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Abstract 
In this paper a hybrid top-down/bottom-up method that can be viewed as an extension of the 
traditional dynamic modeling technique using Petri Nets and Parametric Design is presented as 
an approach to the design of Flexible Manufacturing Systems. The resulting method supports 
a clear separation of functionality among the design objects by using the ADV/ADO object­
oriented design framework. Thus, the designs as well as the general functional models can be 
reused. Comparing the method described in the paper with the object-oriented architecture intro­
duced and employed in the PEER object-oriented database system suggests an implementation 
approach which can support the object clustering properties of ADV's and ADO's. 
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1 INTRODUCTION 

Flexible manufacturing systems often have two conflicting characteristics: a clear physical 
model given by a set of production processes and machines, and a logical or abstract model 
usually related to a production plan and accompanying control algorithms. Both models are 
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92 Part Four Modeling and Design of FMS I 

necessary to describe the complete system and yet the design methods related to the two models 
are inherently incompatible. Such a substantial difference in design approaches could easily lead 
to errors at the early stages in the lifecycle of the entire artifact+, because the products of the 
design at this stage are mismatched and relationships are not always clear. Errors made in these 
initial phases are very expensive to remove since they are often found late in the development 
process as the integrated flexible manufacturing system is realized. 

Development of a method for design of logical or abstract objects such as software that would 
simplify conversion to prototypes might alleviate this design issue. Then the logical products 
of the design could be incorporated into the physical model and the incompatibilities could 
be observed and corrected. Several attempts have been made to find such a method, most of 
them associated with software development. Typical examples are rapid prototyping, bottom-up 
(Sommervile, 1992), outside in (Marca, 1988) development and object-oriented design [Booch 
91]. Development of such a method might also make design formalisms and tools more attractive 
to the practicing design engineer because of the ability to produce a prototype that would make the 
benefits of formal approaches more concrete, thus bridging the gap between new achievements 
in Design Theory and practical applications in Engineering Design. 

In this paper we describe a hybrid design method based on providing abstractions of both 
the logical components such as the software, and the physical components of the flexible 
manufacturing system. The abstractions represent the behavior and functionality of both types of 
components through their interfaces (Cowan, 1995). By using suitable constructors to combine 
the components and appropriate information hiding mechanisms we can reuse both types of 
components and hence use previously designed elementary components. The external behavior 
of each component could be validated at any point in the development process using its dynamic 
model expressed in PFS/MFG. 

External behaviors or interfaces and their corresponding object models are represented 
here by Abstract Data View /Abstract Data Object (ADV/ADO) pairs (Cowan, 1993a)[Alenc 
94](Cowan, 1995) where ADVs are extensions to the object model to support the specification 
of interfaces. The design approach will be demonstrated using an example of a discrete control 
algorithm for shop floor control (Bruno, 1986). Finally we describe an implementation of these 
ideas based on a federated architecture using the PEER database (Afsarmanesh 1993)(Tuijnman, 
1993)(Afsarmanesh 94). 

2 DESIGN OF FLEXIDLE MANUFACTURING SYSTEMS 

A Flexible Manufacturing System (FMS) is a cooperating set of process machines (usually 
numerically controlled) connected by an automated transportation system (Tempelmeier, 1993). 
We add to this definition by allowing the FMS to have local storage facilities and local computers 
dedicated to information handling and control. These added components are not necessary to 
justify our technique, but were introduced in order to test our approwith a complex system. 

A version of the life cycle for an FMS (Tempelmeier, 1993) is presented in Figure 1, where the 
two main activities of integrated production planning and model optimization are highlighted. 
Most of the current design methods focus on these activities since they are critical factors 

lThe term artifact is used to represent the goal of the design process, and could refer to a physical object such as a 
mechanical part or a logical object such as a software system or a control algorithm. or some combination of these 
two categories. 
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in producing a good design. However, modules such as Product Design, Software Design 
(especially associated with cell and factory control) and Modelling could make significant 

contributions to the overall result if a more flexible design approach is used. 

We concentrate on an approach that reinforces abstraction in the modelling and evaluation 
of configuration options, and that could provide the basis for further optimization as well as 
requirement and production plan validation. The representations we use are intended to support 
software design and specification. We use a general integration plan as input and rapidly generate 
abstract models of the FMS configurations that could be refined further through the proper choice 
of machines and layout. The advantage of this approach is that consistent abstract models can 
be shared by all those professionals with different backgrounds participating in the design thus, 
making it easier to reinforce concurrence at each design phase. In addition, when changes and 
adaptations are required, a common occurrence in today' s dynamic marketing environment, the 

appropriate abstraction will be available. 

