
9

An Object-Oriented Approach to the Design of
Flexible Manufacturing Systems *

J. Reinaldo Silva t
Computer System Group, University of Waterloo, Waterloo, Canada
e-mail: reinaldo@csg.uwaterloo.ca

H. Afsarmanesh
Computer System Department, University of Amsterdam, The Netherlands
email: hamideh@fwi.uva.nl

D.D. Cowan
Computer System Group, University of Waterloo, Waterloo, Canada
email: dcowan@csg.uwaterloo.ca

C.J P. Lucena
Computer Science Departement, PUC-Rio de Janeiro, Brazil
email: lucena@ infpuc-rio.br

Abstract
In this paper a hybrid top-down/bottom-up method that can be viewed as an extension of the
traditional dynamic modeling technique using Petri Nets and Parametric Design is presented as
an approach to the design of Flexible Manufacturing Systems. The resulting method supports
a clear separation of functionality among the design objects by using the ADV/ADO object­
oriented design framework. Thus, the designs as well as the general functional models can be
reused. Comparing the method described in the paper with the object-oriented architecture intro­
duced and employed in the PEER object-oriented database system suggests an implementation
approach which can support the object clustering properties of ADV's and ADO's.

Keywords
00-design, Flexible Manufacturing Systems, Petri Nets, Abstract Data Views, design reusability

1 INTRODUCTION

Flexible manufacturing systems often have two conflicting characteristics: a clear physical
model given by a set of production processes and machines, and a logical or abstract model
usually related to a production plan and accompanying control algorithms. Both models are

*This work is part of the research activities of the Esprit/ECLA Flexsys 76101 and Cimis.net 76102.
tPartially supported by FAPESP. On leave from University of Sllo Paulo, Brazil.

L. Camarinha-Matos et al. (eds.), Balanced Automation Systems
© Springer Science+Business Media Dordrecht 1995

92 Part Four Modeling and Design of FMS I

necessary to describe the complete system and yet the design methods related to the two models
are inherently incompatible. Such a substantial difference in design approaches could easily lead
to errors at the early stages in the lifecycle of the entire artifact+, because the products of the
design at this stage are mismatched and relationships are not always clear. Errors made in these
initial phases are very expensive to remove since they are often found late in the development
process as the integrated flexible manufacturing system is realized.

Development of a method for design of logical or abstract objects such as software that would
simplify conversion to prototypes might alleviate this design issue. Then the logical products
of the design could be incorporated into the physical model and the incompatibilities could
be observed and corrected. Several attempts have been made to find such a method, most of
them associated with software development. Typical examples are rapid prototyping, bottom-up
(Sommervile, 1992), outside in (Marca, 1988) development and object-oriented design [Booch
91]. Development of such a method might also make design formalisms and tools more attractive
to the practicing design engineer because of the ability to produce a prototype that would make the
benefits of formal approaches more concrete, thus bridging the gap between new achievements
in Design Theory and practical applications in Engineering Design.

In this paper we describe a hybrid design method based on providing abstractions of both
the logical components such as the software, and the physical components of the flexible
manufacturing system. The abstractions represent the behavior and functionality of both types of
components through their interfaces (Cowan, 1995). By using suitable constructors to combine
the components and appropriate information hiding mechanisms we can reuse both types of
components and hence use previously designed elementary components. The external behavior
of each component could be validated at any point in the development process using its dynamic
model expressed in PFS/MFG.

External behaviors or interfaces and their corresponding object models are represented
here by Abstract Data View /Abstract Data Object (ADV/ADO) pairs (Cowan, 1993a)[Alenc
94](Cowan, 1995) where ADVs are extensions to the object model to support the specification
of interfaces. The design approach will be demonstrated using an example of a discrete control
algorithm for shop floor control (Bruno, 1986). Finally we describe an implementation of these
ideas based on a federated architecture using the PEER database (Afsarmanesh 1993)(Tuijnman,
1993)(Afsarmanesh 94).

2 DESIGN OF FLEXIDLE MANUFACTURING SYSTEMS

A Flexible Manufacturing System (FMS) is a cooperating set of process machines (usually
numerically controlled) connected by an automated transportation system (Tempelmeier, 1993).
We add to this definition by allowing the FMS to have local storage facilities and local computers
dedicated to information handling and control. These added components are not necessary to
justify our technique, but were introduced in order to test our approwith a complex system.

A version of the life cycle for an FMS (Tempelmeier, 1993) is presented in Figure 1, where the
two main activities of integrated production planning and model optimization are highlighted.
Most of the current design methods focus on these activities since they are critical factors

lThe term artifact is used to represent the goal of the design process, and could refer to a physical object such as a
mechanical part or a logical object such as a software system or a control algorithm. or some combination of these
two categories.

