
15
Flexible Design and
Efficient Implementation of a
Hypermedia Document Database System by
Tailoring Semantic Relationships

J. Wiisch, K. Aberer
GMD-IPSI Integrated Publication and Information Systems Institute
Dolivostrafie I 5, D-64293 Darmstadt, Germany
Tel.: ++49-6151-{959, 935}, Fax: ++49-6151-966
Email: {waesch, abererj@darmstadt.gmd.de

Abstract
In this paper we present the design concepts and data modeling approach that was used to define a
general application framework for storing hypermedia documents in the object-oriented data­
base management system VODAK. We exploit the capabilities of the VODAK data model to
introduce new hypermedia modeling primitives at the meta level. We show that representing the
hypermedia semantics within the DBMS in this way is clearly advantageous for efficiency of the
design and implementation of hypermedia document storage engines. As an example, we give a
concrete realization of a DBMS-based hypermedia engine for the SEPIA hypermedia authoring
system developed at GMD-IPSI. With this example we show that the data model extensions pro­
vided are flexible enough to represent also complex semantic hypermedia concepts, that the de­
velopment cycle of a hypermedia engine can become extremely fast and that the resulting imple­
mentation has adequate performance for interactive applications.

Keywords
Hypermedia, Object-Oriented Database Management Systems, Semantic Data Modeling,
Document Databases

1 INTRODUCTION

Three layers can be identified for the architecture of hypermedia systems (Campell and Good­
man 1988): the storage layer, which provides basic functionality with regard to persistent storage
of data, the application layer, which provides the particular semantics of hypermedia applica-

R. Meersman et al. (eds.), Database Applications Semantics
© IFIP International Federation for Information Processing 1997

368 Part Seven Hypermedia Databases and Graphical Tools

tions, and the presentation layer which supports human-machine interaction. In first generation
hypermedia systems these three layers are typically combined in one monolithic stand-alone sys­
tem, where all of the functionality is realized regardless whether it is general-purpose or hyper­
media-specific. This approach was adequate for certain applications and for research, but did not
exploit existing solutions from other areas, and could not serve as the basis of future integrated
information systems. This was soon recognized, and with regard to the storage layer, either data­
base management systems (DBMSs) were used, like in HyperBase (Schlitt and Streitz 1990) or
HyperPath/02 (Amann eta!. 1993), or special-purpose storage managers were developed, like
HAM (Campell and Goodman 1988) or Hyperform (Wiil and Leggett 1992). The disadvantage
of the second approach is that many of the standard DBMS functionalities needed for persistent
storage and sharing of data, like transaction management or declarative access, have either to be
re-implemented, e.g., concurrency control, or are not available at all, e.g., declarative query lan­
guages.

Meanwhile there is a common agreement, that among the different kinds of database manage­
ment systems, object -oriented DBMSs (OODBMS) are the best choice to be used for the storage
layer of hypermedia systems (Lange 1993). The main reason is that their data model allows a
direct representation of complex networks, and that by the encapsulation of structure and behav­
ior much of the necessary semantics of hypermedia structures can be captured by the database
management system. Also some advanced DBMS features, that can be useful for hypermedia
applications, like version control, check-in/check-out mechanisms or nonstandard transaction
concepts, are most often found in object-oriented database management systems.

Common to the different approaches to hypermedia system storage layers, both DBMS-based
and special purpose, is the assumption of a relatively simple hypermedia core model, that has to
be used by all applications. Thus, applications have to deal with the more advanced aspects of
their hypermedia structures by themselves, and have to map their more complex structures and
operations from the application layer, to the generic core model. A typical example of the poten­
tial complexity of the semantics of hypermedia systems is given by SEPIA, a hypermedia system
for supporting authors of hypermedia documents. We will introduce SEPIA in section 2.1 and
use it as a test case for our approach. A storage system based on a generic core model does not
support the maintenance of the consistency of the hypermedia model with regard to the complex
application semantics. Extensibility of the core model in some general way, e.g., by means of
subtyping as in Hyperform, does not improve the situation. It is just a more elegant way to com­
bine generic semantics with the additional application semantics, whereas the difficult task to
maintain integrity and to provide complex operations is still delegated to the application pro­
grammer.

In order to provide the application programmers with the means to develop hypermedia sys­
tems in a flexible way, and to obtain powerful storage capabilities with little effort, the DBMS's
data model has to support additional data modeling primitives for hypermedia modeling. Then
the application programmer can flexibly combine those primitives to his intended, semantically
rich hypermedia model, and obtains appropriate support for the primitives' semantic by the
DBMS. This support can be given in the form of consistency constraint checking and provision
for data structures and operations, which are fully controlled by the DBMS.

In this paper we describe how such an approach was realized with the object -oriented DBMS
VODAK (Klas eta!. 1994, VODAK 1995). A necessary condition in order to proceed in the way
envisaged is that the DBMS's data model must be flexible enough to allow the definition of new
data-modeling primitives. In case ofVODAK this is achieved through a metadata layer, that al­
lows to introduce new modeling primitives into the data model. With our approach we provide

Implementation of a hypermedia document databases system 369

hypermedia data-modeling primitives as extensions of the DBMS 's data model that, in this way,
is tailored to the specific needs of hypermedia applications. Thus, we fully support the storage
layer for hypermedia applications and provide the application layer with a much more powerful
data model than this is the case with a hypermedia core model. As a consequence, much of the
application layer semantics is realized within the DBMS. Thus, together with the data model ex­
tensions, VODAK actually turns out to be a hypermedia engine.

By proceeding in the way described, we obtain the following additional advantages with re­
gard to other approaches realizing a hypermedia system storage layer:

1. Applications are relieved from defining complex hypermedia semantics themselves as they
can adapt the given modeling primitives to their needs. This provides the applications with
powerful predefined operations and avoids a mapping from the more complex application
model to the storage model, i.e. there is no discrepancy between models. Hence, develop­
ment of complex hypermedia applications is eased.

2. Complex operations can be performed completely within the DBMS more efficiently. This
can, for example, massively reduce network communication costs, or relieve the applica­
tion programmer from implementing complex caching strategies. DBMS-based hyperme­
dia applications can become more efficient.

3. Consistency is enforced by the DBMS not only with regard to the hypermedia core model,
but also with regard to the more complex application model. This is ensured for multi-user
access- also in the case where different applications access the same hypermedia database,
as there is a common data model for different applications - and in case of failure of the
system by concurrency control and transaction management. The mechanism to accom­
plish this is to allow only meaningful and consistency-preserving operations with regard to
the high-level application semantics on the database as possible transactions.

4. The declarative querying facilities the DBMS provides can fully exploit the semantic fea­
tures of the application-specific model, and thus become a flexible and powerful tool for
accessing the hypermedia database. The processing power that a DBMS query module pro­
vides, for example query optimization and efficient query evaluation, contributes to the
flexibility and efficiency of hypermedia systems.

Additional advantages to be mentioned are the simpler interaction of hypermedia applications
with other DBMS applications and the exploitation of other DBMS services, like for example the
advanced multimedia features of VODAK.

We want to point out that the approach described addresses many important, although not all
problems related to the access of hypermedia databases. One major research issue we want to
mention is the collaborative editing of hypermedia documents, which leads, for example, to the
view update problem. By defining appropriate transactions and transaction boundaries there is
some flexibility in governing the behavior of the database system when multiple users access and
change the same documents simultaneously. In VODAK, additionally, the concept of semantic
concurrency control (Muth eta!. 1992, Muth et al. 1993) allows to exploit the semantics of opera­
tions, which for the previous arguments is known to the DBMS, in order to increase concurrency.
However, the role of the DBMS is restricted to isolate users from each other and to maintain con­
sistency under all circumstances. The problem of having consistent views when editing in paral­
lel and cooperatively will need further research efforts. However, as this issue is a hot topic in
DBMS research, by providing a powerful DBMS-based storage layer also hypermedia systems
will profit from new results. Through the provision of a semantically rich model in the DBMS the
application of such techniques will naturally be eased.