Another important aspect of FMS design is the manner in which the proposed approach 

handles complexity. Complexity depends on the size of the system (the number of machines) 
and of the degree of flexibility, where flexibility is a function of the number of interrelation 

operations. Current definitions of FMS (Ranta, 1990) range from small (2-4 machines) to 

complex systems (15-30 machines). Complexity can vary with the size of FMS in several ways. 

For instance, if a set of numerically controlled machines do the same set of operations with a 
mix of products, the workload balance will be simpler than if the set of operations is different 
and the manufacturing of each type of product in the mix has to be put in a sequence in addition 
to balancing the overall workload. Thus, modeling is very important for small systems, since 
small and medium-size enterprises usually attempt to obtain more and varied production from 
small FMSs. 

Reuse of old models stored and retrieved from a database can substantially reduce the cost of 
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redesign and adaptations. Our design approach is reuse-oriented in that components and their 

relationships are specified solely by their interfaces. 

2.1 Petri Net and PFSIMFG Modeling 

Petri Net methods have been used extensively to model FMS (Silva M., 1993)[Proth 93](DiCe­
sare, 1993)(Proth, 1993a). Such methods provide formal models for FMS, and are able to handle 

the complexity inherent to features such as dependencies between cell operations, parallelism, 
concurrence of tools and/or material. However, Petri Net models (principally those based on 

Placerfransition Nets [Reisig 89] do not adequately support reusability or abstraction. 
Recently, there has been more research in high-level Petri Nets with the objective of introduc­

ing abstraction into net-oriented design methods. PFS/MFG (Program Flow Schema/Mark Flow 

Graph) is one type of high-level net 1988 [Miyagi 88] specifically for the design of discrete 

manufacturing systems. The idea is to add abstraction to the modeling power of Petri Nets 

(Condition/Event) and produce less complex graph models for qualitative and quantitative anal­

ysis. The structure of a specific PFS/MFG representation can be translated into Dynamic Logic 

(Silva J., 1992), and then artificial intelligence tools can be used to assist with the modeling and 

analysis of target systems (Lucena, 1989). 
A revision of the conventional PFS/MFG representation that was introduced in (Silva J., 

1992a) allows the simulation of a Petri Net model at any level of abstraction, thus, making these 

formalism more suitable for the top-down design of discrete production systems. The revised 

formalism was used in a cognitive design model [Takeda 90] (Tomiyama, 1992) that was applied 
to FMS in (Silva J., 1994). The addition of modularity, information hiding and separation of 

concerns indicated that a hybrid approach to design may be possible. 

3 THE ADV/ADO MODEL 

Some of the characteristics of the hybrid-design approach presented in this paper such as, 

abstraction, information hiding, nesting, and polymorphism can be found in object-oriented 
design [Booch 91], an approach to design that is primarily bottom-up. However, the majority of 
the practical design problems in engineering, particularly in the design ofFMS, have a functional 
flavor, and are more closely related to ·top-down methods. We do not intend to debate which 
method is more appropriate, rather we wish to combine and integrate the two approaches to 
obtain a good design solution. 

Thus, we first tried to find a framework where functionality could be implicitly or explicitly 

applied depending on the specific requirements of a particular design phase. Such a feature could 

be used to combine existing detailed elements with those for which only the general behaviour 

is known. In other words, we could combine existing elements (reusable blocks) with abstract 
descriptions. The ADV/ADO (Cowan, 1993)(Cowan, 1993a) which was originally created 

to allow a clear separation of the interface including the user interface from the application 

component in software design is used in this hybrid-design approach. 
An Abstract Data Object (ADO) has a static description/model of the artifact and methods 

(behaviors) that can query or change its internal state. ADOs can be combined through operators 

for composition (nesting) and aggregation (Alencar, 1994) to build complex elements. 
The interaction between ADOs, or between an ADO and an external medium such as a user 

or network, is through an interface object called an Abstract Data View (ADV). ADVs are in 
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fact extended ADOs that handle input and output events or the exchange of messages and data 

among existing ADOs. An ADV specifies the external behavior or functionality of a model 

because an ADV specifies an interface to an ADO. For instance, a numerically controlled (NC) 
machine with a local magazine can be represented by an ADO where its interaction with the 

outside world is an enclosing ADV that accepts a program of operations and returns an error 

message, a progress report of the process, or an acknowledgement indicating that the operation 
was completed. Both the ADV and ADO are different objects which have their own behavior 

(methods). Interactions between them can be represented by another ADV which is responsible 

for the coupling or aggregated behavior, as might happen during the downloading of an APT 

program and the loading of the NC machine. 
This simple example illustrates how to represent the strong separation between the pre­

conditions to evoke the machine services and the process. The example could be extended to a 

manufacturing center, or a Flexible Manufacturing Cell and its integration in the overall FMS. 

