
10

Specification Environment for Multi-agent
Systems Based on Anonymous
Communications in the CIM Context

A. A TIOUI, A. HAS BANI, A. MAOUCHE
Laboratoire d'Informatique/ ISIMA
B.P. 125
63173 AUBIERE CEDEX, FRANCE
Tel: 73 40 74 40 Fax: 73 26 88 29
mail: ammar@sp.isima.fr

Abstract
In this paper, we propose a formal specification method for manufacturing systems software
development. Our approach is based on rewriting logic and multi-agent paradigm. It
proposes a methodology for the analysis and the structuration of the command part of
manufacturing systems, in terms of cooperative and specialized agents. Rewriting logic
constitutes the formal framework. The approach may be seen under two complementary
aspects; the first one consists, in general, in the distributed system conception and the second
concerns the use of lAD principles for the representation, the distribution and the knowledge
co-operation through a system of cognitive, autonomous and co-operating agents. The
method supports modularity and abstraction, follows the great principles of a multi-agent
systems approach and supports real time applications.

Keywords
Specification, Validation, Formal methods, Manufacturing Systems, Multi-Agent Systems,,
Methodology.

1 INTRODUCTION

It is widely recognized that methodologies and tools used in analysis requirements and
specification stages determine directly the quality of the development of software systems.
For real-time systems, these methodologies and tools must additionally provide concepts,
formalisms, and mechanisms to express at a high level of abstraction the concurrency of
multiple computation threads, the synchronization and the communication between these
threads and the handling of internal and external events. Inconsistency and incompleteness of
the specifications must be detected as soon as possible in order to avoid costly readjustments

P. Ladet et al. (eds.), Integrated Manufacturing Systems Engineering
© Springer Science+Business Media Dordrecht 1995

Specification environment for multi-agent systems 145

in the design and development stages. Manufacturing systems belong to the more general
class of distributed and real time systems. The intelligent systems designers (Ayel, 1991])
are not out of the way of this evolution; They use both systems with blackboard architecture
(Laasri, 1989), (Bouzouane, 1993), where the contribution to solve a problem goes by a
common data structure, and Multi-agent systems, where communications are done solely by
message passing. We can distinguish two distribution levels: running distribution (parallel
inferences) and data distribution (knowledge) which favours the performance improvement
(sequential or parallel execution) (Occello, 1993). Implementation of such systems requires
two different stages. The first stage consists in designing a conceptual unambiguous model
for specifying the requirements analysis. The second stage consists in deriving an executable
model for evaluation and validation of the system. The information provided by this model
are very useful for the final definition of the control part of the system.

Numerous methods are available to specify and design such systems. Among these
methods we can mention SAIRT, SA/DT, OMT(Hatley,1990), (Fayad,1994). These methods
are adequate to capture and describe the behavior of complex systems. But most of them do
not offer a formalized framework facilitating the elimination of any inconsistency and
incompleteness. Indeed, these methods use multiple different and incompatible models with
the same specification. For example, SAIRT uses data flow diagrams, control flow diagrams
(finite state machines) and a process activation table. Timing constraints are specified
separately in the timing constraints table. In the other hand, Petri nets and their extensions
(Bruno, 1986), (Peterson, 1981) can be efficient when the studied system is not too complex.

Formal methods and techniques have been suggested over the last several years to prove
properties about specifications. CCS, Z, VDM, ESTELLE, LOTOS, SDL (IS0,1989),
(Courtiat,1991), (Sijelmassi,1991), (Binding,1991), (Busttard,1992), (IS8807,1988),
(Vigder,1991), (Coelho,1992), (Hoare,1985), (Lightfoot,1991), are the most prominent ones.
In a general way, these formal methods have not been widely used in industrial software
development environment for several reasons (Fraser,1994). Among these reasons, we can
mention: a formal specification language provides a notation (syntactic domain), a univers of
objects (semantic domain), and a precise rule defining which satisfy each specification. This
makes them an inappropriate tool for communicating with the end user and requires that
software engineers, designers, and implementors master the notation and the conceptual
grammar of the language

In this paper, we present an approach based on a unique formalism: the rewriting logic.
This approach is dedicated to support the distributed system design in general, and in
particular, to the design of multi-agent systems (SIC,1992). In this domain, our contribution
is to palliate to some difficulties (of communication, concurrence, and real-times) proper to
the cognitive approach by message passing (Bouront, 1993). This approach, has not yet been
formalized as blackboard approach, nevertheless, it seems avoid some limits of the
blackboard approach. Its main features are the following:

• It takes into account an important variety of systems based on a sequential or a
concurrent execution model.