The design of flexible manufacturing systems

I
I
I
I
\

\

\

' ' I
I

I

\

~

\
\

\

'

I
I

: Planning Phase

' ' ' ', Implementation
I

Software Design Hardware Implementation
and Implementation

Figure 1 Life cycle of an FMS in PFS/MFG representation

93

in producing a good design. However, modules such as Product Design, Software Design
(especially associated with cell and factory control) and Modelling could make significant

contributions to the overall result if a more flexible design approach is used.

We concentrate on an approach that reinforces abstraction in the modelling and evaluation
of configuration options, and that could provide the basis for further optimization as well as
requirement and production plan validation. The representations we use are intended to support
software design and specification. We use a general integration plan as input and rapidly generate
abstract models of the FMS configurations that could be refined further through the proper choice
of machines and layout. The advantage of this approach is that consistent abstract models can
be shared by all those professionals with different backgrounds participating in the design thus,
making it easier to reinforce concurrence at each design phase. In addition, when changes and
adaptations are required, a common occurrence in today' s dynamic marketing environment, the

appropriate abstraction will be available.

Another important aspect of FMS design is the manner in which the proposed approach

handles complexity. Complexity depends on the size of the system (the number of machines)
and of the degree of flexibility, where flexibility is a function of the number of interrelation

operations. Current definitions of FMS (Ranta, 1990) range from small (2-4 machines) to

complex systems (15-30 machines). Complexity can vary with the size of FMS in several ways.

For instance, if a set of numerically controlled machines do the same set of operations with a
mix of products, the workload balance will be simpler than if the set of operations is different
and the manufacturing of each type of product in the mix has to be put in a sequence in addition
to balancing the overall workload. Thus, modeling is very important for small systems, since
small and medium-size enterprises usually attempt to obtain more and varied production from
small FMSs.

Reuse of old models stored and retrieved from a database can substantially reduce the cost of

94 Part Four Modeling and Design of FMS I

redesign and adaptations. Our design approach is reuse-oriented in that components and their

relationships are specified solely by their interfaces.

2.1 Petri Net and PFSIMFG Modeling

Petri Net methods have been used extensively to model FMS (Silva M., 1993)[Proth 93](DiCe­
sare, 1993)(Proth, 1993a). Such methods provide formal models for FMS, and are able to handle

the complexity inherent to features such as dependencies between cell operations, parallelism,
concurrence of tools and/or material. However, Petri Net models (principally those based on

Placerfransition Nets [Reisig 89] do not adequately support reusability or abstraction.
Recently, there has been more research in high-level Petri Nets with the objective of introduc­

ing abstraction into net-oriented design methods. PFS/MFG (Program Flow Schema/Mark Flow

Graph) is one type of high-level net 1988 [Miyagi 88] specifically for the design of discrete

manufacturing systems. The idea is to add abstraction to the modeling power of Petri Nets

(Condition/Event) and produce less complex graph models for qualitative and quantitative anal­

ysis. The structure of a specific PFS/MFG representation can be translated into Dynamic Logic

(Silva J., 1992), and then artificial intelligence tools can be used to assist with the modeling and

analysis of target systems (Lucena, 1989).
A revision of the conventional PFS/MFG representation that was introduced in (Silva J.,

1992a) allows the simulation of a Petri Net model at any level of abstraction, thus, making these

formalism more suitable for the top-down design of discrete production systems. The revised

formalism was used in a cognitive design model [Takeda 90] (Tomiyama, 1992) that was applied
to FMS in (Silva J., 1994). The addition of modularity, information hiding and separation of

concerns indicated that a hybrid approach to design may be possible.

3 THE ADV/ADO MODEL

Some of the characteristics of the hybrid-design approach presented in this paper such as,

abstraction, information hiding, nesting, and polymorphism can be found in object-oriented
design [Booch 91], an approach to design that is primarily bottom-up. However, the majority of
the practical design problems in engineering, particularly in the design ofFMS, have a functional
flavor, and are more closely related to ·top-down methods. We do not intend to debate which
method is more appropriate, rather we wish to combine and integrate the two approaches to
obtain a good design solution.