Top-down design is supported since ADVs provide a functional design interface connected 

to abstract models of subsystems that could be developed later. Instead of specifying a specific 

DNC machine or setting general features such as the number of axes or the set of tools in 

our simple example, we could perform a design with a statistical model of success performing 

operations or a lower bound time on machine operations as qualitative criteria. Such qualitative 

rules can guide the modeled behavior encapsulated in ADV's and could be developed later in 

the ADO model. 
Two types of consistency relations between ADVs and ADOs are defined in [Cowan 94a]: 

horizontal and vertical consistency. A vertical consistency relation is defined between an ADV 

and its owner ADO as: 

R = {(x, y)ix E SAy EPA ADOi 1- (x -t y)} (1) 

where Sand Pare respectively the set of inputs and outputs of the ADV. Thus, any transaction 

with the outside world must be valid in the ADO model. 
The same ADO or subsystem can interact with the external world in several different ways 

(Tomiyama, 1992), and they must all be consistent with each other. This form of consistency 
is called horizontal consistency in (Cowan, 1993a). We rephrase horizontal consistency in our 
cognitive model of design with the expression: 

If Ai is the set of ADV's for the ADO j and 

3Ai;.(x, y) E R;i => [3Ai k·(x, z) E Rk) => z = y] 
that is, ADV's cannot contradict each other. 

(2) 

The concept of consistency ensures the correct integration of concurrent designs or existing 

components such as the software and hardware implementation in Figure 1 and provides a strong 

foundation for the reuse process. 
Two critical operations in the reuse process are: the search for a reusable component, and 

the adaptation of suitable candidates in the overall design. The efficiency of the first operation 

depends upon reducing the search space by providing in advance expected characteristics of 

the candidates or by performing the search using very short descriptions or metaphors for the 

components. We believe that in engineering and especially in the design of FMS, synthetic 
functional models described by ADVs would provide a good search space for reuse if vertical 
consistency with the ADOs is guaranteed. The importance of consistency to this reusability was 
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Figure 2 Model definition of a transportation system which takes one piece at a time 

discussed in [SilvaJ 92]. The integration of reusable components can be guided by functionality 
and the maintenance of horizontal consistency. 

More details about the concept of ADV and ADO can be found in [Cowan 94a] and in the 
related bibliography mentioned there. In the next section we will describe a short example to 
illustrate the basic concepts. 

4 A SMALL EXAMPLE 

In this section we revisit a short example proposed by (Bruno, 1986) to show how the hybrid 
method could be applied to the design of FMS. This example will be recast using the ADV/ 
ADO approach with PFS/MFG used as a modelling tool. 

Initially, we will try to identify the objects of the system [Booch 91]. In the area of FMS and 
Computer Integrated Manufacturing (CIM), composable objects can be easily identified. Some 
of the basic FMS constituents are: a transportation system, a NC machine, local storage and 
a local controller. The composed system is a flexible cell totally automated and controlled by 
signals which are sent from a central station. 

A conventional Petri-Net approach (Silva M., 1993)[Proth 93] would model each one of these 
objects with decision-free nets, that is, nets without any kind of conflict, leaving all decisions to 
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the control module. The internal behaviour of each object would be modeled in order to identify 

the control entries and outputs. For the current example, we just rewrite the abstract models 

presented by (Bruno, 1986) in PFS/MFG. 

In a first approach, the transport facilities would be modeled as a system that processes one 

item at a time (an AGV). The whole operation can be started by a control sign (all remaining 

tasks such as adjusting positions and tracing a trajectory are performed locally). Figure 2 shows 

a PFS/MFG representation of the transport system. 

Notice that Figure 2 is a decision-free net with external interactions with the control system 

represented by the start control signal and the signal sent to the supervisory system saying that 

th~ transportation process is finished. From the point of view of generating control algorithms 

and software, we could say that the interactions with the control system represent the principal 

control flow, to distinguish them from the (secondary) flow of items, such as the exchange of 

a piece with the outside (load and unload operations). Such a distinction is a key point in the 

modelling of discrete systems (Proth, 1993)[DiCesa 93][Miyagi 88]. 