• It uses the object model to implement multi-agent systems as in (Cardozo,1993),
(Stinckwich, 1993).

• It supports modularity and abstraction.
• It offers the possibility for validating the specifications and for generating the code

automatically, according to a predefined distributed architecture.
This approach does not necessitate the mastering of the concepts and the foundations of

the rewriting logic. It also integrates architectural considerations and is able to support the
design of complex systems.

146 Part Five Manufacturing System Specification

2 FORMAL MODEL FOR MULTI-AGENT SYSTEMS

Our model is based on a formalism that is closed to the one of the MAUDE language
(Meseguer, 1990). It takes into account the complexity of the information processed within an
enterprise, it includes a description of the various entities manipulated, the actions that these
entities may undergo, the temporal constraints and the tracability of information. The model
is independent of the target language.

An agent will be associated to a module representing both the cognitive body and the
resolution strategy. It is made up of rewriting rules basis expressing production rules, facts
basis and a communication interface.

Rules and fact basis encapsulate the agent knowledge and transcribe its resolution strategy
in regard with its specification. The communication interface allows, to a basic agent, to share
its results with others agents of the same abstraction level .

2.1 The formal modules (Description of an agent)

A formal module is a quadruplet (~. a, R, S). ~ is the set of symbols for the functions of the
module. It permits the formal description of the static part of an agent. Symbols can be simple
(i.e. characters) or complex syntactical units. a is the set of structural axioms necessary to
achieve the rewritings in a concurrent manner modulo the axioms.
The doublet (~. a) is called the signature of the agent. R is a set of rewriting rules. It permits
the formal description of the dynamical part of a system. A rule has the form [t] ==> [t']
where t and t' are terms constructed from ~. The notation [t] is used to indicate that t
represents an element of the class of terms modulo the axioms. We will use three structural
axioms called ACI : associativity, commutativity and identity. A rule indicates that the
current state of the agent corresponding to the configuration t, becomes a new state
corresponding by the configuration t'.
A configuration is defined in terms of agents and messages. It is represented through a
sentence in the language of the corresponding formal module. More precisely, a configuration
at a given time is composed of:

• identified agents. Each agent possesses intrinsic properties and is in a particular defined
state.

• messages. Messages are generated by external excitations or internal interruptions. A
same message can be sent to different agents.

During the specification stage, each agent can be considered if necessary as composed of
other agents. A hierarchical decomposition is thus naturally introduced. An agent can use for
its specification other agents. We will use the notions of level and visibility. An agent A is at
a level immediately lower of the one of the agent B, if B is directly used in the composition
of A. Usually, agent A knows only attributes of agents of its level. In some situations it is
necessary that an agent see attributes of agents of lower levels. Such attributes are called
visible.

2.2 The signature

For (~.a) we use a general formulation (figure 1) which is closed to the one proposed by
(Meseguer, 1990). This general form of signature integrates different operators. Op < _: _I_>
is the constructor of agents. Op _ = _ permits to affect a value to an attribute. Op _, _ is the
syntactical constructor of attribute lists. These lists are used for the designation of the
attributes of an agent. Op __ is necessary for the construction of distributed configurations. It

Specification environment for multi-agent systems 147

permits the specification of any configuration. A configuration is composed of agents and
messages. This operator has been declared modulo the ACI axioms. Thus, the order with
which agents and messages are declared has no influence on the reduction process used
further.

/*Alphabet of the system*/
Type Agent, Attribute, Attributes, Msg, Configuration, Value, Agentld, Classld,

Attributeld;
/*Hierarchies and structural relations between the agents*/

Subtype Agentld, Classld, Attributeld <Value;
Subtype Attribute < Attributes;

Subtype Agent, Msg < Configuration;
/*Operators for constructing the words and the sentences of a formal module*/

Op <_:_I_>: Agentld Value-> Object;
Op _ = _ : Attributeld Value-> Attribute;

Op _,_:Attributes Attributes-> Attributes [Assoc. Com, Id =Nul];
Op __ : Configuration Configuration ->Configuration [Assoc. Com, ld =Nul].

Figure 1 The general signature of a formal module

The description of a real multi-agent system consists to instantiate the metatypes of L (agent,
Attributes, Msg, ...).

2.3 The rewriting rules

Actions of messages on an agent are described through the rules. An agent can receive
messages from agents in the same level or in the upper levels of its hierarchy. An agent can
send messages to agents in the same level or in the lower levels of its hierarchy. A message
can also be intercepted through a rule and routed to any level. A rule signals the occurrence
of a communication in which n messages and n agents are involved. All the agents
participating in a rule are at the same level. The general form of a rule is given by figure 2.