Thus, we first tried to find a framework where functionality could be implicitly or explicitly

applied depending on the specific requirements of a particular design phase. Such a feature could

be used to combine existing detailed elements with those for which only the general behaviour

is known. In other words, we could combine existing elements (reusable blocks) with abstract
descriptions. The ADV/ADO (Cowan, 1993)(Cowan, 1993a) which was originally created

to allow a clear separation of the interface including the user interface from the application

component in software design is used in this hybrid-design approach.
An Abstract Data Object (ADO) has a static description/model of the artifact and methods

(behaviors) that can query or change its internal state. ADOs can be combined through operators

for composition (nesting) and aggregation (Alencar, 1994) to build complex elements.
The interaction between ADOs, or between an ADO and an external medium such as a user

or network, is through an interface object called an Abstract Data View (ADV). ADVs are in

The design of flexible manufacturing systems 95

fact extended ADOs that handle input and output events or the exchange of messages and data

among existing ADOs. An ADV specifies the external behavior or functionality of a model

because an ADV specifies an interface to an ADO. For instance, a numerically controlled (NC)
machine with a local magazine can be represented by an ADO where its interaction with the

outside world is an enclosing ADV that accepts a program of operations and returns an error

message, a progress report of the process, or an acknowledgement indicating that the operation
was completed. Both the ADV and ADO are different objects which have their own behavior

(methods). Interactions between them can be represented by another ADV which is responsible

for the coupling or aggregated behavior, as might happen during the downloading of an APT

program and the loading of the NC machine.
This simple example illustrates how to represent the strong separation between the pre­

conditions to evoke the machine services and the process. The example could be extended to a

manufacturing center, or a Flexible Manufacturing Cell and its integration in the overall FMS.

Top-down design is supported since ADVs provide a functional design interface connected

to abstract models of subsystems that could be developed later. Instead of specifying a specific

DNC machine or setting general features such as the number of axes or the set of tools in

our simple example, we could perform a design with a statistical model of success performing

operations or a lower bound time on machine operations as qualitative criteria. Such qualitative

rules can guide the modeled behavior encapsulated in ADV's and could be developed later in

the ADO model.
Two types of consistency relations between ADVs and ADOs are defined in [Cowan 94a]:

horizontal and vertical consistency. A vertical consistency relation is defined between an ADV

and its owner ADO as:

R = {(x, y)ix E SAy EPA ADOi 1- (x -t y)} (1)

where Sand Pare respectively the set of inputs and outputs of the ADV. Thus, any transaction

with the outside world must be valid in the ADO model.
The same ADO or subsystem can interact with the external world in several different ways

(Tomiyama, 1992), and they must all be consistent with each other. This form of consistency
is called horizontal consistency in (Cowan, 1993a). We rephrase horizontal consistency in our
cognitive model of design with the expression:

If Ai is the set of ADV's for the ADO j and

3Ai;.(x, y) E R;i => [3Ai k·(x, z) E Rk) => z = y]
that is, ADV's cannot contradict each other.

(2)

The concept of consistency ensures the correct integration of concurrent designs or existing

components such as the software and hardware implementation in Figure 1 and provides a strong

foundation for the reuse process.
Two critical operations in the reuse process are: the search for a reusable component, and

the adaptation of suitable candidates in the overall design. The efficiency of the first operation

depends upon reducing the search space by providing in advance expected characteristics of

the candidates or by performing the search using very short descriptions or metaphors for the

components. We believe that in engineering and especially in the design of FMS, synthetic
functional models described by ADVs would provide a good search space for reuse if vertical
consistency with the ADOs is guaranteed. The importance of consistency to this reusability was

96 Part Four Modeling and Design of FMS I

loading

piece

unloading

piece

start

command

~
se~ng A
actJVtty <.)

~

-··~i·
loaded

to control supervisor

loading
activity

ready to unl

unloading
activity

transport free

Figure 2 Model definition of a transportation system which takes one piece at a time

discussed in [SilvaJ 92]. The integration of reusable components can be guided by functionality
and the maintenance of horizontal consistency.

More details about the concept of ADV and ADO can be found in [Cowan 94a] and in the
related bibliography mentioned there. In the next section we will describe a short example to
illustrate the basic concepts.

4 A SMALL EXAMPLE

In this section we revisit a short example proposed by (Bruno, 1986) to show how the hybrid
method could be applied to the design of FMS. This example will be recast using the ADV/
ADO approach with PFS/MFG used as a modelling tool.

Initially, we will try to identify the objects of the system [Booch 91]. In the area of FMS and
Computer Integrated Manufacturing (CIM), composable objects can be easily identified. Some
of the basic FMS constituents are: a transportation system, a NC machine, local storage and
a local controller. The composed system is a flexible cell totally automated and controlled by
signals which are sent from a central station.

A conventional Petri-Net approach (Silva M., 1993)[Proth 93] would model each one of these
objects with decision-free nets, that is, nets without any kind of conflict, leaving all decisions to

The design of flexible manufacturing systems

start __ _

command

readyto t machine

machirung t

.~
to control supervisor

loading

row material

unloading

activity

to control supervisor output

machine free

Figure 3 Model definition of a machine process

97

the control module. The internal behaviour of each object would be modeled in order to identify

the control entries and outputs. For the current example, we just rewrite the abstract models

presented by (Bruno, 1986) in PFS/MFG.