370 Part Seven Hypermedia Databases and Graphical Tools

A central question to be answered when introducing a new concept that enhances the function­
ality of an information system, is always whether the price to be paid in terms of additional over­
head and thus system performance is acceptable. That this is a critical issue is best understood
when considering the difficulties relational database systems have when used to store complex
information like that occurring in hypermedia systems. For this reason, we have implemented,
according to the principles discussed above, a completely functional prototype on the basis of
VODAK for the SEPIA hypermedia model, including the storage, application and presentation
layer. It was out of question that the functional advantages actually proved to pay off, e.g., model­
ing of a particular hypermedia model became extremely simply. But, first experiences show that
although the system was not particularly tuned at all, the overhead for maintaining the consisten­
cy of the semantics that occurs, e.g., for checking integrity constraints, performing semantic con­
currency control, maintaining additional structural information etc., is fully acceptable. The pro­
totypes' performance allows, for example, interactive usage of the DBMS for document
browsing and editing. For us this was a very encouraging result, that clearly shows that the con­
cepts presented in this paper can really carry on in practice.

The paper is organized as follows. In section 2 we describe the requirements for the design of
the VODAK hypermedia engine, the VODAK modeling language and give an overview on our
design approach. Section 3 is concerned with the modeling of semantic relationships and their
combination to basic application-independent hypermedia modeling primitives. Furthermore,
we explain how this data model can be tailored to application-specific need. In section 4, related
work is reviewed and classified. Section 5 gives a brief summary, and further research objectives
are identified.

2 DESIGNING THE HYPERMEDIA ENGINE

The SEPIA hypermedia authoring system (Streitz et al. 1989, Streitz eta!. 1992) acted as a start­
ing point for the development of the hypermedia engine. One requirement for the design of the
hypermedia engine was that it should be possible to model the semantics of SEPIA's hypermedia
objects. Therefore, we briefly describe in the next section the basic concepts of SEPIA and the
logical components of its hypermedia model.

2.1 The SEPIA hypermedia authoring system and its data model

SEPIA supports the creation ofhyperdocuments by providing the concept of activity spaces. Us­
ers create a hyperdocument by interacting with the four activity-space browsers dedicated to the
tasks of content generation, planning, arguing, and writing the final hyperdocuments under a rhe­
torical perspective (content space, planning space, argumentation space, and rhetorical space re­
spectively).

SEPIA's authoring-specific hypermedia model consists of the following basic hypermedia
objects: atomic nodes, composite nodes, links, and atomic content objects. An atomic node can
consist of several atomic content objects, e.g., text, audio and pictures objects. In general, links
connect different nodes. Some kind of links can also point to or from other links. Links are al­
lowed only between nodes and links that are members of the same composite or activity space.

Composite nodes are used as organizational means for clustering and nesting of related docu­
ments. Composite nodes may contain other nodes and links, forming a sub graph of the hyperme­
dia network. They are also used within SEPIA to model the four authoring-specific activity
spaces. Each space provides task-specific objects and operations to support the dedicated author-

Implementation of a hypermedia document databases system 371

ing activity. To model this SEPIA uses typed hypermedia objects*. Each activity space provides a
dedicated subset of typed nodes and links. It is possible to post constraints over types of hyperme­
dia objects to model task-specific semantics and maintain consistency of the hypermedia net­
work. Let us look at an example to make this clearer. SEPIA's argumentation space can contain
nodes of the types datum and claim and links of type supports. Support links are allowed to
connect only a datum node with a claim node or a claim and with other claims.

To some extent, SEPIA supports type transformation of hypermedia objects. For example, if a
node of type position is copied from the planning space into the argumentation space this opera­
tion includes a type conversion of the node to the type claim. Moreover, a node or link can have
several instantiations within different composite objects in SEPIA. In the above example, SEPIA
maintains a relationship between the position node and the claim node.

2.2 Requirements and design rationale for the hypermedia engine

Expressiveness of the hypermedia model
It is required that the data model of the VODAK hypermedia engine is at least as powerful as
SEPIA's data model. Therefore, our hypermedia engine must

• support at least the basic hypermedia primitives described above,
• provide typed hypermedia objects, and allow to post constraints between them,
• support type transformation of objects according to some transformation rules, and
• be able to keep track of different roles of hypermedia objects within the hyperstructure.

In addition to SEPIA's hypermedia primitives it is valuable to take some other concepts into ac­
count which are proposed in the literature (Conklin 1987, Halasz 1988, Halasz 1991). The modu­
lar design of the hypermedia engine makes it easy to introduce new hypermedia primitives. Our
hypermedia engine already provides some additional hypermedia concepts, e.g., it is allowed
that links themselves contain information.

Flexibility of the hypermedia model
Another requirement for the design of hypermedia engine was that changes of the application­
specific hypermedia model should be possible without recompiling the underlying database
schema. This is useful because at the beginning of the development of the application-specific
hypermedia model, the semantics is not exactly known. Hence, the development time can be re­
duced if new hypermedia types can be created and their constraints can be changed at run-time.

Extensibility of the hypermedia engine's database schema
The hypermedia engine should not only be able to capture authoring-specific semantics. For ex­
ample, the VODAK hypermedia engine is used within the MuSE project (Lux 1993), too. MuSE
aims at hypermedia support for the development process of complex technical products. For this
kind of application, MuSE-specific types of hypermedia objects and constraints on them will be
introduced, e.g., the four authoring spaces of SEPIA are replaced by a modeling and a validation
space.

Integration of external storage systems and editing tools
It is not always possible to model the application-specific semantics of atomic content objects,
e.g., video or text objects, within an OODBMS, and to build dedicated editing tools for them. In
case of a proprietary text format it may be better to store text data as large bytestrings (BLOBS)
* The reader should be aware that these types are different from the object types used within the VODAK sys-

tem to model the structure and behavior of objects and classes.

372 Part Seven Hypermedia Databases and Graphical Tools

within an OODBMS. If we want to integrate videos, it may be better to store them outside the
hypermedia engine within a specialized storage system, e.g., EOS (Biliris and Panagos 1994),
and maintain only a reference to the video data. It should be possible to integrate editors within
the hypermedia engine, because there already exist a variety of dedicated editing tools for view­
ing and manipulating different kinds of media. Therefore, in the design of our hypermedia engine
generic facilities for integrating external storage services and editing tools had to be considered.

2.3 The VODAK data modeling language

Because there exist conceptual and terminological differences between different object-oriented
database management systems, the relevant concepts of the used OODBMS VODAK (VODAK
1995) and its data modeling language (VML) are introduced briefly in this section.

As in other OODBMS, objects are used to represent material or immaterial entities, or ab­
stract concepts. Objects are identified through unique object identifiers (OlD). The structure
(properties) and procedural behavior (methods) of objects is described through abstract data
types which are called object types. VODAK distinguishes between object types and classes
(dual model). Object types determine the structure and behavior of objects and hence are inten­
tional, whereas class definitions describe class objects which act as containers for their instances
(extension of a class). A class definition consists basically of two parts: the object type of the
class object itself (OWNTYPE) and the object type of the class' instances (INSTTYPE). The ini­
tialization part allows initialization of the class' properties by calling methods of the class' own
type.