Figure2

Effects:

/*Syntax*/
M IM2 .. Mp<AG I: C II listeAt l> ... <AGi: Ci/listAti>

<Aj: Cj/ listAtj> ... <Ak: Ck/ listAtk> ==>
<Aj: Cj/ listAtj> ... <Ak: Ck/ listAtk>

<AGm: CrnllistAtm> ... <AGn: Cn/listAtn>Mq ... Mr [T]

Syntax and effects of a rewriting rule

The messages M1M2 .. Mp are deleted after the execution of the rule.
The states of the agents Aj, ... , Ak are modified.
Agents A 1 , ... , Ai which appear only in the left part of the rule, are deleted.
New Agents AGm, ... ,AGn defined in the right part, are created.
New messages Mq, ... , Mr are created.
[T] is a temporal constraint. It can take:
I: every (T, msg) : to each time interval T, send the message ms_g;
2: within (T, msg): after the timeT, send the message msg;
3: AT (T, msg) :at the timeT, send the message msg;
4:before(T, msg) :before the timeT is elapsed, send the message msg.

148 Part Five Manufacturing System Specification

In this syntax, an agent is represented by the term <idAgent:Cnist At>. idAgent is the agent
identifier. C is the agent class. IistAt is a list of conditions on the attributes of the agent.
Attributes which are modified must be visible at this level. At least, T expresses the service
time for the execution of the rule. T can be a random law.
This general form permits to specify, at a high level of abstraction, the different conditions of
co-operation and synchronisation between agents.

A rule indicates that the system goes from the configuration defined by the left part to a
new configuration defined by the right part. A rule can be activated when all the messages of
the left part are present and when all the conditions on the attributes of the left part are
satisfied. Rules describe the actions of the events associated to the messages. They permit to
reason on the state changes of the system and to draw valid conclusions about its evolution.
They constitute the formal description of the dynamic aspects of the system.

2.4 Synchronous rules and asynchronous rules

A rule is synchronous if several agents are simultaneously modified through an atomic action.
Otherwise it is asynchronous.

An example of synchronous rule is given by the following rule which specifies the
carriage of a part by a an AGV (Automated Guided Vehicul) from a turning unit to a control
unit:

(Carry by V Part P from T to C) < T: TurningUnit I CurrentOperation: finish>
< C: ControiUnit/ (queue: N) <= 10 > <V: AGVI state: free>

=>
< T:TurningUnit I CurrentOperation: 0> < C: ControiUnit/ queue : N+ I >

<V: AGVI state: S>
In this rule, the carriage of P from T to C is an atomic operation. The trigger of this rule

is:
(Carry Part P from T to C by V) and (T.currentoperation= finish) and (C.queue <=10)

The same problem can be formulated through an asynchronous rule:
(Carry Part P from T to C by V) ==>(Turning UnitT exit Part P)

(AGV V accept part P) (Contro!Unit C accept Part P)
This rule deletes the message (Carry Part P from T to C by V) from the configuration and

produces three new messages. The rules which intercept these messages can then fire in
parallel.

Thus, formulation of a rule in an asynchronous way expresses possibilities of parallel
processing.
Internal workin~ rules

These rules have the following form:
Ai ==> Ai, Am ... An, Mq ... Mr[T]

They permit to express that state changes result from an internal working not visible at this
level. They generally concern an agent which can evolve according to a self working.
Through the parameter [T], which can be any random law it is possible to express random
behaviour.

These rules permit specifications very similar to those proposed by (AGHA,l987) for
actors.

3 DEVELOPMENT METHODOLOGY FOR MULTI-AGENT SYSTEMS

The method covers almost the entire life cycle of a distributed system in general, and of a
multi-agent system in particular.

Specification environment for multi-agent systems 149

Specifications use concepts and notion of concurrent rewriting logic which leads to a
coherent description of the system. The automatisation of the passage from one phase to the
next permits to kept the coherence and to ensure a uniform life cycle.

3.1 Analysis

This step concerns the definition of agents which will compose the future command part of
the studied manufacturing system according to needs and objectives.
The automatic passage from this phase to the specification phase remains very difficult.
Consequently (ever though our specification method lightly overlaps the analysis phase), our
methodology does not integrate a method of analysis which is already intrinsic to it. But it
use may prove efficient, if it is situated after an analysis of needs made with E/R model,
SADT or the diagram of data flows.