In a first approach, the transport facilities would be modeled as a system that processes one

item at a time (an AGV). The whole operation can be started by a control sign (all remaining

tasks such as adjusting positions and tracing a trajectory are performed locally). Figure 2 shows

a PFS/MFG representation of the transport system.

Notice that Figure 2 is a decision-free net with external interactions with the control system

represented by the start control signal and the signal sent to the supervisory system saying that

th~ transportation process is finished. From the point of view of generating control algorithms

and software, we could say that the interactions with the control system represent the principal

control flow, to distinguish them from the (secondary) flow of items, such as the exchange of

a piece with the outside (load and unload operations). Such a distinction is a key point in the

modelling of discrete systems (Proth, 1993)[DiCesa 93][Miyagi 88].

The PFS/MFG high level representation of an NC machine is illustrated in Figure 3, and the

storage system is represented abstractly in the diagram of Figure 4. We assume in this example

that a complete design for these three elements can be reused taking the abstract model presented

in Figures 2, 3 and 4 as a "target model" (Silva J., 1992). Our focus will be in the design of the

discrete controller for the FMC.
In the revised presentation of PFS/MFG (Silva J., 1992), a flow relation is defined as an

98

faciliti
in use

Pan Four Modeling and Design of FMS I

select A

unload
p!OCO

load
piece

unload
command

Figure 4 Model definition of the storage system.

facilities ··-

object instance of a more generic class: the general relation between boxes (passive elements)
and activities (active elements). Boxes are represented by Band each box has an attribute "kind"
to indicate whether the box represents a storage, assembly, or distribution element[Miyagi 88].
The activities are classes with at least one attribute to specify the estimated time spent answering
a call or finishing a process operation (if t=O the activity will collapse into the representation of
an instantaneous event of the conventional C/E Petri Net). The relationship between boxes and
activities is given by:

:F = (B X A) u (A X B) (3)

Each pair in this relation is a class, whose subclasses are gates and flows. Gates stand for
non-structured relations and could be instantiated by external or internal gates. External gates
represent control signs or calls for external pieces, information, or material, such as the stan
command in Figure 2 (a control sign), the loading/unloading piece command in Figure 2 (a
call for an external piece), and the to control supervisor in Figure 3 (information about the
process operation). An example of an internal gate is the facilities in use connection in Figure 4.

The design of flexible manufacturing systems

Agent Transport System

Goals

Transport pieces around in a specific FMS

Attributes

speed, autonomy, kind_of_conunand

PFS/MFG

General PFS/MFG description in Dynamic Logic

Restrictions

rnaximum_size

maximum_ weight

Figure 5 Infonnal definition of the ADO for the Transportation System.

99

Introducing this internal gate relation synchronizes the load/unload operation in the storage

system, a requirement motivated by a need to share a manipulator robot§.
Activities represent actions which are accessible only if their pre- and post-conditions are

activated and deactivated, respectively. Activities can also encapsulate a cluster of other activities
and conditions. For instance, the setting activity in Figure 2 can be refined as a subnet (also
without conflicts) composed from two other activities, the loading of a piece (from outside)
and the loading of a machine tool (from an internal magazine). Of course, each one of these
aggregated activities can be further refined.

As mentioned earlier, the elements such as the transportation system, machine (a numerical
control process) and storage are basic objects in the domain of Factory Automation and can be
reused through a "standard" object-oriented technique or a combination of these methods and
search techniques based on analogy or metaphors (Silva J., 1992). These reusable components
can be integrated using a top-down design of the control system, which is depicted later in this
paper.

The models of reusable components can be encapsulated as ADOs, together with some short
documentation and other attributes (including a detailed model expressed in PFS/MFG). The
representation of the ADOs use the techniques described in [Fields 93]. For instance, the ADO
Transport System is shown in Figure 5.

An important feature of our design representation is that we could analyse the target system
properties and/or simulate its behaviour at any level of abstraction by using the PFS/MFG internal
model, which is a valuable validation mechanism for control engineering. One function of the
ADVs is to specify the proper pre- and post-conditions for the internal activities encapsulated
in an ADO. For instance, in the Figure 6 we have a very abstract ADV, representing the major
functionality of the transport system which is to move pieces. As it is shown in Figure 2 the
operation of a successful transport system depends on external signs and interaction with the
control station. The ADV that represents the functionality of the transport system combines its

hbe introduction of this requirement here suggests that "ad hoc" requirements or economic constraints could be
included in the design method.