The PFS/MFG high level representation of an NC machine is illustrated in Figure 3, and the 

storage system is represented abstractly in the diagram of Figure 4. We assume in this example 

that a complete design for these three elements can be reused taking the abstract model presented 

in Figures 2, 3 and 4 as a "target model" (Silva J., 1992). Our focus will be in the design of the 

discrete controller for the FMC. 
In the revised presentation of PFS/MFG (Silva J., 1992), a flow relation is defined as an 
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facilities ··-

object instance of a more generic class: the general relation between boxes (passive elements) 
and activities (active elements). Boxes are represented by Band each box has an attribute "kind" 
to indicate whether the box represents a storage, assembly, or distribution element[Miyagi 88]. 
The activities are classes with at least one attribute to specify the estimated time spent answering 
a call or finishing a process operation (if t=O the activity will collapse into the representation of 
an instantaneous event of the conventional C/E Petri Net). The relationship between boxes and 
activities is given by: 

:F = (B X A) u (A X B) (3) 

Each pair in this relation is a class, whose subclasses are gates and flows. Gates stand for 
non-structured relations and could be instantiated by external or internal gates. External gates 
represent control signs or calls for external pieces, information, or material, such as the stan 
command in Figure 2 (a control sign), the loading/unloading piece command in Figure 2 (a 
call for an external piece), and the to control supervisor in Figure 3 (information about the 
process operation). An example of an internal gate is the facilities in use connection in Figure 4. 
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Introducing this internal gate relation synchronizes the load/unload operation in the storage 

system, a requirement motivated by a need to share a manipulator robot§. 
Activities represent actions which are accessible only if their pre- and post-conditions are 

activated and deactivated, respectively. Activities can also encapsulate a cluster of other activities 
and conditions. For instance, the setting activity in Figure 2 can be refined as a subnet (also 
without conflicts) composed from two other activities, the loading of a piece (from outside) 
and the loading of a machine tool (from an internal magazine). Of course, each one of these 
aggregated activities can be further refined. 

As mentioned earlier, the elements such as the transportation system, machine (a numerical 
control process) and storage are basic objects in the domain of Factory Automation and can be 
reused through a "standard" object-oriented technique or a combination of these methods and 
search techniques based on analogy or metaphors (Silva J., 1992). These reusable components 
can be integrated using a top-down design of the control system, which is depicted later in this 
paper. 

The models of reusable components can be encapsulated as ADOs, together with some short 
documentation and other attributes (including a detailed model expressed in PFS/MFG). The 
representation of the ADOs use the techniques described in [Fields 93]. For instance, the ADO 
Transport System is shown in Figure 5. 

An important feature of our design representation is that we could analyse the target system 
properties and/or simulate its behaviour at any level of abstraction by using the PFS/MFG internal 
model, which is a valuable validation mechanism for control engineering. One function of the 
ADVs is to specify the proper pre- and post-conditions for the internal activities encapsulated 
in an ADO. For instance, in the Figure 6 we have a very abstract ADV, representing the major 
functionality of the transport system which is to move pieces. As it is shown in Figure 2 the 
operation of a successful transport system depends on external signs and interaction with the 
control station. The ADV that represents the functionality of the transport system combines its 

hbe introduction of this requirement here suggests that "ad hoc" requirements or economic constraints could be 
included in the design method. 
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Figure 6 Cluster of behavior and model for a Transport System. 

features with features of other ADVs to model the interaction with the control station. Hence, 
a request to transport a piece from one location to another would depend on the state of the 
condition freeAGV (see Figure 2), which is based on the current state of the ADO model of 
the AGV, and on the interaction with the ADVs that represent the interface between the AGV 
and the control station, the supervisor, and the supplier/consumer of pieces. 

If we build all the basic elements as encapsulated ADOs and ADVs, the construction of the 
control software requires two substantial steps: 

i) build all ADV links between the element objects (storage, machine and transport system) 
and the control station ADO; 

ii) support all links with discrete control modules and algorithms. 

Figure 7 shows a schema of the ADV-link:s between the control station and the other elements 
already described. This is the core specification to model a centralized controller which is the 
most common solution for a control problem where all decisions are left to the controller. 
However, it should be noticed that a similar framework based on the ADV/ADO approach 
would work for other control techniques, where local controllers would have a more complex 
role in the process or a hybrid solution of clusters with more intelligent local controllers and 
pure server mechanisms. 
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For instance, suppose that the transportation system receives a signal to start an operation~­
However, the loading process depends on the transportation system to recognizing in real time 
if the piece is ready to be removed. We are assuming it could be done by sensor signals whose 
interpretation would lead to a decision without any external intervention. That would make the 
system more reliable, even if in our case study the controller needs to ensure that the correct 
piece was selected or stored. 