CLASS <class name> [METACLASS <metaclass name>]
OWNTYPE <object type of the class>

END

INSTTYPE <object type of the class' instances>
[INIT <initialization methods>]

In VODAK, classes are first-class objects, i.e., they can be treated like ordinary objects. Thus, it
is possible to create classes and modify classes' properties at run-time. Because classes are
treated as first-class objects, class objects are themselves instances of other classes, called meta­
classes. Metaclasses are used in VODAK to describe the common structure and behavior of
classes and their instances which may not be known at the time the metaclass is defined.

One reason to use metaclasses is to model semantic relationships between application classes.
Many OODBMS offer hard-coded mechanisms to describe such relationships. But semantic
relationships can have several dimensions. Thus, only a flexible mechanism like freely definable
behavior and integrity constraints for metaclasses allows to model a great variety of dedicated
semantic relationships, as needed for our hypermedia engine semantics. Metaclasses ensure the
consistent usage of the object types defining the semantic relationships and enforce specific in­
tegrity constraints by declaring a class as an instance of a specific metaclass.

2.4 Overview of the design approach

In this subsection we give a brief overview of the design process ofthe hypermedia engine. More
details are presented in section 3. The reader should get an intuitive understanding of our ap­
proach. Figure 1 indicates the design steps described below.

Definition of application-independent semantic relationships
First, we have analyzed what kind of semantic relationships (Klas et a!. 1994) are necessary to
model and implement a hypermedia engine that satisfies the requirements presented in section

Implementation of a hypermedia document databases system 373

Application-independent semantic relationships
flat hyper-structures (with constraints)
element- and set-association (with constraints)
category specialization
role specialization (with role transformation rules)

{) Integration

Application-independent,
generic hypermedia modeling concepts

like atomic node, composite node, directed link etc.

_fi Constraints, v Additional structure and behavior

Application-specific types of hypermedia objects
like Datum, Claim, supports etc.

{} Instantiation

Individual hypermedia documents

Figure 1 Overview of the approach followed in the design of the hypermedia engine.

2.2. We identified the following four orthogonal, application-independent semantic relation­
ships (which are described in section 3.1 in detail) to be sufficient:

• flat hyperstructures (e.g., different kinds of links in a hypermedia network);
• element- and set-association (e.g., for modeling of composite nodes);
• category specialization (e.g., for modeling of links that can behave like nodes);
• role specialization (e.g., for modeling type transformations).

These semantic relationships can be found in OODBMSs, but we extend them with additional
constraint mechanisms and rule-based facilities. The semantic relationships are modeled by de­
fining appropriate VODAK object types, that describe the structure and behavior for classes as
well as for instances taking part in the semantic relationship.

Definition of application-independent, generic hypermedia modeling concepts
In the next step, the different semantic relationships are combined to describe the structure and
behavior of single, application-independent hypermedia modeling concepts like atomic and
composite nodes and different kinds of links. While the focus in the first step is to model the in­
tra-semantic-relationship constraints, now the inter-semantic-relationship constraints have to
be considered to ensure integrity of the hypermedia modeling concepts (see section 3.2).

To provide the application designer with a mechanism that allows to create dynamically ap­
plication-specific instances of the generic modeling concepts, we utilize VODAK's metaclass
mechanism. For each generic hypermedia modeling concept we define a metaclass describing
the application-independent semantics of the hypermedia modeling concepts. These meta­
classes constitute extensions of the data model that provide the necessary modeling primitives for
the development of dedicated hypermedia applications.

The first two steps take place at the meta level and do not consider application-specific hyper­
media semantics. Application-specific semantics is first considered at the application level by the

374 Part Seven Hypermedia Databases and Graphical Tools

definition of concrete, application-specific classes independent of the meta(class) level. This
leads to a modular and reusable structure of our hypermedia data model.

Definition of application-specific hypermedia semantics
The generic hypermedia model can be tailored by an application designer to to the needs of a
specific application domain, i.e., defining the application-specific hypermedia semantics. This is
done by classifying objects into application-specific types of hypermedia objects and adding
constraints with respect to the semantic relationships to these hypermedia types.

In VODAK the application-specific hypermedia types are defined by application classes
which are instances of appropriate metaclasses describing the basic semantics for hypermedia
objects. To specialize these semantics it is possible to add constraints to the application classes
and to use additional object types in the definition of application classes. This extension of struc­
tural and behavioral semantics of hypermedia types would not be possible if types of hypermedia
objects were simply represented as labels of objects.

The modular assembly concept in the design of the hypermedia engine enables a developer of
an application-specific hypermedia model to reuse existing object type definitions and to refine
and change the semantics of the model at run-time which results in reduced development time of
the application-specific hypermedia model. The hypermedia engine ensures at the same time the
generic and application-specific integrity constraints without programming efforts.

3 FROM APPLICATION-INDEPENDENT TO APPLICATION-SPECIFIC
SEMANTICS

3.1 Modeling semantic relationships

In this section we present a (serni)formal description of the semantic relationships used to model
the application-independent hypermedia primitives.

Flat hypermedia structures
A flat hypermedia structure can be viewed as a graph G=(No.Lo) where the set of nodes No corre­
sponds to vertices of the graph and the set of binary links Lo ~ No x No corresponds to the edges
that connect the nodes of G. If the graph contains only directed links we obtain a digraph. Because
it is allowed that a hyper network contain both binary directed and bidirectional links, we get
G=(No, DLo, BLo) where DLo denotes the set of directed links and BLo denotes the set of of bi­
directionallinks.

Because we allow also links on links, we have to extend this basic definition as follows: Let
Ni+l = Ni U DLj U BLj, DLj ~ Ni XNj, BLi ~ N; XNi. Using this, we can define
G = (N, DL, BL) whereN= U iEN Ni,DL= U iEN DLj, BL= U iEN BLj.*Forflathyperme­
dia structures we consider the following application-independent constraints:

(i) Loops are not allowed in the graph, i.e. (n, n) $. DL u BL.
(ii) Dangling links are not allowed by definition.

Additionally, our hypermedia engine allows the usage of typed links and nodes. Such a hyper­
structure can be described as a typed graph TG = (N, DL, BL). We introduce three total typing
functions typeN: N--+ NT, typenL: DL--+ DLT, typeBL: BL--+ BLTto obtain the types of nodes and
links. The sets NT, DLT, BLT contain the possible types of the elements of N, DL, BL and are
disjoint. DLT' and BLT' are subsets of DLTand BLTand denote the types of links that can behave
• Typically, BL; and DL; will be empty for values i > io, where io is relatively small, e.g., in SEPIA i0 = I.

Implementation of a hypermedia document databases system 375

like nodes. For the sake of simplicity we introduce a function typeHT that combines the three
functional relations typeN, typeoL and typeBL· For typed graphs we have the following additional
constraint:
(iii) Multiple links between vertices are allowed under the provision that the links have different

types.

To model constraints on the connectivity of links and nodes we introduce a constraint function
consm: DLT u BLT ~ iJ ((NT u DLT' u BLT') X (NT u DLT' u BLT')) that determines if
a link of a specific type is allowed to connect two typed objects OJ, 02 E N. * For a bidirectional
link type bit E BLT it is required that consHT(blt) is symmetric. With this formalism we are able
to test if a link is allowed to connect some objects in the hypermedia structure:

(iv) A link I= (OJ, 02) can connect two objects OJ, 02, if
(typeHT(OJ), typem(o2)) E consm(typem(i)).

Example 1: Let us consider an example obtained from SEPIA: The binary directed link type
supports is only allowed to connect a node of type datum with a node of type claim or a claim
with a claim node. Therefore, the result of the function consm(supports) is equal to { (datum,
claim), (claim, claim)}. 0
Element- and Set-Association
To introduce the composition mechanism into the generic hypermedia model, we use the associa­
tion concepts described below. Additionally, we introduce a constraint mechanism to describe
application-specific constraints of the hypermedia model.