100 Part Four Modeling and Design of FMS I

Agent Transport Generic Interface~

""'
--Accept a transport request and execute If pre-
eondltions 'MX.IId allow il

Attribute•
AOO server: transport system, message
buffer

Ex•n-' Pre-conclllon•
Start command reoelved

Ex•n~~l Pwt-condllon•
To control supervisor

r
Anb"lction• ~ g~=~~i ~~~=: :~ =~y~ Avtnt Transport System --
Agantlnterface with Storage " Transport pieces around in a specific FMS

(closed world)

Atlributee
... _

Speed, autonorT¥, kind_of_comrnand
Takes or put a piece from storage If it Is
-y lntlt'MI PfSIMFG Model

Attribute•
General PFS/MFG description In Dynamic

ADO server: message buffer
Log<

&llrnal PnM:onlillona
ExtllmaiP...-condtl- Start oommand received
Loading piece (validated by control Satloo) Piece ready to be loaded

Extarntl Poat•corullone Ex•MI PMt-condllone
Unloading piece (validated by control station) Piece unloaded (In a storage buffer)

A"lricllon•
SupefVisor acknowledge the signal of work
done

None (ADV is responsible for the operation)
Antrlclione

Agent Interface with Machine I ~~J --Takes from or put a piece in machine f!Ueue
if It is ready

Atlrlbutn
ADO server: message buffer -
EJ:tllmeiPre-oondlion~~
loading pieoe (validated by control stalion)

Exlilrn~~l Po.t-condilon•
Unbading piece (validated by control station)

R .. tri~:Uon•
None (AOV Is responsible for the operation)

Figure 6 Cluster of behavior and model for a Transport System.

features with features of other ADVs to model the interaction with the control station. Hence,
a request to transport a piece from one location to another would depend on the state of the
condition freeAGV (see Figure 2), which is based on the current state of the ADO model of
the AGV, and on the interaction with the ADVs that represent the interface between the AGV
and the control station, the supervisor, and the supplier/consumer of pieces.

If we build all the basic elements as encapsulated ADOs and ADVs, the construction of the
control software requires two substantial steps:

i) build all ADV links between the element objects (storage, machine and transport system)
and the control station ADO;

ii) support all links with discrete control modules and algorithms.

Figure 7 shows a schema of the ADV-link:s between the control station and the other elements
already described. This is the core specification to model a centralized controller which is the
most common solution for a control problem where all decisions are left to the controller.
However, it should be noticed that a similar framework based on the ADV/ADO approach
would work for other control techniques, where local controllers would have a more complex
role in the process or a hybrid solution of clusters with more intelligent local controllers and
pure server mechanisms.

The design of flexible manufacturing systems 101

Agon!Transport Generic Interface I
.,._
==~ ":r:. and execute I

AttrlbuiM
ADO MMH': transport system, message
buller

Extlmll Preoconcllone
Slart corrrnand received --- ~ Tocontrotaupervllor

Reelrlollon•

g=:~~:===~=;. AgontConlrol System I
I .. --Agonl Machine Genertc Interface - Sequerllallze and supe<va acllvltleo In tl"e ... _

lhopfloor

Acaepl: machine operation requests and A~lbutn
t~XeCU:elf the pre-oondllons would allow II Characterill:ic reapon• tm.

•Attrlbulln lnBnll PFMIFG Modlll
ADO •rver. machine. R'I88S8ge buffer ~natal PFSIMFG cfescllltion In Oynarric
E:dlrMI dl
StartCOITinllndreceived Exllmal cllkiM --- SupoMoor-ln llanapolt, IMCillnoand

l~=:====~ -EKWIIIII POIIklondllons
mocllinecol~ SeAect storage Wid start badlng

lleelrlclon• ~~:::rn: If moclllne tool Is available « Ueady sol Select_..... and start unloading If raw meterialls available
Aeelrlolon•
Avaidd-

Agont Storage Generic lnlerfece I

~ -- J Accept: and executea load and unload
requeata from atorage

Aaribu ...
ADO MIWf': llorage system, message buffer -Edlmal,.._cllona
Start corrrnand received & Storage selected
Unload ccmnand received &. Sencler telected

ElltM'MII~Ion•

Tooontrolsuperv8cr

Rn•lollon•
Check It piece Is ready to be elored or -

Figure 7 Cluster of ADV's connections with the Control System.

For instance, suppose that the transportation system receives a signal to start an operation~­
However, the loading process depends on the transportation system to recognizing in real time
if the piece is ready to be removed. We are assuming it could be done by sensor signals whose
interpretation would lead to a decision without any external intervention. That would make the
system more reliable, even if in our case study the controller needs to ensure that the correct
piece was selected or stored.

Supporting a combination of centralized and distributed systems is very important in the
design of modern factory automation where legacy systems (relying on centralized control) are
merged with modern autonomous processes.