Supporting a combination of centralized and distributed systems is very important in the 
design of modern factory automation where legacy systems (relying on centralized control) are 
merged with modern autonomous processes. 

Another interesting application of hybrid (centralized/distributed) systems is to the information­
control problem, that is, to place information systems that supply information to control decisions 
at different abstraction levels. (Kagohara, 1994) shows a model based on layers, composed of 
production planning followed by a product design (CAD and CAPP) and finally a shop-floor 
control-layer. A system to generate coordinated control plans can also be designed using ADVs 
and ADOs as in the current example. 

'If Since there is only one storage system and one machine, a simple argument would be enough to denote an 
operation from the storage to the machine or from the machine to the storage. 
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Figure 7 shows the abstract model of the control algorithm, and Figure 8 shows details of its 
internal PFSIMFG net, where the output events represent that control signs sent to the operator 
display or supervisory system. 

In the next section we show the connection of the methodology with the infonnation-sharing 
mechanism of the PEER database. 

5 PEER IMPLEMENTATION APPROACH 

As described earlier in the paper the model description and definition chosen for the ADV/ADO 
is closely related to the object-oriented approach of the PEER federated database management 
system. In this section, a brief description of the PEER system will be presented, and then 
by applying PEER to the example presented in Section 4, an implementation approach for the 
ADV/ADO model of the shop floor environment is addressed. 

5.1 PEER database architecture 

PEER (Afsarmanesh, 1993)(Tuijnman, 1993)(Afsarmanesh, 1994) is a federated object-oriented 
database management system designed and developed at the University of Amsterdam. A 
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federated PEER network consists of a loose federation of autonomous, heterogeneous distributed 
database systems. In the remainder of this section, we give an overview of several concepts 
developed in PEER to support the rich and complex CIM application area. PEER supports 
autonomous cooperating agents which share and exchange information. This is achieved by 
a sophisticated schema derivation/integration mechanism, which supports importing remote 
information and restructuring and integrating it with local information (Afsarmanesh, 1993). The 
sharing of information among team members in PEER is negotiated to preserve the referential 
integrity (Tuijnman, 1993). PEER also offers support for object clusters shared in the network. 
An object cluster represents an entity that groups together a set of objects that are interrelated 
through a directed acyclic graph hierarchy. The representation, identification and boundaries of 
object clusters, and a linearization mechanism to transform object clusters into a linear format 
is fully described in (Tuijnman, 1993). 

The object-oriented data model and the language of PEER is primarily based on 3DIS 
(Afsarmanesh, 1989). However, this model has been extensively extended to support more 
semantics, to represent specific concepts and entities related to manufacturing, and to support 
the kernel structure for the distributed architecture of PEER. The PEER data model supports 
the fundamental abstractions of instantiation, generalization, and aggregation. Any identifiable 
piece of information (both data and meta-data) is uniformly represented as an object. PEER 
offers a number of facilities that are useful in Concurrent Engineering for CIM environments 
and are briefly described in this section. The nucleus of a PEER system in a CIM cooperation 
network is the PEER model and language, and a layer of modeling constructs and operations 
that are defined specifically to represent the generic abstract data types used in engineering and 
industrial manufacturing. The distributed object management of PEER is handled by a layer 
on top of the nucleus, that supports the distributed schema management and object sharing. 
For the exchange of object clusters as entities between PEER agents and between a PEER 
agent and an application program, a linear representation is generated. The last layer of the 
PEER architecture is the interface that supports the access to and communication with users and 
application programs at the agent level. 

Information management in a network of agents is supported by PEER through distributed 
schema management including integration and derivation of local information and information 
available from other PEER agents. The semantic interrelationships (loose or tight integration) 
among the data and knowledge of different agents are established systematically and incre­
mentally. Several schemas coexist in every PEER agent; namely, the local, export, import, and 
integrated schemas. The local schema LOC in each PEER agent specifies the type structure of 
the information stored locally at that agent. Part of the local information can be made available 
to other PEER agents, by specifying one or more export schemas (EXPs), that defines a view 
on the local information. An export schema in PEER can restrict the exported local informa­
tion available to other PEER agents. Other PEER agents can acquire these export schemas and 
designate them as import schemas (IMPs), thus, making the information of other PEER agents 
available locally. The integrated schema (INT) defines a single uniform type structure on the 
information and specifies the derivation and integration of the local and imported information. 
Since the integrated schema is local to a site, different PEER agents may establish different 
correspondences between their schema and other sites' schemas, thus there is no single global 
schema for the network. 