There are two types of associations, namely element- and set-association (Mattos 1988). Ele­
ment-association introduces a set object to describe properties of a group of element objects. It
suppresses the details of the element objects while emphasizing the properties of a group as a
whole. Element -association establishes an element-of (e E S) relationship between the element
objects and the set objects, forming a 1-level hierarchy. Set-association introduces set object (su­
perset) in order to describe properties of a group of set objects (subsets). Set-association esta­
blishes a subset-of (S' ~ S") relationship between subsets and supersets. It may be applied recur­
sively, building ann-level hierarchy. Of course, set-association requires element-association in
order to instantiate basic non-empty set objects.

According to the Dexter hypermedia reference model (Halasz and Schwartz 1994), we de­
cided to separate the nodes and links from their contents (Dexter within-component layer). The
internal structure of the content objects are described separately from the hypermedia structure
(see Figure 2). Thus, content objects can be viewed at the hypermedia abstraction level as atomic.
These elementary content objects can be grouped together in a node, which establishes an ele­
ment-of relationship between an atomic content object and nodes, which act as containers (sets)
for their content objects. To model composite nodes we use the concept of set-association. Com­
posite nodes can contain atomic nodes, links and recursively other composite objects. Therefore,
we can view composite nodes as supersets which are composed out of other nodes and links (sub­
sets) and establish a subset-of relationship. Of course, superset objects can also contain atomic
content objects (element-of relationship). The only application-independent constraints for our
concept of set-association is as follows:

(i) The set objects related by the subset-ofrelationship must correspond to a tree structure, i.e.,
set-association is acyclic and it is not allowed that the same set object is in a subset-of rela­
tionship with two different composite (set) objects.

iJ is used to denote the powerset.

376 Part Seven Hypermedia Databases and Graphical Tools

I
I •

I •

Composite
node

Atomic
node

I \
I \
I \ element-of
I \
I \
I \

Typed atomic content objects, e.g. text, audio, pictur

Figure 2: Example of the usage of element- and set-association in the hypermedia engine.

Because it is useful to share atomic content objects we do not obey this constraint in the case of
element-association. Therefore, an atomic content object can be an element-of different atomic
or composite nodes and links (see Figure 2).

In addition to this restriction, we combined a constraint mechanism with the concept of
association for tailoring the hypermedia model to application-specific needs. As with nodes and
links, elements and sets are typed. Therefore we introduce a typing function type Ass: EO u SO
.- ET u ST, ET n ST = 0 where EO and SO denote the set of atomic (element) and composite
(set) objects, respectively. ET and ST represent the possible types.

(ii) Using this typing function we can introduce a constraint function to post constraints over
the structure of association: cons Ass: ST.- tJ ((ET u ST) x No x (No u { oo })).

These constraints are assigned to set objects. The first component describes which type of ele­
ment and (sub)set objects can be included within the set object. The last two components are used
to constrain the cardinality of occurrences of objects of a specific type within a set object.

Example 2: In SEPIA a composite node of type path has to contain exactly one start node and is
allowed to contain an arbitrary number of content nodes and followed By links and at most one
atomic TextContent object which acts as an annotation of the path node. These constraints are
expressed by consAss(path) = {(start, l, l), (content, 0, oo), (followed By, 0, oo), (TextCont­
ent, 0, 1)} where start, followed By, content E STand TextContent E ET. This implies that
if a path node instance is created, a start node has to be created automatically by the hypermedia
engine. 0
Category specialization
On of the most frequently used semantic relationships is specialization of classes. Classes can be
declared as specializations (subclasses) of other classes, such that properties and methods of the
superclass are inherited to their subclasses. In this sense specialization is similar to subtyping.
The conceptual difference between subtyping and class specialization is that subtyping is a no­
tion related to type definition and hence intentional. Class specialization is an extensional notion,
where classes are used as containers for sets of objects and the specialization relationship leads
additionally to extension inclusion between subclasses and superclasses.

Implementation of a hypermedia document databases system 377

We denote that class Sis a specialization-of class T by S < T. We assume the following consis­
tency constraints on the classes as well as on the instances of these classes, that participate in the
specialization relationship:

(i) The relation < must be a partial order.
(ii) Additionally we allow for a subclass only one direct superclass. Thus, we obtain a tree of

classes (single inheritance).
(iii) Letext(S) denote the extension of class S. The following properties regarding the extension

must hold: If S < T then ext(S) ~ ext(T). This implies that U s < T ext(S) ~ ext(T) holds.
(iv) Furthermore, it is assumed that the extensions of two classes S, S' which are not in a special-

ization relationship are disjoint, i.e., ~ (S < S' V S' < S) implies ext(S) n ext(S') = 0.

Klas et al. call this kind of semantic relationship category specialization (Klas et al. 1994).
Property (iv) can be rephrased: LetMSC(o) denote a most special class of an object o, i.e., a class
T with o E ext(T) and for all classes S < T: o E,t: ext(S). An important property of category special­
ization is that MSC(o) is unique: for all S with MSC(o) < S: o E ext(S) and for all T with
~ (MSC(o) < T): o E,t: ext(T). We also use another kind of specialization called role specialization
in the hypermedia engine. Role specialization does not require that MSC(o) is unique. This role­
of relationship is discussed in the next section.
Example 3: Category specialization is used in various ways within our hypermedia engine. E.g.,
in some applications, certain links can behave almost like nodes, as they have a content and they
may be referred to by other links. In SEPIA, a support link can be referred to by an explain link
and has textual content. To avoid the introduction of additional concepts for this kind of links, we
use category specialization to model this behavior. An application designer simply has to declare
the link class supports as a specialization of a class like linkAsNode that is an instance of the
metaclass AtomicNode and hence captures the node semantics of a link that can behave like a
node. As a side effect, we get a common domain for all links of this kind. If a link class has no
node semantics, no category specialization is used. 0

Role specialization
As mentioned in the requirements section, nodes and links can occur in SEPIA as different types
in different (types of) composites. Furthermore, it should be possible to transform typed nodes
and links into other types. Such a situation occurs if a position node created in SEPIA's Plan­
ningSpace is copied into the ArgumentationSpace. This results in the creation of a node of
type claim within the ArgumentationSpace. Moreover, there is a relationship between the two
nodes in the different spaces (see Figure 3). Some properties of these two nodes are shared, e.g.,
their name, but there exist also some properties that differ, e.g., the coordinates of the nodes in the
authoring spaces or the links that point to or from the nodes.

To model this we use role specialization (Klas et al. 1994). The role-specialization relation­
ship need not fulfill property (iv) of category specialization. The general object contains the
shared properties, whereas the different roles contain the non-shared properties. In addition to
that, the role objects can have different structure and behavior, defined by their own object types.
Between the different role objects and their common general object a role-of relationship is es­
tablished.

To specify the possible type transformation of hypermedia objects we introduce a function
transR: R --+ f.J (R) where R is the set of classes which can appear as a role of a general object.
This function describes all possible transformations of an object from one class to another. We
assume that the object's state does not change during the transformation. However, it would be

378 Part Seven Hypermedia Databases and Graphical Tools

r--------
1
I
I
I
I I

L-- _f'.§!1[1l!!.q§e§~-J

shared properties, e.g., name

~- -------nonshared properties,
1 Claim e.g.,, coordmates
I .
1 transformation rules

I I
[_ _j_!QY.l!!!i.!E<EfQ!]§p.E_c!!.. J

Figure 3 Example of the usage of role specialization.

possible to adopt concepts from object migration (Li and Dong 1994) to introduce more flexibil­
ity into role changes.
Example 4: For example, in SEPIA we have trans(position) = {claim, neutraiNode} which
denotes that a position node can be converted to a claim or a neutral Node. O

3.2 Combining semantic relationships to generic, application-independent
hypermedia modeling primitives

In the last section, we discussed the modeling of semantic relationships and intra-semantic-rela­
tionship constraints. As mentioned in section 2.4, these semantic relationships are combined to
several generic hypermedia modeling concepts, e.g., atomic nodes or composite nodes.