Another interesting application of hybrid (centralized/distributed) systems is to the information­
control problem, that is, to place information systems that supply information to control decisions
at different abstraction levels. (Kagohara, 1994) shows a model based on layers, composed of
production planning followed by a product design (CAD and CAPP) and finally a shop-floor
control-layer. A system to generate coordinated control plans can also be designed using ADVs
and ADOs as in the current example.

'If Since there is only one storage system and one machine, a simple argument would be enough to denote an
operation from the storage to the machine or from the machine to the storage.

102 Part Four Modeling and Design of FMS I

l'romAG

start loadiog
mac:hiDcqueue

machine in operation

....__ ___ sender A

1'----_. sender B

'-----""' sender C

Figure 8 High level modelling of the discrete controller.

Figure 7 shows the abstract model of the control algorithm, and Figure 8 shows details of its
internal PFSIMFG net, where the output events represent that control signs sent to the operator
display or supervisory system.

In the next section we show the connection of the methodology with the infonnation-sharing
mechanism of the PEER database.

5 PEER IMPLEMENTATION APPROACH

As described earlier in the paper the model description and definition chosen for the ADV/ADO
is closely related to the object-oriented approach of the PEER federated database management
system. In this section, a brief description of the PEER system will be presented, and then
by applying PEER to the example presented in Section 4, an implementation approach for the
ADV/ADO model of the shop floor environment is addressed.

5.1 PEER database architecture

PEER (Afsarmanesh, 1993)(Tuijnman, 1993)(Afsarmanesh, 1994) is a federated object-oriented
database management system designed and developed at the University of Amsterdam. A

The design of flexible mJJllufacturing systems 103

federated PEER network consists of a loose federation of autonomous, heterogeneous distributed
database systems. In the remainder of this section, we give an overview of several concepts
developed in PEER to support the rich and complex CIM application area. PEER supports
autonomous cooperating agents which share and exchange information. This is achieved by
a sophisticated schema derivation/integration mechanism, which supports importing remote
information and restructuring and integrating it with local information (Afsarmanesh, 1993). The
sharing of information among team members in PEER is negotiated to preserve the referential
integrity (Tuijnman, 1993). PEER also offers support for object clusters shared in the network.
An object cluster represents an entity that groups together a set of objects that are interrelated
through a directed acyclic graph hierarchy. The representation, identification and boundaries of
object clusters, and a linearization mechanism to transform object clusters into a linear format
is fully described in (Tuijnman, 1993).

The object-oriented data model and the language of PEER is primarily based on 3DIS
(Afsarmanesh, 1989). However, this model has been extensively extended to support more
semantics, to represent specific concepts and entities related to manufacturing, and to support
the kernel structure for the distributed architecture of PEER. The PEER data model supports
the fundamental abstractions of instantiation, generalization, and aggregation. Any identifiable
piece of information (both data and meta-data) is uniformly represented as an object. PEER
offers a number of facilities that are useful in Concurrent Engineering for CIM environments
and are briefly described in this section. The nucleus of a PEER system in a CIM cooperation
network is the PEER model and language, and a layer of modeling constructs and operations
that are defined specifically to represent the generic abstract data types used in engineering and
industrial manufacturing. The distributed object management of PEER is handled by a layer
on top of the nucleus, that supports the distributed schema management and object sharing.
For the exchange of object clusters as entities between PEER agents and between a PEER
agent and an application program, a linear representation is generated. The last layer of the
PEER architecture is the interface that supports the access to and communication with users and
application programs at the agent level.

Information management in a network of agents is supported by PEER through distributed
schema management including integration and derivation of local information and information
available from other PEER agents. The semantic interrelationships (loose or tight integration)
among the data and knowledge of different agents are established systematically and incre­
mentally. Several schemas coexist in every PEER agent; namely, the local, export, import, and
integrated schemas. The local schema LOC in each PEER agent specifies the type structure of
the information stored locally at that agent. Part of the local information can be made available
to other PEER agents, by specifying one or more export schemas (EXPs), that defines a view
on the local information. An export schema in PEER can restrict the exported local informa­
tion available to other PEER agents. Other PEER agents can acquire these export schemas and
designate them as import schemas (IMPs), thus, making the information of other PEER agents
available locally. The integrated schema (INT) defines a single uniform type structure on the
information and specifies the derivation and integration of the local and imported information.
Since the integrated schema is local to a site, different PEER agents may establish different
correspondences between their schema and other sites' schemas, thus there is no single global
schema for the network.

