
17

HOLOS : a methodology for deriving
scheduling systems

Ricardo J. Rabelo a ; L.M. Camarinha-Matos b
a scholar of CNPq - Brazilian Council for Research - at New

University of Lisbon -Portugal (e-mail : kadu@uninova.pt)
b New University of Lisbon and UN/NOVA - 2825 Monte da

Caparica - Portugal (e-mail: cam@uninova.pt)

Abstract
This article presents a methodology - HOLOS - for deriving particular multiagent dynamic
scheduling systems from a generic architecture. An object-oriented approach is used to support
information modeling and knowledge representation. The integration aspects are addressed
since agents are heterogeneous and have to access external information sources. A brief
explanation about the HOLOS System Generator, an interactive system deriver based on the
HOLOS methodology, is also given, as well as a general description of the prototype being
developed at the UNINOVA FAS/FMS pilot system. Finally, some comments are made on the
current status and next steps of the work.

Keywords
Dynamic Scheduling, Multi-Agent System, Architecture Derivation, Negotiation, CIM-OSA,
Integration, Virtual Manufacturing.

1 MOTIVATION AND PROBLEM DEFINITION

The current industry scenario is changing very fast due to the need of industries being
competitive. Mter an initial period in which a simple replacement of the human resources by
machines was pursued, human-centered approaches are arising as a balanced alternative in face
of some negative results of total automation (Nakazawa,1994).

The dynamic scheduling activity (dynamic task assignment to production resources along the
time) is directly related to resources management, which includes not only equipments but
humans too. Various industrial technological waves have emerged as a result of the
competitiveness requirements, and the architectures of the scheduling systems cannot stay
immune from that. From an emphasis on scheduling optimality, the industry has passed to
scheduling flexibility, and turning fast to scheduling agility, i.e., a scheduling system which
can support an agile manufacturing towards the extended enterprise paradigm. However, even
within this current dynamic scenario, industries keep demanding for custom tailored dynamic
scheduling systems, which besides being open, should support a flexible (re)configuration of
themselves so that they can be adapted once new production methods, scheduling control
procedures, layout of the production resources, etc., are changed.

This paper introduces HOLOS: a methodology for deriving open, agile and (re)configurable
dynamic scheduling system for a particular enterprise based on a Generic Architecture. The
HOLOS System Generator- a computer aided derivation system - is briefly explained as well.

L. Camarinha-Matos et al. (eds.), Balanced Automation Systems
© Springer Science+Business Media Dordrecht 1995

182 Part Seven Scheduling Systems

2 A MULTIAGENT APPROACH

The development of a dynamic scheduling system which copes with the all mentioned aspects
above is still a challenge. The Multi-Agent Systems (MAS) paradigm (Huhns,l987) has arisen
as a powerful approach to develop a supporting framework, specially when the following
points are taken into account :
• scheduling domain is intrinsically distributed;
• scheduling domain requires a joining of different expertises;
• MAS supports a dynamic domain;
• MAS potentially supports both agents autonomy and decentralized schedules, two key factors

for reaching the desired scheduling agility;
• MAS can support the integration of different problem-solving (represented in different

paradigms) in the same framework.
The Generic Architecture (GA) created within the HOLOS approach- and which will be the

base for a derivation - is a logical collection of distributed agents which can perform a schedule
and be supervised during its execution. Applying a holistic approach in the proposed distributed
scheduling architecture signifies getting a 'state of harmony' within the enterprise via a
complementary and cooperative relationship between the agents involved in the scheduling
(Rabelo,l994a). Such state of harmony in an agile context is a tough task to be reached. The
manufacturing environment is dynamic, normally over-constrained and unpredictable to some
extent. Besides that, current constraints are commonly conflicting to each other so that a trade­
off or requirements relaxations have to be negotiated. A contract net protocol/ Negotiation
paradigm (Davis,1983) appears to be a suitable mechanism for supporting the desired flexibility
in conflicts resolution on that holistic relationship during a schedule generation and execution.
Figure 1 illustrates such a Negotiation process in our approach for scheduling. It consists of a
process that leads agents to exchange information with other agents about a given business
processes' requirements (Figure Ia) until a production resource agent is selected to execute it
(Figure 1 b).

~ Business Process
~ Requirements

(a)

~-·
\ Production

Rooou,_

Figure 1 Negotiation in scheduling.