When combining semantic relationships, additionally the inter-semantic-relationship
constraints have to be considered. It is not enough to combine the definitions of semantic rela­
tionship given by object types via subtyping. The semantic relationship must be integrated in a
meaningful way to ensure the integrity of the hypermedia network.

Considering the different typing functions used in the hypermedia structure, association and
role specialization relationships it is obvious that they have to share the same types for their
constraint functions, such that each object in our hypermedia model has exactly one type.

Example 5: Figure 4 shows an example of how the semantic relationships are combined within
the implementation in VODAK. A directed binary link class object type inherits the basic link
semantics from DirectedBinarylink_CiassType, the set semantics of element-association
from SetAssoc_CiassType and other object types, e.g., for modeling presentation information.
Nodes and links in SEPIA are always enclosed in a composite and links connect only objects
within the same composite. Therefore, we first have to check if the link class (which represents
the hypermedia type) is allowed in the composite, if the source and destination objects are con­
tained in the same composite and then check if the link is allowed to connect the given objects. If
all of these constraints are fulfilled we can create the link object (including its connection to the
source and destination objects) and finally add the link to the composite object. 0

In addition to the above mentioned combination of semantic relationships we had to provide
additional functionality that is only meaningful with the combination of particular semantic rela­
tionships. For example, type transformations of nodes and links depend on the target composite
object where the object should appear. Therefore, the type transformation function used in the
role specialization relationship described above has to be extended to a function trans:
(NT u DLT u BLT) x ST x ST-+ NT u DLT U BLT, when combining role specialization

Implementation of a hypermedia document databases system 379

OBJECTTYPE Combined_DirectedBinarylink_CiassType

END

SUBTYPEOF DirectedBinarylink_CiassType, SetAssoc_CiassType, CatSpec_CiassType,

RoleSpec_CiassType, Presentation_ Class Type, ... II semantic relationships and other object typ<

IMPLEMENTATION . . .

createLink(from: OID, to: DID, inComposite: DID, ...) : OID

IF ((inComposi te->canContain (SELF) AND II test for set-association constraints

{ to->isContainedin (inComposite)) AND II test if dest. node is contained in same composit

(from->isContainedin (incornposi te)) AND II dto. for source node

(SELF->canConnect (from->class (), to->class ())) II test for linking constraints

THEN {newLink :; SELF->createLink (from, to); II create the link between 'from' and 'to

inComposite->addSubsetObject (newLink)} II AND add it into the composite object

ELSE {RETURN NULL}; II constraint violation- no link is created

... } ...

Figure 4 Example of a combination of semantic relationships.

and set-association. The arguments of trans are the class of the hypermedia object to be trans­
formed and the classes of the source composite object and the target composite object. The result
of this function is the identifier of a single class. A restriction is that a node cannot be transformed
to a link and vice versa.

This type transformation mechanism together with role specialization enables us to transform
objects within the hypermedia network in a flexible way. Of course, before doing the actual type
transformation, the hypermedia and association constraints have to be checked.

For each hypermedia modeling concept we provided two combined object types: one object
type defines the semantics of the individual objects, the other describes the class' structure and
behavior. These two object types are used in the metaclass definition.

These metaclasses describe the application-independent semantics ofthe hypermedia mod­
eling concepts and extend the OODBMS VODAK to a hypermedia engine. They provide the
necessary modeling primitives for the development of dedicated hypermedia applications and
ensure the consistent usage of tbe semantic relationship. Moreover, they allow the dynamic cre­
ation of classes at run time. The current implementation of tbe hypermedia engine supports the
following metaclasses:

• Nodes: AtomicNode, CompositeNode, and Node;
• Links: DirectedBinarylink, BidirectionaiBinarylink;
• Composite contents: CompositeContent and Organizer;
• Atomic contents: AtomicContent, BytestringAtomicContent, and

ExternaiReferenceAtomicContent.

The Node and CompositeContent metaclasses together allow the modelling of objects that can
behave like atomic or composite hypertext objects. Organizer classes are used to organize com­
plete hyperdocuments in a directory-like way. The AtomicContent metaclass is used to imple­
ment classes that model different kinds and format of media within VODAK. The Bytestring­
AtomicContent metaclass and ExternaiReferenceAtomicContent metaclass support storage
of multimedia data (e.g., text, pictures, audio, video) as BLOBs in VODAK or in external storage
systems. These metaclasses include also generic mechanisms for the integration of external ap­
plication programs.

380 Part Seven Hypermedia Databases and Graphical Tools

3.3 Tailoring the hypermedia model to application-specific needs

The metaclasses shown above can be used by a schema designer to tailor the hypermedia model
to the needs of a specific application domain, thus, defining the application-specific hyperme·
dia semantics. Application classes simply are declared as instances of an appropriate metaclass
to provide them with the intended behavior. As mentioned before, different types of hypermedia
objects are modeled as different classes within the hypermedia engine.

Tailoring the generic hypermedia model to the application-specific semantics can be done by
asserting constraints regarding the semantic relationships to the application classes. The
constraints can be changed at run-time because constraint insertion and deletion is done by ordi­
nary method calls. Moreover, it is possible to create new classes as instances of an existing meta­
class at run-time because classes are treated as first class objects in VODAK.

CLASS supports METACLASS DirectedBinarylink II declaration of class as an instance of the metaclass

END

INIT SELF->subclassOf (linkAsNode);
SELF->addLinkConstraints ([datum, claim], [claim, claim]);
SELF->addElementconstraints ([TextContent, 0, I], [AudioContent, 0, !], ...) ;
SELF->addTrans forma tionRule (ArgumentationSpace, PlanningSpace, neutrallink)

Figure 5 Example of tailoring an application-specific class by adding constraints.

Example 6: An example is shown in Figure 5.First, the class supports is declared as an instance
of the metaclass BinaryDirectedlink which describes the general behavior of this kind of links.
Then it is declared as a subclass-of the class linkAsNode which is an instance of the metaclass
AtomicNode and therefore inherits the node-like behavior to link instances of class supports.
Moreover, application-specific constraints on the connectivity and the possible content of the
link are asserted to the class by means of an INIT clause and a transformation rule is added
which express that if a link of class supports is copied from an ArgumentationSpace to a
PlanningSpace object, it is automatically converted to an object of class neutrallink.O

In this example, it was not necessary to enrich the definition of the application-specific link
class supports with additional functionality. It is possible to provide additional functionality for
an application class by adding object types in the class definition. This semantic enrichment for
dedicated hypermedia types would not have been possible if types of hypermedia objects were
simply represented as labels (strings) of objects. This was the reason why we decided to model
different types of hypermedia objects as different classes.

CLASS AudioContent METACLASS AtomicContent II declaration of class as an instance of the metaclass AtomicConte
OWNTYPE VODAK_Audio_ClassType II adding additional object types that model audio class' and
INSTTYPE VODAK_Audio_ Type II audio instance's structure and behavior

END

Figure 6 Example of adding application-specific structure and behavior to a class.