The implementation of the PEER federated system is written in the C programming language,
and runs on a network of SUN workstations. This implementation supports a distributed multi­
node environment and includes two tools, a schema manipulation tool (SMn and a database

104 Part Four Modeling and Design of FMS I

browsing tool (DBT). PEER tools are developed using X-windows on SUN workstations. PEER
has been implemented at the Computer Systems group of the University of Amsterdam. PEER
has been used in the ESPRIT ARCHON project No. 2256 (designing an architecture for the
cooperation of expert systems in a multi-agent system), and the ESPRIT CIM-PLATO project
No. 2202 (supporting the coexistence of diverse CIM tools in a planning tool box), and is
currently being applied to the ESPRIT CIMIS.net basic research project ECLA 004:76102
(focusing on distributed information systems for CIM), and the DIGIS project (the integration
of genomic information systems).

5.2 Application of PEER to the example

In this section we briefly describe the implementation of the small example defined in Section 4,
using the PEER architecure. For every agent defined for the environment, such as those repre­
sented in Figures 6, 7, and 8, a corresponding PEER agent will be defined. The LOC schema for
each agent will contain all the information that is locally stored in that agent. Therefore, the "Self
Model", "Attributes" and "restrictions" are represented in this schema. While the "Attributes"
will be represented in PEER by static PEER objects, the "Self Model" and "restrictions" will be
represented by dynamic PEER objects. Dynamic objects or behavioral objects in PEER consists
of three categories. One category defines the "constraint evaluators". The "restrictions" defined
for agents in Figures 6, 7 and 8 fall into the category of constraint evaluators. Constraint evaluator
objects have an associated executable piece of code (method). This code will run after any rele­
vant modification to the data of this agent. Constraint evaluators will check for the consistency
of the database state. If the data is modified in a way that violates the restriction rules defined for
the agent, then the database is in an inconsistent state, and the modification will not be accepted
and must be redone. The "Self Model" defined for the agents in the example consists of the
routines that must be executed when the information about the "External-Pre-conditions" are
satisfied. The routines performing the self model produce some new results that must be stored
within the agent and produce the information about the "External-Post-conditions". Using PEER
the "Self model" of an agent will be represented as a dynamic object of the category "storage
transaction". Storage transactions are long routines that can be executed and will produce some
data to be stored in the agent.

Every agent defines a number of EXP schemas derived from the LOC schema that supports
the sharing and exchange of information among the agents and consequently provides the means
for cooperation among distinct agents. The EXP schemas defined by one agent represent the
part of LOC information that this agent will share with other agents. Another Agent can import
an EXP schema (called IMP schema there) and then integrate it with its LOC schema to create
its integrated view (INT schema) of all the information that it needs to access. The information
represented as "External Post-condition" in an agent will be included in an EXP schema so that
other agents can access. Therefore, other agents can access these post-conditions to verify their
pre-conditions. Namely, another agent's (A2) external post-condition that is included in A2's
export schema will be imported by this agent (Al) as its imported (IMP) schema to become
Al 's external pre-condition. Every agent will create its own INT schema, through integrating
its LOC schema with its IMP schemas. Thus, an agent through its INT schema has access to all
the information it needs to check for its pre-conditions and to run its self model.

A PEER implementation of the ADV/ADO system is planned. This implementation will
follow the guidelines described above for the definition of the agents involved and their inter­
connections.

The design of flexible 11Ulnufacturing systems 105

6 CONCLUSION

In the present work we proposed a method based on the object-oriented ADV/ADO framework
which comprises visual approch to design (based on Petri Nets and its extentions) and parametric
design (based on objects). Bottom-up and top-down approaches are nested in a way that allow
the designer to control and document the design process using the same graph formalism
applied to artifacts (Silva J., 1992). PEER database supports the parametric and object-oriented
composition of models and also may provide a basis for object-oriented design reuse.

In the future we plan to build some realistic applications in PEER and to combine in the same
design environment, PEER database, a PFS/MFG object-oriented simulator and a software agent
to control and generate queries to PEER according to the needs of the design process.