3.2 Specification methodology

The method is based on a systemic approach for the analysis and the decomposition of
the studied systems. Indeed, we are interested in complex reactive systems which can be
decomposed in three sub-systems:

• the physical and logistic sub-system. This is the part of the studied system composed
of physical resources. According to the type of the studied system, these resources can
be engines, machines, hardware systems, software systems, etc.

• the decisional or monitoring sub-system. It is the set of rules or functions, when
applied to the physical sub-system, permits to reach the fixed goals: the decisions, the
regulation, etc.

• the information sub-system. Its main feature is to establish the connection between
the

two other sub-systems. It intercept the data flows from the physical sub-system, if
necessary processes them, and sends the information to the decisional sub-system
(figure 3).

Figure3 Complex system decomposition in basic sub-systems

The analysis and the design of a complex system can be done with respect of the two
following different specification stages which are strongly coupled.
First stage: identification of the physical sub-system resources
Five steps are used:

150 Part Five Manufacturing System Specification

1- Identification of the physical sub-system objects or resources. It consists to highlight the
different components of the studied system. This identification concerns the available objects
if the studied system is an existing system, or the resources or objects necessary to build a
new system. In this step, the Entity Association model or any other simple formalism can be
used for the analysis of the physical part or the static part of the system.

2- For each identified object or resource, precise its interface (cooperation and
communication protocol):

- Input data flow messages,
- Input control flow signals or events,
- Output data flow messages,
- Output control flow signals or events,

3- For each object, identify, if they exist, the state variables or visible attributes. These
attributes are necessary to write the control or the decisional rules. In general, these state
variables are used in the system global synchronisation and monitoring rules (machine state:
On, Off, Occupied, etc.).

4- For each resource decide if it is an active resource type or a passive resource type.
Active resources, generally, concern an object which can evolve according to a self working
(their states result from an internal working not visible at this level.) and realize one or
several tasks in accordance with the received control command (robot, workstation, a
software active program (server), etc.). These reactive objects interact with their environment
by messages exchanges. They are complex systems as well as the studied system.

Passive resources are objects which perform a particular task, but they have not an internal
logic which allows them to evolve or to perform actions in an autonomous manner (pallet,
machining tools, sensor, captor, database, etc.). The distinction between these two kind of
objects is of a nature to facilitate the analysis and the specification of the decisional sub­
system in the following stage. At this step, it is important to have an accurate vision of the
nature and the type of each component of the sub-system, because, this will determine the
structuration of the decisional sub-system as it will be shown in the following stage.

5- For some cases passive resources are data storage means. They are also components of
the information sub-system.

second stage: Hierarchical decomposition by level abstraction of the decisional sub­
system
This stage uses, also, five steps.

1- associate a monitoring agent for each active resource. The interface of this agent will
be made of input and output control and data flow of its resource (machine command and
utilization protocol, software system invocation interface, etc.). The visible attributes or state
variables values must be integrated in the agent interface as input or output messages. The
agent is the only entity qualified to retrieve or to give the contents of these kind of attributes
(encapsulation principle) to the other agents of the same or the upper levels.

2- For each passive resource or object necessary for the implementation of the decisional
sub-system, associate an access manager agent. Its interface have to integrate the resource
access protocol massages (Database access protocol, captor or sensor access commands,
etc.).

3- Identify the input:output control flows of the decisional sub-system.
4- For each input control flow (signal) or input data flow (message) of the studied system,

associate an interception rewriting rule ("Handler"). This rule may implicate several
monitoring agents and manager agents (synchronous rewriting rules). It can also use visible
state variables of the physical sub-system via its associated agents. If an interception rule of a
given event or signal have to use a complex logic in plus of the simple synchronisation and
the control of the implicated monitoring agents and manager agents, it's advised to associate

Specification environment for multi-agent systems 151

to this signal or event a decisional functional object which have to be decomposed in next
level of the hierarchical decomposition process of the decisional sub-system. This abstract
object is called expert agent. Indeed, to process such events to take a decision, a complex
logic must be used. This logic can use some expertise in a particular domain (scheduling
algorithms, production planing, etc.). The expert agents use their specific and private data and
passive resources. Make these resources or data visible at this level is of a the nature to
compromise the readiness and the comprehension of the decision logic of this level.