Example 7: The class AudioContent (see Figure 6) is defined as an instance of the metaclass
AtomicContent which describes the general semantics of content objects in our hypermedia en­
gine. Additionally, an OWNTYPE and an INSTTYPE are defined for the class AudioContent and
its instances, which provide the properties and methods for storing and manipulating audio ob­
jects within VODAK. Therefore, the structure and behavior of the class AudioContent and its
instances is composed out of the generic object types inherited by the metaclass and the applica-

Implementation of a hypermedia document databases system 381

tion-specific object types. There are no constraints assigned to the class AudioContent because
constraints regarding the element-of relationships are assigned to the set objects.O

4 SYSTEM ARCHITECTURE AND EVALUATION

In this section we describe the system architecture of the implemented VODAK hypermedia en­
gine. Moreover, we present some results of the evaluation we have done on a SEPIA tailored
hypermedia engine.

4.1 System architecture of the hypermedia engine

The overall system architecture is shown in Figure 7. The core of the hypermedia engine consists
of the object-oriented database management system VODAK. VODAKcontains the metaclasses
that implement the basic hypermedia engine functionality, e.g., the checking of generic and ap­
plication-specific integrity constraints and consistency-preserving operations for the manipula­
tion of hypermedia structures. Moreover, VODAK stores and manages the application-specific
hypermedia models described by application classes, their application-specific constraints, and
additional object types.

External storage systems, e.g., EOS for storing large videos, can be connected to VODAK by
instantiating the ExternaiReferenceAtomicContent metaclass. Accesses and manipulations to
these external storage systems are managed by the VODAK hypermedia engine, and, hence, are
transparent for applications running on top of it. The invocation of external application programs
is handled by the VODAK hypermedia engine, too.

Applications of the VODAK hypermedia engine are implemented using the C++ based VO­
DAK client interface. The VODAK clients may run on arbitrary nodes in the network and com­
municate via the VODAK server interface with the VODAK hypermedia engine. Basically, the
VODAK client interface can be considered as a remote API to the VODAK OODBMS; it offers
VODAK data types (VML) and the VODAK query language (VQL) that can be used to build
applications programs like graphical user interfaces. Moreover, it offers support for visualization
and manipulation of multi-media data stored within VODAK. Client applications communicate
with VODAK via a generic interface which consists of the following functions:

• getting the OlD of a class by sending the class' name;
• begin, commit and abort of a VODAK top-level transaction;
• submitting arbitrary method calls to VODAK and transferring back the results;
• submitting declarative queries to VODAK and transferring back the results.

The complex, consistency-preserving operations offered by the VODAK hypermedia engine are
invoked by the application using the method call interface. Each of those operations is executed
as a single VODAK top-level transaction by default. Using the transactional commands offered
by the interface, an application programmer can build new complex transactions, e.g., macros,
consisting of several consistency-preserving operations. Utilizing VODAK's open nested trans­
action model (Muth eta!. 1992, Muth eta!. 1993) and the commutativity predicates defined for
the hypermedia engine's operations, each operation of an application-defined transaction can be
executed as a subtransaction, increasing the degree of concurrency without loss of ACID proper­
ties. Moreover, an application programmer can use declarative VQL queries (including the hy­
permedia engine's operations), thus, enabling set-oriented access to hypermedia documents.

382 Part Seven Hypermedia Databases and Graphical Tools

Application:

Hypermedia schema
- visualization r--------,
- user interaction r- r--------, I

editor 1 External application I I
VODAK client interface L _ _!":_'Y~'!__jJ

VODAK client interface - VODAK data types
- VODAK query language r-

I I
Network I

,..- -... I VODAKD:~ VODAK server interface r-------, Vt External I
VODAK OODBMS L~~a~~~~~J-"'

with generic hypermedia schema and ,..-v application-specific hypermedia schemas ~ __ _:_ ___ -,

[VODAK DB

External I
1 storage system I

VODAK hypermedia engine L _______ J
....... _..

Figure 7 System architecture of the VODAK hypermedia engine.

4.2 Performance and experiences

As shown in the previous sections, our approach of modular design enables the efficient develop­
ment of dedicated hypermedia database schemas. In this section we present some experiences
and results obtained by an evaluation of the implemented hypermedia engine.

The results of the evaluation are based on a hypermedia engine that is tailored to the applica­
tion-specific needs of the SEPIA hypermedia authoring system. The database schema consist of
10 metaclasses and 56 application-specific classes. Modeling the SEPIA-specific semantics by
the 56 application-specific classes on top of our generic hypermedia schema took only one day.
And by previous arguments this model ensures the maintenance of the generic and application­
specific integrity constraints of the hypermedia model within the database hypermedia engine.

In the case of SEPIA, only classes corresponding to the available hypermedia types in SEPIA
had to be defined and initialized with SEPIA-specific constraints. The structure and behavior of
atomic content objects that represent audio and pictures was modeled by reusing existing VO­
DAK object types for storage and manipulation of these kinds of media.

Of course, we have to raise the question whether this efficiency and flexibility in design and
safety in execution can be compliant with reasonable run-time performance. For this reason we
performed some preliminary experiments with our DBMS-based hypermedia engine. The re­
sults of this evaluation are shown in Figure 8. Performance measurement was done on a SUN
Spare 10 workstation running the VODAK hypermedia engine and a single client application.
All of the operations shown in Figure 8 are covered by transaction management.

These results show that an adequate performance for interactive hypermedia applications that
are built upon our hypermedia engine is achieved although all the manipulations on the hyperme­
dia structure are done within the hypermedia engine. The response times are such that interactive
editing operations, like createlink or changeName, are possible. Additionally, one has to con­
sider that the numbers where obtained from the first fully functional prototype of the hypermedia

Implementation of a hypermedia document databases system 383

Submitting Executing Transferring
Average time

Method method to method within results to
VODAK VODAK clients inms

geiAIICiassDefinitions
0% 81.8% 18.2%

(8rns) (18430 ms) (4098 ms) 22 536ms

create Node 10.5% 83.3% 6.2%
390ms (4lms) (325ms) (24ms)

createlink 7.8% 88.4% 3.8%
603ms Clink with node behavior) (47ms) (533ms) (23ms)

createlink (constraint 44.2% 34.6% 21.2%
104ms violation - no link created) (46ms) (36ms) (22ms)

change Name 25% 54.2% 20.8% 48ms (12ms) (26ms) (!Oms)

copyObjectsToCiipboard 13.8% 79.4% 6.9%
218ms (5objects) (30ms) (173ms) (ISms)

pasteObjectsFromCiipboard 0.4% 92.4% 7.2% 2244ms (type transformation of 5 objects) (9ms) (2073 ms) (162 ms)

openComposite (15 objects 0.8% 78.9% 20.3% 1340ms contained in composite) (II ms) (1057 ms) (272ms)

createAtomicContent 5.2% 88.4% 6.4%
362ms (19 ms) (320ms) (23ms)

Figure 8 Performance of selected methods offered by the hypermedia engine.

engine without any particular optimizations. Checking constraint within the client applications
can increase performance, too. This is possible since the hypermedia engine offers a method get­
AIICiassDefinitions to retrieve the classes' constraints and other information. Nevertheless,
consistency of the hypermedia network is always ensured, because all semantics and constraints
of the hypermedia objects are captured by the VODAK hypermedia engine.

5 RELATED WORK

According to the HAM model (Campell and Goodman 1988), most hypermedia systems can be
divided into three functional layers: a storage layer providing persistence to the system, an ap­
plication layer providing the functionality of the system and a presentation layer enabling the
users to interact with the system. The storage layer in most systems is geared towards the specific
needs of the application and presentation layer of the particular hypermedia system and usually
provides a fixed hypermedia data model.