~ ro Enterprtse Activity

Selected Agent
for one

Enterprise Activity

(b)

The general intended scenario is illustrated in the Figure 2, which can be viewed as an
example of a derivation from the GA. It represents a dynamic view on the cooperative and
complementary agents' behavior so that all enterprise's production structure can flexibly adapt
itself to attend the arrival of a business process. In fact, this illustration joins the three vectors
under which the HOLOS GA is based :

HOLOS

• Virtualization of the enterprise's production structure.
• Integration and information modeling.
• Multiagent distributed control.

BP·tret:"s Precedt:nce Relat\Ons
0 : 1 l 1 3

Figure 2 A Virtual Manufacturing scenario.

L /ENrnW~s~/
)~~

' I "' ..

/1
/~L§W7

1 I .. "

'

183

Scheduling cannot be seen as an isolated CIM activity. A dynamic scheduling system needs
reliable and timeliness information from several sources. A global CIM Information System
(CIM-IS) (Osorio,1993) containing common information models is the main vehicle through
which all heterogeneous subsystems can communicate to each other, and hence the source of all
information needed for the scheduling (Figure 3).

Services

Production Plannin
CAD

Process
Planning

Scheduling

Information Models

Product
Model Process

@@ans
® Productio

Figure 3 A CIM Information System.

Systems & Tools

184 Part Seven Scheduling Systems

Four types of agents are used in the GA. They are hierarchically related, heterogeneous, have
different levels of autonomy, and have an explicit control link between each other. Briefly :

Scheduling Supervisor agent (SS)
It is a semi-hierarchical supervisor agent with the following basic functions : loading both sets
of business processes (BPs) to be executed (BP-trees) and involved information models from
the CIM IS; definition of business processes' requirements and their sending to the Local
Spreading Centers; creation of Consortia; high level changes on planned BPs; high level actions
for conflicts resolution; and visualization and scheduling evaluation.

Local Spreading Center agent (LSC)
It is a decentralized control structure for spreading the BPs announcements (requirements)
through a network of production resources agents. Its main function refers to negotiate with
these agents about BPs' requirements in order to select (based on some criteria) the more
adequate ones for the execution of each BP.

Enterprise Activity Agent (EAA)
It is the agent responsible for executing a task itself (an enterprise activity - EA). In fact, it
represents a virtualization of the production resource's local controller. In Figure 2 this agent is
illustrated as human resources (workers Wkl, ... ,Wk4), robots (Rbl and Rb2), etc. Its
essential functions are receiving BPsiEAs requirements, their evaluation and further answer to a
LSC about its temporal and technical capabilities to execute them, and a 'self-supervision'
activity (in order to guarantee an EAA will only participate in a negotiation when it is
'operational'). The problem related to legacy systems is tackled in the chapter 5.1.

Consortium
It is a temporary and logical clustering of EAA dynamically selected (via negotiation) to execute
a whole BP. Each Consortium has its own and local schedule, which means the global
scheduling is decentralized. In the example shown in Figure 2, there is a set of business
processes (BP;) with a precedence relationship between them. BP23 for instance is composed
by four enterprise activities, EAl : EA4. Each one requires a specific type of production
resource for its execution. Thus, Consortium BP23 represents the team of production resources
selected to execute BP23 (Tl ,Wkl, Rbl and CNC4). However, the Consortium BP42 needs
Tl and Wkl, which in tum are also assigned to Consortium BP23. Therefore, due to the
precedence relation between those two BPs, Tl has to execute EA6 before EA2. An EAA can
belong to several Consortia along the time, which generates EAA contention and hence
temporal constraints. Since an EAA finishes the execution of contracted EA(s) for some
Consortium, this EAA becomes free both to execute other EA(s) already contracted for another
Consortium and to look for more EAs, which are still waiting for execution proposals. At the
end of an entire BP execution the Consortium agent kills itself.

The Consortium improves the traditional Group Technology Cell concept since it supports
several types of flexibility (classified in (Chryssolouris,l992)), such as internal routing,
product, volume and production. In other words, it provides the base to support a virtual
manufacturing (Hitchcock,l994). Other concepts, like the 'logical cell' (AMICE,l993) and
'virtual production area' (Hamacher,l994) seem to be equivalent to the notion of Consortium.
However, the basic difference is on the control flexibility, and on how it is managed in
rescheduling situations. Due to the close link with the EAA agent, the Consortium is able to
find a substitute EAA (via negotiation) when someone else fails.

BOLOS 185

3 INFORMATION MODELING

Information modeling and knowledge representation represents an extremely important aspect
to support the mentioned MAS architecture. Presented work resorts to object oriented
technology. It means that all agents and information structures are modeled as objects; i.e., by
means of attributes (slots) and functionalities (methods).