5- For each expert agent highlighted in the four step, precise:
• the knowledge on its environment in order to complete its interface and, above all, to

identify its resources during its decomposition process.
• its expertise.
Then, apply to it this second stage of the method: hierarchical decomposition by level

abstraction, only, if this agent has to be created.

third stage: top-down decomposition of the physical sub-system
This stage presents an interest only if some passive or active physical resources have to be

defined. In this case, each resource of this kind identified in the first stage, must be
considered as a new system to be studied and we apply to it the three stages of the method.
For more details, see Attoui(95a)

3.4 Inter-agent Communications

One of the most important factors in the inter-agents communication protocols is the
designation of agents implicated in this kind of interaction. To which agent a message will be
sent? from which agent a message will be received?

With the variety of messages which transit between an application parallel entities and the
diversity of sources, it becomes important and possible to have automatic methods of
information filtering. An agent needs a fraction of messages. To have access to these
messages without knowing, beforehand, their sources is not easy to make use for the
designers of multi-agents system.

In this context, we have defined and made use of a mechanism based on anonymous
communication by message passing. No designation of agents implicated in the
communication is necessary; whatever it may be, explicit or implicit, direct or indirect
(Attoui, 1994b). In order to ens sure communication according to message content and
requested services, we have used a filtering process of messages emitted by anonymous
agents. All messages are filtered and oriented towards their addressee.

The filtering is a process integrated to anonymous communication mechanism. The
information filtering is strongly linked to information retrieval because they have a common
objective: retrieve an information requested by an agent.

Nevertheless, there is a main difference. Information filtering is applied to an incoming
data-flow whereas information retrieving is applied on an existing database which may evolve
in time. In multi-agents system, the data flow is constituted of messages produced by parallel
entities.

In our environment, the inter-agent communication is modelled by a channel. A channel is
an abstraction of a physical communication network, so it provides a communication path
between several agents. It may be seen as a communication "software bus". At the time of
channel declaration, we permit only its later utilisation by the agents. The agents identities
and the direction of transfers are not indicated. A channel does not have associated data types.
This reduces the number of channels required if data of different types are transmitted
between agents.

152 Part Five Manufacturing System Specification

Figure 4 highlights the logical architecture of a multi-agent application. Each agent is
bound to a channel to carry out inter-agents communication. A channel is seen by agents as a
logically shared variable. A nested agent Aij can use a communication channel Cij. Two
agents situated on different levels of the nested structure can use any common communication
channel. For instance, Ax may communicate with Aik (k<>j) by using Ci channel. Cp channel
can also be used. This principle applied is identical to the use of variables by nested
procedures. Then the scope of the channel for agents is the same as the scope of variables for
procedures in the classical programming languages.

Anonymous communication mechanism allows solving problems of the agents designation
and the messages description. Rewriting rules enssure one of "languages acts" characteristics
namely the correspondence between messages and actions to do.

In the specification level of multi-agents system behaviour, messages specified in the left
part of rules represent, in reality, the profiles of these messages. No designation, explicit or
implicit, of agents is specified in these profiles. Any message respecting a profile will be
received by an agent independently of the sender. A complete anonymity on sender identity
and a total transparency on its localisation in the communication network are ensured by the
anonymous communication mechanism.
The anonymity is also applied in emission. Indeed, the right part of a rule specifies the actions
to execute when conditions described in the left part are satisfied. These actions include the
sending of messages.

With this anonymous communication mechanism, interrogation, request and supply
messages may be exchanged without any designation of the concerned agents. More details
on this macanism can be found in (Attoui,l994b), (Maouche, l994)

I I I CP

(A I) /{ Ai), (An)
/ '

Ci

ct
Communication Chancl

c=:> Agent

Figure 4 Hierarchical multi-agent architecture

Specification environment for multi-agent systems 153

4 Verification and validation

The inference engine of VALID environment allows the verification of the specification
previously constructed with the graphical editor.

The user has to submit to the reduction engine the system description using objects and
inference rules. Each test session is based on the notion of "scenario". A scenario is a
foreseeable evolution of the system behavior from an initial state to a final state. (a state is
defined by attribute values of the instanciated objects that constitute the real system).

The user specifies the state in which must be the system either at the beginning of the
scenario (initial state) and at the end of the scenario (final state). If it is possible he can also
specify several undesirable states of the system for this scenario.

The inference engine has the relevant information to perform a syntactical reduction on the
specified objects. This reduction will respect the principle of locality and visible levels
between objects. We remind that a message sent by an object can be intercepted by its father,
its sons or its brothers in the specified hierarchy.