The implementation of the PEER federated system is written in the C programming language, 
and runs on a network of SUN workstations. This implementation supports a distributed multi­
node environment and includes two tools, a schema manipulation tool (SMn and a database 
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browsing tool (DBT). PEER tools are developed using X-windows on SUN workstations. PEER 
has been implemented at the Computer Systems group of the University of Amsterdam. PEER 
has been used in the ESPRIT ARCHON project No. 2256 (designing an architecture for the 
cooperation of expert systems in a multi-agent system), and the ESPRIT CIM-PLATO project 
No. 2202 (supporting the coexistence of diverse CIM tools in a planning tool box), and is 
currently being applied to the ESPRIT CIMIS.net basic research project ECLA 004:76102 
(focusing on distributed information systems for CIM), and the DIGIS project (the integration 
of genomic information systems). 

5.2 Application of PEER to the example 

In this section we briefly describe the implementation of the small example defined in Section 4, 
using the PEER architecure. For every agent defined for the environment, such as those repre­
sented in Figures 6, 7, and 8, a corresponding PEER agent will be defined. The LOC schema for 
each agent will contain all the information that is locally stored in that agent. Therefore, the "Self 
Model", "Attributes" and "restrictions" are represented in this schema. While the "Attributes" 
will be represented in PEER by static PEER objects, the "Self Model" and "restrictions" will be 
represented by dynamic PEER objects. Dynamic objects or behavioral objects in PEER consists 
of three categories. One category defines the "constraint evaluators". The "restrictions" defined 
for agents in Figures 6, 7 and 8 fall into the category of constraint evaluators. Constraint evaluator 
objects have an associated executable piece of code (method). This code will run after any rele­
vant modification to the data of this agent. Constraint evaluators will check for the consistency 
of the database state. If the data is modified in a way that violates the restriction rules defined for 
the agent, then the database is in an inconsistent state, and the modification will not be accepted 
and must be redone. The "Self Model" defined for the agents in the example consists of the 
routines that must be executed when the information about the "External-Pre-conditions" are 
satisfied. The routines performing the self model produce some new results that must be stored 
within the agent and produce the information about the "External-Post-conditions". Using PEER 
the "Self model" of an agent will be represented as a dynamic object of the category "storage 
transaction". Storage transactions are long routines that can be executed and will produce some 
data to be stored in the agent. 

Every agent defines a number of EXP schemas derived from the LOC schema that supports 
the sharing and exchange of information among the agents and consequently provides the means 
for cooperation among distinct agents. The EXP schemas defined by one agent represent the 
part of LOC information that this agent will share with other agents. Another Agent can import 
an EXP schema (called IMP schema there) and then integrate it with its LOC schema to create 
its integrated view (INT schema) of all the information that it needs to access. The information 
represented as "External Post-condition" in an agent will be included in an EXP schema so that 
other agents can access. Therefore, other agents can access these post-conditions to verify their 
pre-conditions. Namely, another agent's (A2) external post-condition that is included in A2's 
export schema will be imported by this agent (Al) as its imported (IMP) schema to become 
Al 's external pre-condition. Every agent will create its own INT schema, through integrating 
its LOC schema with its IMP schemas. Thus, an agent through its INT schema has access to all 
the information it needs to check for its pre-conditions and to run its self model. 

A PEER implementation of the ADV/ADO system is planned. This implementation will 
follow the guidelines described above for the definition of the agents involved and their inter­
connections. 
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6 CONCLUSION 

In the present work we proposed a method based on the object-oriented ADV/ADO framework 
which comprises visual approch to design (based on Petri Nets and its extentions) and parametric 
design (based on objects). Bottom-up and top-down approaches are nested in a way that allow 
the designer to control and document the design process using the same graph formalism 
applied to artifacts (Silva J., 1992). PEER database supports the parametric and object-oriented 
composition of models and also may provide a basis for object-oriented design reuse. 

In the future we plan to build some realistic applications in PEER and to combine in the same 
design environment, PEER database, a PFS/MFG object-oriented simulator and a software agent 
to control and generate queries to PEER according to the needs of the design process. 
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