Scheduling needs to have access to several information sources for I during its execution, as
well as to other ones directed related to the architecture's approach. Two of essential sources
for scheduling are the process plans and production resources. Their models composition have
been inspired on some international projects (like IMPPACT (Gielingh,l993) and CIMPLATO
(Bemhard,1992)) and on the results of the STEP community to some extent (Schenck,l994).
Figure 4 shows an example of a process plan, whereas Figure 6 illustrates (in the EAA agent
model) part of a production resource model.

CIM-OSA (AMICE,1993) concepts have been used for modeling the dynamic processes of an
enterprise. In this sense, a production plan is modeled as a set of business processes and
enterprise activities (EAs), and Procedural Rules Sets (PRSs) as the link between them. These
entities form a BP-tree when seen as a whole (Figure 5). The negotiation process
between agents is mainly based on the BP-tree's entities. However, these entities' models have
been extended in order to improve the efficiency and negotiation flexibility (Rabelo,1994a).

Open solutions also include people talking a common language (terms and their precise
(semantic) meaning) in order to avoid misunderstanding and, to some extent, to take the local
culture into account. Some efforts in creating 'standard glossaries' have been made
(Camarinha,l991). Thus, the glossary is applied on all interactive interfaces and reports.

The four types of agents used in the generic architecture are modeled as classes of agents,
from which instances of agents are created and filled in during a derivation process. Examples
of the agents classes are shown in Figure 6.

4 HOLOS - THE METHODOLOGY

The process of deriving (an instance-of) a dynamic scheduling system from a generic
architecture is not 'anarchical' but based on a method. The BOLOS, a methodology to
support such derivation, has been in development at UNINOV A. It corresponds to a sequence
of interdependent general procedures and considerations which are to be followed by a 'human
deriver' towards the implantation of a dynamic scheduling system for a particular enterprise.

CIM-OSA appears as the most prominent and wide methodology related to derivation of CIM
architectures from an abstract and general reference model. BOLOS methodology is more
restricted in scope than CIM-OSA, since it specifically addresses scheduling systems
development as well as it is tightly biased by with the multiagent approach.

A scheduling system derivation process is normally too complex. It comprises lots of
parameters and information about production, engineering and scheduling control, which in
tum may be combined to each other. An open solution (the derivation) for that scenario requires
an exhaustive discussion between all people engaged in, as well as the evaluation of its impacts
on existing technology and human resources management. Such discussion can involve not
only technical points (like production system, integration, heterogeneity of existing systems,
production resources layout, solution costs, etc.), but also the enterprise's organizational
culture and its work organizational methods (like team work, decentralization levels and
autonomy for decision making, human resources qualifications, their functions (re)definition,
training policies, etc.) as well as national singularities (like work shifts related to special
holidays or local tradition, efficiency criteria specifications, etc.). The consideration of all these
questions may determine the success of the system and of its implantation (Jones, 1992), i.e.,
that the expected particular system can be achieved.

186 Part Seven Scheduling Systems

f'""'e : <process_plan id>

is_a : process_plao
part_modeUd : <partjd>
part_model_name : <part_name>
measurements_obs: rmearure hole a', ...]
dimensioning_obs : rdist holes a:c 370mm', ... J
toler_obs: rdist holes a:c +-0.00/mm', ... J
general_obs : ...
is_operation : [<op_id>, ...]
)

Frame : <op_id> _organi"-.data
I
~ll:f.t~:Udata_of: <op_id>

worker_time : nil
cycle_time : nil
day_marlrer: nil
I

Frame : <op_id>
I
is_operation_of: <process_plan id>
superv_data: <opjd>_superv_data
process_data : <opjd> _process_data
organiz_data: <op_id> _organiz_data
opjd : <op_id>
op_name : boring
op_description: 'boring holes abc'
op_number : 10
op_precedence :nil
op_time: I
op_obs: nil
)

Frame: <op_id>_superv_data
I
is_superv_data_of: <opjd>
op_measurements :nil
op_dimensioning :nil
op_toler :0.001
op_roughneas :nil r_obs :nil

Frame : <opjd> _process_data
I
is_process_data_of : <opjd>
proceas_type :machining
resource_class : miUing
resource_sub_class : ml
resource_type : nil
resource_in.stance : nil
fixture_modeUd : ftx_ch_pg_univ _01
tool : bore_j{SS
tool_model_id : tlbore0552
special_dispositives :nil
feed: 500
speed: 760
cool_type : nil
oool_name : nil
part_program_id :pn_ch_pg00/_1
obs: nil
I

Figure 4 Example of a process plan model.