In recent years, several general purpose hypermedia "database" systems (often called hyper­
base systems) were developed, e.g., HAM (Campell and Goodman 1988), GMD-IPSI's Hyper­
Base (Schutt and Streitz 1990), the Danish HyperBase (Wiil and ~sterbye 1990), DeVise/DHM
(Gr0nbaek and Trigg 1994). These systems are either based on a file system or built on top of a
(relational or object-oriented) database management system. The HAM (Hypermedia Abstract
Machine) used in Neptune provides generic hypermedia system functionality like create, delete,
get and update of hypermedia objects. It uses a file system for persistent storage of the hyperme­
dia objects. GMD-IPSI's Hyper Base was built as a general interface between the application lay­
er and the storage layer on top of the RDBMS Sybase. It is based on a fixed, application-indepen­
dent hypermedia data model. As the HAM, Hyper Base provides a fixed set of generic operations,
e.g., create, delete, copy, retrieve and modify of hypermedia components.

Our approach differs from the above mentioned systems in the sense that we built our hyper­
media engine not upon a storage system but extended an OODBMS with functionality for the
management of hypermedia structures, combining the traditional advantages of DBMS like

384 Part Seven Hypermedia Databases and Graphical Tools

transaction management and query facilities with the advantages of object-oriented data model­
ling. This was done by designing an appropriate set of metaclasses. The extended OODBMS is
not only concerned with the persistent storage of hypermedia objects, it also captures the struc­
ture and behavior of the hypermedia objects related to the application layer. Thus, it can be cate­
gorized as a hypermedia engine, not only as a (passive) hyperbase system. Capturing all of the
semantics within our hypermedia engine enables us to maintain application-independent and ap­
plication-specific integrity constraints within the OODBMS whereas the other systems are only
able to manage these integrity constraints on top of the storage system. Furthermore, we are able
to provide a set of semantically rich and consistency-preserving operations that can be used by
the application systems running on top of the hypermedia engine.

All of the systems mentioned above, provide a fixed hypermedia data model. An exception is
Hyperform (Wiil and Leggett 1992) which implements basic hyperbase services (a small class
library) that can be tailored via subtyping to provide specialized hyperbase support. The Hyper­
form server is based on an internal computational engine and an object -oriented language written
inC and an extension of Scheme. Unfortunately, it is not clear from the literature if Hyperform
provides true database functionality. Our hypermedia engine supports extensibility of the hyper­
media model, too. We are able to assert application-specific constraints to classes and create
classes as instances of given metaclasses at run-time. Moreover, an application designer can en­
rich the semantics of application classes by adding additional object types to their class defini­
tion. If some new hypermedia primitives are needed, additional metaclasses can be designed.
This does not require great effort because the existing semantic relationships can be reused.

In addition to the HAM model, the DEXTER hypermedia reference model (Halasz and
Schwartz 1994) proposes the separation of the hypermedia structure from the node contents
(within-component layer). Since the range of possible types is large (text, image, sound) and hard
to model in a generic way, the within-component layer is not part of the model per se. De Vise/
DHM is an example of an object-oriented hypermedia framework for the Dexter concepts. We
have adapted this separation but the data modeling facilities of VODAK (together with VO­
DAK's multimedia extensions) are powerful enough to model the internal structure and behavior
of this kind of media. The modular design of the hypermedia engine makes it easy to enrich the
semantics of the content objects with additional functionality by plugging in object types that
model the semantics of within-component layer objects. We have used this extensibility to model
audio and picture content within our hypermedia engine. Nevertheless, it is possible to store the
content of nodes and links as binary large objects within the hypermedia engine or as references
to an external storage systems leaving the interpretation of the data to the applications.

Another research direction focuses on the integration of existing hypermedia systems with
current database technology instead ofbuilding general purpose hyperbase systems. E.g., Hyper­
Path/02 (Amann et al. 1993) and MultiCard/02 are built on top the OODBMS 02. HyperPath/
02 and MultiCard/02 utilize 02 only as the persistent depository of their so called hypermedia
basic classes. 02 provides a minimal interface (create, load, save, delete) to the persistence mod­
ule of the application layer. As opposed to our hypermedia engine, the hypermedia management
is not implemented within 02 but is part of the applications. No additional semantics to the above
read/write operations is captured by the database management system.

MultiCard/02, HyperPath/02 and DeVise/DHM offer weakly-typed nodes and links, i.e., the
nodes and links can have an arbitrary list of properties. Strong typing, i.e., the assertion of addi­
tional functionality to typed hypermedia objects is not possible. Furthermore, up to our knowl­
edge all of these systems provide no mechanism to post constraints to tailor the hypermedia mod­
el to the application-domain-specific needs. In our approach, different types of hypermedia

Implementation of a hypermedia document databases system 385

objects are represented as classes which are themselves instances of metaclasses that describe the
general semantics of classes and their instances. Therefore, it is possible to assert additional
structure and behavior to types (classes) of nodes and links.

6 CONCLUSION AND FUTURE WORK

In this paper we presented the design of a hypermedia engine that is implemented within the ob­
ject-oriented database management system VODAK. Our intention was not to provide a new hy­
permedia data model, but to develop an open, tailorable hypermedia engine combining the ad­
vantages of an OODBMS, like multi-user access, transaction management and declarative query
access with advanced object-oriented data modeling facilities. The hypermedia engine as de­
scribed in this paper is fully implemented.

In the design of the hypermedia engine we follow a modular assembly concept. Several dedi­
cated semantic relationships are implemented which are combined in a meaningful way to de­
scribe the structure and behavior of hypermedia modeling primitives. Afterwards, several well­
defined, application-independent metaclasses were built to ensure the consistent use of the
combination of the semantic relationships. A designer of an application-specific hypermedia
schema only has to declare his application classes as instances of appropriate metaclasses. Fur­
thermore, he can tailor the data model to application-specific needs by adding constraints to the
classes and additional functionality if needed.

The VODAK hypermedia engine fulfills the requirements mentioned in section 2.2 and the
requirements for hypermedia storage mechanisms stated in (Lange et al. 1992) (openness, shar­
ing, integrity, multimedia, querying, extensibility, versioning), except that we have not inte­
grated VODAK's versioning mechanism yet. Preliminary results show that an adequate perfor­
mance for interactive use is achieved although we use a flexible design approach and the whole
semantics of the model is captured by the hypermedia engine, i.e., all the manipulations and
constraint checking on the hypermedia structure are done within VODAK.

The design of additional hypermedia modeling primitives is demand driven. If some applica­
tions need additional modeling primitives, new metaclasses will be implemented. For example,
if the hypermedia engine will be used within the meeting-room system DOLPHIN (Streitz et al.
1994) a metaclass for handling persistent scribbles has to be developed.

Other future extension will address the integration of the VODAK hypermedia engine with
the SGML (IS0-8879 1992) database schema developed at our institute (Aberer et al. 1994), the
mapping to and integration of the linking architectural forms of the HyTime ISO standard (ISO/
IEC-10744 1992), and the tight integration of declarative VQL queries (Aberer and Fischer
1995) with the hypermedia engine.

ACKNOWLEDGEMENTS

We would like to thank Ajit Bapat for his contribution in implementing the presentation layer of
the prototype and many valuable discussions for analyzing the SEPIA model. We also like to
thank Gisela Fischer for her valuable comments on an earlier version of this paper.

REFERENCES

K. Aberer, K. Biihm, C. HUser (1994) The Prospect of Publishing Using Advanced Database
Concepts, Proceedings of the Conference on Electronic Publishing, Document Manipula­
tion and Typography (EP) '94, Darmstadt, Germany, John Wiley & Sons.

386 Part Seven Hypermedia Databases and Graphical Tools

K. Aberer and G. Fischer (1995) Semantic Query Optimization for Methods in Object-Oriented
Database Systems. Proceedings of the 11th IEEE Conference on Data Engineering (ICDE
'95), Taipei, Taiwan.

