs, which was in fact the main eval­
uation criteria of this approach for a CAD company. These designs have complexity ranging
between 1,000 to 50,000 gates which cover in fact the standard design complexity that actual
Logic Synthesis tools should handle. It appears that 10% of these designs could not be handle
with standard SOP techniques when BDD completed in few minutes. Others have been drasti­
cally speed-up (up to 100 times), and the results were ranging from -6% upto 17%. In addition,
this technique allows to easily compare the complexity of the function towards its comple­
mented form, and thus keep the better one, still allowing further improvements.

6. CONCLUSION AND FUTURE WORK
We have proposed new multilevel synthesis techniques based on Binary Decision Diagrams and
implicit cube manipulation. These techniques have been successfully applied on industrial
designs due to the efficiency of our complete dynamic approach to build and apply our BDD
core algorithm. This BDD core always controls the memory usage to prevent any explosion and
also to speed up the complete process which is a novel and powerful approach aM owing to syn­
thesize and optimize larger designs. We have also discussed how this BDD core is linked to
each synthesis process.

Both cpu time and memory usage can still be improved by using several BODs with differ­
ent input orderings instead of using only one. Then, in the future we will improve our candidate
extraction and division algorithms in order to take advantages of partioning approaches. Even
the very encouraging results we got with our BDD optimizer we think that we can still greatly
improve it.

Next development will focus on the extraction of Boolean divisors directly from the topol­
ogy of the BDD. Also, even if literals are good estimator, they cannot reflect well the complex­
ity of all library cells provided by CAD vendors. For instance, the integration of Low Power

Boolean optimimtion using implicit techniques 13

issues privilege the development of new AOis (and or inverter) cells for which the complexity
is not related to the number of literals. So, we plan to interface our Optimizer with a Boolean
Matching System to allow a more precise weighting and selection of candidate divisors. We
believe that this development would considerably improve the quality of the designs by consid­
ering earlier the design goals (area, speed, or power).

7. REFERENCES
Akers (1978), "Functional Testing with Binary Decision Diagrams", Pro c. of the IEEE Conf. on

Fault-Tolerant Comput.,pp 75-82.

Besson, Bouzouzou, Crastes, Floricica and Saucier (1992), "Synthesis on Multiplexer-based
F.P.G.A. using Binary Decision Diagrams", Proc. of ICCD 92.

Brayton and a!. (1984), "Logic Minimization Algorilhms for VLSI Synthesis", Kluwer
Academic Publishers, Boston.

Brayton and a!. (Nov. 1987), "MIS: a Multi-Level LogicOptimization System",IEEE
Transaction on CAD, pp.l062-1081.

Bryant (1986), "Graph-Based Algorithms for Boolean Function Manipu!ation",IEEE Trans. on
Computers, Vol C-35, no.8, pp. 677-691.

Coudert and Madre (1992), Implicit and Incremental Computation of Prime and Essential Prime
lmplicants of Boolean Functions", 29th ACM!IEEE Design Automation Conference.

Coudert and Madre(l993a), ''Toward a Symbolic Logic Minimization Algorithm", Proc. VLSI
Design'93, Bombay, India

Coudert, Madre and Fraisse (1993b), "A New Viewpoint on Two-Level Minimization", 30th
ACM!IEEE Design Automation Conference.

jeong eta! (1991)., "Variable Ordering For FSM Traversal", Proc. of the International
Workshop on Logic Synthesis, MCNC.

Madre and Billon (1988), ''Proving Circuit Correctness using Fom1al Comparison Between
Expected and Extracted Behaviour", 25th ACM!IEEE Design Automation Conference ,
pp. 205-210.

Madre (1990), "PRIAM : un outil de verification formelle de circuits integres digitaux ", These
de !'ENS des Telecommunications, Paris.

Murgai, Brayton, Sangiovanni-Vincentelli (1992), "An Improved Synthesis Algorithm for
Multiplexor-based PGAs", 29th ACM!IEEE Design Automation Conference , Anaheim,
CA, June 1992, pp. 380-386.

MCNC (1989), Introduction to Synthesis Benchmarks, second lntemational Workshop on
Logic Synthesis, North Carolina USA, May 1989

MAINSAIL Language manual, XIDAK inc.

Minato (1992), ''Fast Generation of lrredundant Sum-of-Products Forms from Binary Decision
Diagrams", Proc of SASIMI '92, pp. 64-73.

Minato (l993a), ''Zero-Suppressed BDDs for Set Manipulation in Combinational Problems",
30th ACM/IEEE Design Automation Conference.

Minato (l993b), ''Fast weak division method for implicit cube representation", proceeding
SAS/M/"93.

14 Part One Logic Minimization Based on BDD

MmTeale (1970), "Recursive Operators for Prime Implicant and lrredundant Normal Form
Determination", IEEE Trans. on Computers, 1970.

Murgai, Brayton , and Sangiovanni-Vincentelli (1992), "An Improved Synthesis Algorithm for
Multiplexor-based PGAs", 29th ACM/IEEE Design Automation Conference, Anaheim,
CA, pp. 380-386.

Rudell (1993), "Dynamic Variable Ordering for Ordered Binary Decisi;.,, Diagrams", Proc. of
International Workshop in Logic Synthesis, CA.

Stanion and Sechen (1994), "Boolean division and factorization using BDDs", IEEE

Transactions on CAD vol 13, N" 9, sept 94, pp. 1179-1184.

Touati, Brayton and Kurshan (1991), "Testing Language Containment for w-automata using
BDDs", Formal Methods in VLSIDesign, Miami, ACM, New-York.

8. BIOGRAPHY
Franck Poirot has got his PhD thesis in 1990 from the INPG in France unrler the responsability
of Prof. Saucier. Then, he joined VLSI Technology as Software Developer and Compass
Design Automation as Logic Synthesis project leader. Afterwards, he was appointed Program
Manager to follow up the technical management of European projects. He has published more
than 20 papers in high rated conferences such as DAC, ICCAD, EDAC or Euro-ASIC, and
held two patents issued by the Patent and Trade-Mark Office in USA, and two others are still
in the review process.
His main interests focus in several CAD aspects such as Logic Synthesis, Test, Formal Verifi­
cation, Simulation, and Low Power designs.

Gerard Tarroux received the Ph.D. degree in micro-electronic from the University of Montpel­
Iier (France) in 1991. Then, he joined Compass Design Automation as Software Developer
in the Logic Synthesis team. His reasearch interests include many aspects of CAD for VLSI
with special emphasis on logic synthesis, FSM synthesis, formal verification, testing and low
power designs.