We can make either a global verification of the hole specified system or a partial
incremental verification by respective levels. So we have to define for the engine the object
that we consider as "root" (beginning object) and the scenario (initial and final state)
associated to this object. This verification can detect:
- deadlock situations : the reduction process reaches an intermediate configuration not
foreseen by the user and can no more evolve.
- undesirable boundless cycles : the system reduces in cyclical manner the same set of rules;
so the engine reaches the maximal inference number specified by the user.
- impossibility to reach the final state indicated by the user.
- undesirable state (if specified)

This automatic detection is performed in an interactive way with the user. Each time a
problem is detected, the system can show the historic of the behavior from the initial state.
This historic contains the list of the explored configurations an the rules triggered since the
beginning of the verification and the possible errors messages. The step by step inference
mode is also available, it is very useful for a detailed supervision of a complex system
reduction.

The temporal constraints in the simulation process, and especially the integration of the
various temporal constraints primitives defined by the VALID syntax, produce time
references in the historic file.

5 APPLICATION TO A CONCRETE INDUSTRIAL WELDING LINE

As an illustration of our approach, we consider the example of a welding line for electrical
motors (figure 5). The configuration which is considered corresponds to the one of a real line
installed by a French automobile manufacturer (Kellert,1990).

There is four similar welding stations for welding the motors and two types of conveyors
for accessing it: a main conveyor to permit the routing of the motors along the line and
several bi-directional conveyors to permit access to the welding stations (one for each
station). Different workings of the line can be considered and several policies can be studied.
The objective is to maximise the putting through of the line. We only give the description of a
policy called "ordered policy".

Unwelded motors must access to one of the four stations to be welded. They circulate on
the main conveyor and they can take the elevator and the bi-directional conveyor leading to a
station if there is space available in the queue of this station; otherwise they continue their
routing on the main conveyor.

154 Part Five Manufacturing System Specification

At the output of a unit, a welded motor must go down the bi-directional conveyor in order
to output the line through the main conveyor. In any case, there can be only one part in an
hashed section (a bi-directional conveyor and the two elevators situated at each of its
extremities). An untreated motor can reach the end of the line. In this case it is recycled at the
line input through the recycling conveyor. Figure 5 shows the schema of this line.

The system can be described through three levels (figure6). An agent type called "Unit"
has been introduced to characterise one section of the line. A section is composed of a
welding station and the corresponding means for accessing it: a section of the main conveyor
and the critical section composed of the bi-directional conveyor and the elevators at its
extremities.

Each level of rules represents the part of the decisional subsystem dealing with this level.
This approach permits a hierarchical decomposition of the decisional subsystem as well as the
physical subsystem. The locality and the encapsulation principles are naturally respected.

For instance, rule "RO" of the Welding Line level is used to routing parts from the last unit
"Unit4" to the terminal Unit because the decomposition leads to a structure of the terminal
unit which is different from that of the other unit. On the other hand, the rule "R3" of the Unit
level is used to propagate the internal message to the upper level.

Manufacturin Unit

Unit~ Unit"'

Figure 5 Schema of the Welding Line

It is important to note that when a free variable [I] is used in a message, this variable must
be instanciated to all the possible values of the corresponding parameter. For instance,
(Elevator [I] is free) represents both (Elevator El is free) and (Elevator E2 is free) messages.

A set of abort messages (Missfunctionning CS, Missfunctionning ML, ...) are used at each
level. They allow agents to perform recovery operations which are the most critical
operations in this kind of real time systems. Temporal constraints ([tl: (Missfunctionning
CS)]) can be used to express that the execution of rules must not exceed the given deadline
value, otherwise, the following message is generated. Finally, rules RO and Rl of the Unit
level specify the ordered policy mentioned above.

The figure 7 give a VALID session for the description of the first level of this system.

Specification environment for multi-agent systems

RO: (Unit I M;;;;S] m ... l.--tpl WtMed p,,,) < U: TerminaiUni[/ ... > =>
< U: Tc.rminaiUnirl ... > (Tumino/Unil Uucc:tpt Welded Part)

Rl : (Unii/M:.SJ aa:.t{JI Unwelcled Portfmm MainCfJn\'~yur) < U: TerminaiUnilf ... > ~
< U: TerminalUnit/ ... > CTtmri1wiU11it U at·upl Unwtided Part {rom MaitlCmn"t:rt~r}

Unil

RO: (Unit (M>I/ accept Welded Part) <CS: Critic:1l$ection> ==> <CS: Crili~ISection> (CriticttiSa·titm CS accept Part duw11}
Rl : (Unit M acctpt Unwtldtd P!~rtfmm MuillCtmveyor} <CS: CriticiliSeclion> < L: ManufacluringLinel Aceess: yes:>==>