B. Amann, V. Christophides and M. Scholl (1993) HyperPath/02: Integrating Hypermedia Sys­
tems with Object-Oriented Database Systems. Proceedings of the 4th International Confer­
ence on Data and Expert Systems Applications (DEXA '93), Prague, Czech Rebublic,
709-720.

A. Biliris and E. Pangos (1994) EOS User's Guide, Release 2.2, Technical report AT&T Bell
Laboratories.

B. Campell and J.M. Goodman (1988) HAM: A general purpose Hypertext Abstract Machine,
Communications of the ACM, Vol. 31, No.7, 856-861.

J. Conklin (1987) Hypertext: An Introduction and Survey. D. Marc a and G. Rock [Eds.]: Group­
ware: Software for Computer Supported Cooperative Work, IEEE Computer Society Press,
Los Alamos, CA, 236-260.

K. Gnzmbaek and R.H. Trigg (1994) Design Issues for a Dexter-Based Hypermedia System,
Communications of the ACM, Vol.37, No.2, 40--49.

F. G. Halasz (1988) Reflections on Notecards: Seven Issues for the Next Generation Of Hyper­
media Systems, Communications of the ACM, Vol. 31, No.7, 836-852.

F. G. Halasz (1991) Seven Issues: Revisited, Hypertext '91, Third A CM Confe renee on Hypertext,
San Antonio, Texas.

F. G. Halasz and M. Schwartz (1994) The Dexter Hypertext Reference Model, Communications
of the ACM, Vol. 37, No.2, 29-39.

ISO 8879-1986 (E) (1992) Information Processing- Text and Office Systems- Standardized
Generalized Markup Language (SGML), International Organization for Standardization.

ISO!IEC 10744-1992 (E) (1992) Information Technology- Hypermedia/Time-based Structur­
ing Language (HyTime), International Organization for Standardization.

W. Klas, K. Aberer and E.J. Neuhold (1994) Object-Oriented Modelling for Hypermedia Sys­
tems Using the VODAK Model Language. A. Dogac, T. 6zsu and A.Biliris [Eds.]: Ad­
vances in Object-Oriented Database Systems, NATO AS/ Series F, Springer Verlag Berlin,
389-433.

D.B. Lange, K. 0sterbye and H. Schlitt (1992) Hypermedia Storage, Report R 92-2002, Dept. of
Math. and Comp. Sci., Aalborg University, Denmark.

D.B. Lange (1993) Object-Oriented Hypermodeling of Hypertext Supported Information Sys­
tems. Proceedings of the 26th Hawaii International Conference on System Sciences, Vol. 3,
380-389.

Q. Li and G. Dong (1994) A framework for object migration in object-oriented databases, Data
& Knowledge Engineering 13, 221-242.

G. Lux (1993) MuSE- A Technical Systems Engineering Environment, Technical Report, De­
partment of Computer Science, Technical University of Darmstadt.

N .M. Mattos (1988) Abstraction Concepts: The Basis for Data and Knowledge Modelling. Pro­
ceedings of the 7th International Conference on Entity-Relationship Approach, Rome, Ita­
ly, 331-350.

P. Muth, T.C. Rakow, W. Klas and E. J. Neuhold (1992) A Transaction Model for an Open Publi­
cation Environment. A. K. Elmagarmid [Ed.]: Database Transaction Models for Advanced
Applications, Morgan Kaufman, San Mateo, California, 169-218.

Implementation of a hypermedia document databases system 387

P. Muth, T.C. Rakow, G. Weikum, P. Brossler and C. Hasse (1993) Semantic Concurrency Con­
trol in Object-Oriented Database Systems. Proceedings of the 9th IEEE Conference of Data
Engineering, Vienna (ICDE '93), Austria 232-242.

H. Schutt and N.A. Streitz (1990) HyperBase: A Hypermedia Engine Based on a Relational Da­
tabase Management System. Proceedings of the European Conference on Hypertext
(ECHT '90), Versaille, France, 95-108.

N.A. Streitz, J. Hannemann and M. Thuring (1989) From Ideas and Arguments to Hyperdocu­
ments: Travelling through Activity Spaces, 2ndACM Conference on Hypertext (Hypertext
'89), Pittsburgh, P.A., 343-364.

N.A. Streitz, J.M. Haake, J. Hannemann, A. Lemke, W. Schuler, H. Schutt and M. Thuring
(1992) SEPIA- A Cooperative Hypermedia Authoring System. Proceedings of the ACM
Conference on Hypertext (ECHT '92), Milano, Italy, 11-22.

N.A. Streitz, J. GeiB!er, J.M. Haake and J. Hoi (1994) DOLPHIN: Integrated Meeting Support
across LiveBoards, Local and Remote Desktop Environments. Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW '94), Chapel Hill, N.C.,
345-358.

U.K. Wiil and J.J. Leggett (1992) Hyperform: Using Extensibility to Develop Dynamic, Open
and Distributed Hypertext Systems. Proceedings of the ACM Conference on Hypertext
(ECHT' 92), Milano, Italy 251-261.

U.K. Wiil and K. 0sterbye (1990) Experiences with Hyper Base- A multi-user back-end for hy­
pertext applications with emphasis on collaboration support. Technical Report R 90-38, CS
Dept., University of Aalborg, Denmark.

VODAK Manual (1995) Release 4.0, Technical Report, Arbeitspapiere der GMD No. 9/0,
GMD, Germany.

BIOGRAPHY

Jurgen Wasch is a member of the database research group VODAK at the Integrated Publication
and Information Systems Institute of the German National Research Center for Information
Technology (GMD-IPSI), Darmstadt. He is also involved in European ESPRIT research proj­
ects. His research activities and interests include cooperative transaction management, global
transaction management for ODMG-compliant multi-database systems, object-oriented data­
base system support for cooperative hypermedia systems, and mobile information systems.

He received his diploma degree in computer science and economics in 1993 from the Univer­
sity of Kaiserslautern. After working at the University Hospital in Heidelberg he joined GMD­
IPSI in November, 1993.

Dr. Karl Aberer is department manager of the database research group VODAK at the Integrated
Publication and Information Systems Institute of the German National Research Center for In­
formation Technology (GMD-IPSI), Darmstadt. He is conducting projects in hypermedia docu­
ment modelling and bioinformatics. His research interests include object-oriented and
multimedia database systems, data modelling, query processing, and foundations for database
management systems.

He received his Ph.D. in mathematics in 1991 from the ETH Zurich where he was from 1987
to 1991 research assistant. From 1991 to 1992 he was postdoctoral fellow at the International
Computer Science Institute (ICSI), Berkeley. In 1992 he joined GMD-IPS I.

388 Part Seven Hypermedia Databases and Graphical Tools

Questions & answers
Question [Dillon]:

How is the difference between application independent and application dependent
mapping determined?

Answer [Wisch]:
The designer makes the distinction by domain analysis.

Question [Dillon]:
How do you connect from within an object?

Answer [Wisch]:
Add anchors.

Question [Michael Doherty]:
Do objects only have one type?

Answer [Wisch]:
Yes.

Question [Amit Sheth]:
Is the semantic content described in the composite structure?

Question [Amit Sheth]:
Do you need to get generic semantics from meta-classes?

Answer [Wisch]:
Yes.

Question []:
Is this a semantic data model?

Answer [Wisch]:
Yes.

Question [Terry Halpin]:
Why don't you use multiple inheritance?

Answer [Wisch]:
No, but the system has a kind of multiple inheritance in the meta-classes and
semantic objects and also can be reprogrammed in meta-classes.

Question []:
Does the proposed relationship services address the needs of this model?

Answer [Wisch]:
Not known.

Question []:
Is there a query system for this system?

Answer [Wisch]:
This is addressed in another paper.

Question []:
Are the type transformation rules application dependent?

Answer [Wisch]:
The system is not; the rules are.