7 REFERENCES

Afsarmanesh H. and McLeod D. (1989) The 3DIS: An Extensible Object-Oriented Information
Management Environment, ACM Transaction on Information Systems, 7:339-377
Afsarmanesh, H., Tuijnman, F., Wiedijk, M. and Hertzberger, L.O. (1993) Distributed Schema
Management in a Cooperation Network of Autonomous Agents. In Proceedings of the 4th IEEE
International Conference on "Database and Expert Systems Applications DEXA'93", Lect.
Notes in Computer Science (LNCS) 720, pages 565-576, Springer Verlag.
Afsarmanesh, H., Wiedijk, M. and Hertzberger, L.O. (1994) Flexible and Dynamic Integra­
tion of Multiple Information Bases. In Proceedings of the 5th IEEE International Conference
on "Database and Expert Systems Applications DEXA'94", Athens, Greece, Lect. Notes in
Computer Science (LNCS) 856, pages 744--753. Springer Verlag.
Alencar, P.S., Cameiro-Coffin, L.M., Cowan, D.O., Lucena, C.J.P. (1994) The Semantics of
Abstract Data Views: A Design Concept to Support Reuse-in-the-Large, In Procedings of the
Coloquium on Object-Oriented in Databases and Software Engineering (to appear), Kluwer
Press.
Bruno, G., Balsamo, A. (1986) Petri Net-Based Object-Oriented Modelling of Distributed
Systems, OOPSLA'86 Proc.
DiCesare, F., Mu der Jeng (1993) Synthesis for Manufacturing Systems Integration, in Practice
of Petri Nets in Manufacturing, DiCesare, T., Harhalakis, G., Proth, J.M., Silva, M., Vernadat,
G.B., (eds) Chapman & Hall.
Cowan, D.O., Ierusalimschy, R., Lucena, C.J.P. (1993) Abstract Data Views, Structured Pro­
gramming, 14 (1), 1-13.
Cowan, D.O., Lucena, C.J.P. (1993a) Abstract Data Views: A Model Interconnection Concept
to Enhance Design for Reusability, Technical Report 93-52, Cjmputer Science Department and
Computer System Group, University of Waterloo.
Cowan, D.O., Lucena, C.J.P. (1995) An Specification Concept to Enhance Design for Reuse, to
appear in IEEE Transactions on Software Eng.
Fields, B., Harrison, M., Wright, P. (1993) From Informal Requirements to Agent-Based Spec­
ification: An Aircraft Warning Case Study, in, Procc. of the Workshop on Specification of
Behavioral Semantics in Object-Oriented Information Modelling, 11M (Inst. of Inf. Modelling),
Robert Morris College.
Kagohara, M., Toledo, C., Silva, J.R., Miyagi, P.E. (1994) Automatic Generation of Control

106 Pan Four Modeling and Design of FMS I

Programs for Manufacturing Cells, IFIP Transactions: Applications in Technology, B-19, pg.
335-343.
Lucena, C.J.P, Silva, J.R. et al. (1989) The Specification of a Knowledge Based Environment for
the Design of Production Systems, 6th. Sym. on Information Control Problems in Manufacturing
Technology, IN COM, Madrid.
Marca, D. (1988) DADT: Structured Analysis and Design Techinque, McGraw Hill.
Miyagi, P.E, Hasegawa, K., Takahashi, K. (1988) A programming Language for Discrete Event
Production Systems Based on Production flow Schema and Mark Flow Graphs, Trans. of the
Soc. of Instrument and Control Engineers, vol24, no. 2.
Proth, J. M. (1993) Principles of System Modeling, in Practice of Petri Nets in Manufacturing,
DiCesare, T., Harhalakis, G., Proth, J.M., Silva, M., Vernadat, G.B., (eds) Chapman & Hall.
Ranta, J., Tchijov, I. (1990) Economics and Success Factors of Flexible Manufacturing Systems:
The Conventional Explanation Revisited, IJFMS, 2, pg. 142-154.
Silva, J.R. (1992) A Formalization to the Design Process Based on Theory of Metaphors: Its
Application to Discrete Events System Automation, Ph.D. thesis, (in Portuguese) University of
Sao, Brazil.
Silva, J.R., Pessoa, F.J.B. (1992a) Analise Semi-Automatica de Mark Flow Graphs, lbero­
American Workshop in Autonomous Systems Robotics and CIM, Lisbon.
Silva, J.R., Cowan, D.D., Lucena, C.J.P (1994) Case-Based Approach to the Design of Flexible
Manufacturing Systems, (to apear).
Silva, M. (1993) Introducing Petri Nets, in Practice of Petri Nets in Manufacturing, DiCesare,
T., Harhalakis, G., Proth, J.M., Silva, M., Vernadat, G.B., (eds) Chapman & Hall.
Sommerville, I. (1992) Software Engineering, Addison-Wesley Pub. Co.
Tempelmeier, H., Kuhn, H. (1993) Flexible Manufacturing Systems: Decision Support for
Design and Operation, Wiley Series in System Engineering, John Wiley & Sons.
Tomiyama, T. et. al. (1992) Systematizing Design Knowledge for Intelligent CAD Systems,
Human Aspects in Computer Integrated Manufacturing, G.J. Oiling and F. Kimura (eds.),
Elsevier Science Publishers.
Tuijnman, F., Msarmanesh, H. (1993) Management of Shared Data inFederated Cooperative
PEER Environment, Jour. Intelligent and Cooperative Inf. Sys. (illCIS).