<CS: CritiC<~ I Section> < L: M:mufacturingLincL.>(Crifil'aiStt..'limJ CS ucctpt PMt up)
R2: (Exit Pan} <M: Unit/ ... > => <M: Unit/ ... > (Unit M+l m.:ctJJI wt.ldtd Ptlfl)
R3: (Mis.iflmt:Jiunne.mtnt CS} <CS: CriticaiSeclioni ... ><M: Unill ... >-->

<CS: Critic:tlSc:ction> <M: Uniii ... >(Mi.{,tfullclititultmtJU Utlit M}
R4: tMi.tsfum:JiunnemtiU ML}<ML: ManuracturingLinef ... ><M: Unill ... >==>

<ML: M~nur.lduring.Linel ... ><M: Uniti ... >(Mi.ufutlc:tilmntmtnt UnitM)

155

156 Part Five Manufacturing System Specification

RO:(Critic:AISectitm CS Ut."Ct(lt p,, Umwrl (Eir•·mor {I/ i,\'}rtr) (Bjc/iret:limr«ICmurqor 8 ;_,·fru)<l : Elevntor/ .. .>==>
<1: Elevator/ ... > {Ele•uwr/1:2} I!" dow11 Ptml (Bhlirec:tirmctfCmrw:yur 8dtiW11)

R I: (Crith:.uiSrclimr CS tiCct<pt PlJrl up) (1:.1l!wuor {I J i.\' fru' (Bitlirttt•timwfCmn't')'ttTB i.~ frt:el <CS: CriliC<lJSectiorV .•• > ==>
<CS: CriticaiSecttonl ... > (Bidir«timwiCmtvr)"''' 8 u'') (E.frwum· {1:2 J RP up Ptu'l'
(U11e L acc:t!pl Part P) [tl :(Mi.~fum .. ·titi iUU! numt CSJ]

Figure 6 Description of the welding line

Figure 7

RO: (Unit [t.4=5J accept Welded Part I < U: TerminaiUnit/ ... >
==> < U: TerminaiUnit/ ... > [Termina1Uni1 U accept Welded Part)

Rl : (Unit (t.4=5J accept Unwelded Part from MainConveyor) < U: TerminaiUnit/ .. . > ==>
< U: TerminaiUnit/ ... > [TerminaiUnit U accept Unwelded Part from MainConveyor)

Snapshot under windows (Welding line Ievell)

Specification environment for multi-agent systems 157

6 Conclusion

The specification and validation approach for manufacturing systems software development
presented in this paper has the advantage to enhance the insight into and understanding of
software requirements, helps clarify the customer's requirements by revealing or avoiding
contradiction of specifications and ambiguities in the specifications, enables rigorous
verification of specifications and their software implementation.

Verification of specifications would increase specification quality there by reducing life
cycle costs. This approach is based on rewriting logic and multi-agent paradigm.

The development process has two main stages:
-The first one is a specification stage with a specific methodology for the analysis and the

structuration of the command part of manufacturing systems, in terms of co-operative and
specialized agents. The result is a conceptual model. Rewriting logic constitutes the formal
framework.

-The second stage is a verification and validation stage based on a syntactical reduction
engine.

After this two main stage it's possible to obtain the translation of the conceptual model
into an executable model which can be directly used as a prototype. The executable model is
generated into a target programming language (C++, ADA, VHDL...).

The environment for this approach is composed of a graphical editor for agents and
rewriting rules description, a distributed inference engine for rules activation and a generator
for the automatic translation of the formal specifications into a target programming language.

The approach and the environment have been used to develop a multi-agent application for
a specific manufacturing system. We have used it for the specification of different kinds of
applications and systems including manufacturing systems (Attoui, 1994a) and transactional
information systems (Attoui, 1994b).

Although our environment constitutes a step towards a multi-agent architecture, it remains
far from true multi-agent systems such as they are theoretically defined. Its evolution depends
in effect on an integration of the modelisation of phenomenon like intentionality, rationality,
commitment and representation of beliefs. Those phenomena have not yet attained the stage
of concretisations.

References

AGHA G., HEWITT C. (1987) Concurrent Programming Using Actors: OOCP87,
Y onezawa, MIT Press, .

ATTOUI A., SCHNEIDER M (1994a) Valid: An Environment Based on Rewriting Logic for
the Formal Modelling of Manufacturing Systems: CIMPR0'94, Rudgers' Conference on
Computer Integrated Manufacturing in the Preocess Industries, New Jersey, USA, April
25-26.

ATTOUI A., SCHNEIDER M (1994b) A Formal Approach for Prototyping Distributed
Information Systems: IEEE International Workshop on Rapid System Prototyping,
Grenoble, France, 21-23 June.

A YEL J. (1991) CIMES, un systeme d'intelligence artificielle distribuee pour 1a supervision
en continu des activites de gestion de production: These de Doctorat, Universite de
Savoie.

BINDING C., SARIA H., NIRSCHI H.(l991) Mixing LOTOS and SDL Specifications:
FORTE'91, Sydney, 12-22 Nov.

BOURON T.(l993) Structure de communication et d'organisation pour Ia cooperation dans
un univers multi-agents: These de Doctorat, Universite de Paris VI, LAFORIA 93.04.

158 Part Five Manufacturing System Specification

BOUZOUANE A.(l993) Un modele multi-agent base sur le tableau noir: application au
pilotage d'une delegation d'assurances: These de Doctorat, Ecole Centrale de Lyon.

BRUNO G., MARCHETTO G.(1986) Process translatable Petri nets for the rapid prototyping
of process control systems", IEEE Transactions on Software Engineering, SE-12,
February 1986.

BUDKOWSKI S.(l992) Estelle Development Tooltest (EDT): Computer Network and ISDN
Systems, Special Issues on FDT Concepts and Tools, Vol.25, N°1.

BUSTTARD D.W., NORRIS M.T., ORR R.A., WINSTANLEY A.C.(1992) An Exercise in
Formalizing the Description of Concurrent Systems: Software Practice & Experience,
Vol22, N° 12, Dec.

CARDOZO E.(l993) Using the object model to ilplement multi-agent systems: IEEE
International Conference, Boston.

COELHO DACOSTA R.J., COURTIAT J.P.(1992) A True Concurrency Semantics for
LOTOS: FORTE'92, Lannion (France), 13-16 Oct.

COURTIAT J.P., DIAZ M., MAZZOLA V.B., DE SAQUI-SANNES A.(1991) Description
formelle de protocoles et de services OSI en Estelle et Estelle*- Experience et
methodologie: CFIP' 91.

SIC 5TIMCIIMAG, Grenoble (1992) Modeles de connaissances et systemes multi-agents:
Joumee Systemes Multi-Agents du PRC-IA, 18 Dec. 1992, Nancy.

KELLERT P, FORCE C. (1992) Knowledge Model Building of Manufacturing Systems with
SADT: 8th International Conference on CAD/CAM Robotics and Factories of the
Future, Metz (France), 17-19 Aout.

ISO 9074 (1989) Information Processing systems- OSI Estelle: a Formal Description
Technique Based on an Extended State Transition Model.

FA YAD M. E.(l994) Objects Modeling Technique (OMT): Experience report: Journal of
Object-Oriented Programming, Nov-Dec.

FRASER Martin D.(1994) Strategies for Incorporating Formal Specification in Software
Development: communications of the ACM, N°10, Vol.37, October.

LAASRI H., MAITRE B.(1989) Cooperation dans un univers multi-agents basee sur le
modele du blackboard: etude et realisation: these de Doctorat, Universite de Nancy 1.

LIGHTFOOT DAVID (1991) Formal Specification Using Z': The Macmillan Press.
IS 8807 (1988) LOTOS, a formal description technique based on the temporal ordering of

observational behavior, December 88.
MAOUCHE A. and ATTOUI A.(1994) A programming environment for distributed

applications: Proceedings of the 5th international training equipment conference and
exibition, The Hague, The Netherlands, April 26-28.

MESEGUER J.,(l990) A Logical Theory of Concurrent Objects: Concur 90 Conference,
Springer Verlag, Amsterdam, August 1990.

OCCELLO M.(1993) Blackboards distribues et paralleles: application au contro1e de
systemes dynamiques en robotique et en informatique musicale: These de Doctorat,
Universite de Nice, Sophia-Antipolis 93.01.

PETERSON J.L.(1981) Petri Nets Theory and the Modelling of Systems: Prentice-Hall,
Englewood Cliffs NJ.

SIJELMASSI R. and STRAUSSER B. (1991) NIST Integrated Tool Set For Estelle: Formal
Description Techniques, Quemada (ed), North-Holland.

STINCKWICH S. (1993) Modele et environnement objet dedie aux systemes milti-agents:
Premieresjournees lAD & SMA, Toulouse, Avril.

VIGDER M. (1991) Using LOTOS in a Design Environment: Proceedings FORTE'91,
Sydney, 12-22 Nov.