BPI

EA6 EA7 EA8 EA9

c_-~~~~~~j -part to be produced externally

c=J · part to be produced internally

Figure 5 Example of a BP-tree model.

Frame: <bp_id>
{
is_BP _of: <sbop_packet_id>
bpjob_id: <bp_id>
part_name : <part_name>
pplan_id : <pplan_id>
splitting_policies : nil
lotsize: <n>
rough_processing_time : <t>
bag_of_ind_odr: <industrial_order_id>
has_BPBR : <bpbr_id>
production_steP,: <production_step_id>
has_EA: [<ea_Id>,. ..]
I

Frame: <bpbr_id>
{
is_BPBR_of: <bp_id>
bpjob_due_date: <due_ date>
bpjob_preferences: nil
bpjob_expectatives: minimize.Jlow_time
bpjob_prty: <n>

t&J~g=:~~~~~ ~11
I

lTame : <ea_id>
{
is_EA_of: <bp_id>
op_tirne : <n>
op_name: turning
op_precedence: <op_preced>
op_tolerance: <op_toler>
op_due_dste: <op_dd>
op_pplan: <process_plan_id>
I

DynamicBP
Information

Although all these concerns are pointed as crucial, they are out of scope of the HOLOS
methodology itself. Hence, the HOLOS methodology assumes the whole phase mentioned
above is done before starting a derivation process. In other words, it presupposes that a

HOLOS 187

preliminary analysis and a rough system evaluation is made and their results are incorporated in
the form of:
• information modeling of all entities directly related to the scheduling activity (production

resources and their layout and topology, process plans and production plans);
• information modeling and knowledge representation of all entities directly related to the

scheduling architecture (agents' classes and the control flow between them, glossary,
communication protocol, negotiation entities and events to be treated);

• identification of the information flow between dynamic scheduling with supervision and
planning actions;

• set of procedures to be used in the particular system according to the parameters and
information about engineering, production and scheduling control (EPS).

Frame: <manager_id>

~ger_of: <EAA_id>
class : manager
has_mailbox : <mailbox_id>
has_ agenda: <agenda_EAA_id>
has_server_info_model:

Frame: <server_id_info_model>
{
is_model_of: <EAA_id>

;ei~;gm,:~:::r~l~~=~c
sub_class: pgm_milling
class :milling
super _class: machining

Frame : scheduling_supervisor
{
registered_LSC: [[<LSC_id>, [<LSC_responsibility>),

registered_EAA: [~Iff..\.~ft!~~~er_EAA_id>], ... ,]
<server_id_info_model>

has_team: [<server_id>, ...]

managEAA_add_EA_Agenda :
mt_managEAA_add_EA_Agenda

manag!t~~~E1~Jj~~~Mailbox

behavior: active _resource
planning_info : <server _id_plarming>
techno_info: <server_id_technological>
capab_info <server_id_capability>
topol_info: <server_id_topology>

registered_Consortium: [{<consortium_id>,<BP _id>,
<statu,_BP>], ... ,]

param_Consortium_eval: [completion_time, tardiness,
lateness, kad_time, slack_time, idle_time, ...]

load_EAA: mt_create_EAA
attach_server : ni:_attach_server
load_LSC: mt_create_LSC
load_EAA_to_LSC: mt_load_EAA_to_LSC I

f~~~G"t~~~_l:ct~Bt~-m_tsc
managEAA_answer_EA_LSC :

mt_managEAA_answer_EA_LSC
managEAA_decompose_packet :

mt_managEAA._decompose_packet
managEAA_evaluate_EABR:

Frame: <server_id_technological> send_EA_to_LSC: mt_send_EA_to_LSC
create_Consortium: mt_create_Consortium
evaluate_Consortium; mt_evaluate_Consortium
create_telJll_BP _control : rrt_create_temp_BP _control
show_resources: mt_show_resources

{

managfu~~::e~EARI~ate_EABR is_ component_ of: <server_id_mfo_model>
control_name: siemens _1M

mt_managEAA_evaluate_EAR
managEAA_get_EAR_from_lS :

managrAA~~~~_1i<~AR_from_Is
mt_managEAA_receive_EABR

managEAA_receive_answef_EA:
mt_managEAA_receive_answer_EA

managEAA_remove_EA_Agenda :
mt_managEAA_rermve_EA_Agenda

managEAA_remove_msg_Mailbox :
mt_managEAA_rermve_msg_Mailbox

Frame · <lsc_id>
{
lsc_id: <lsc_id>

cool: 4
ntools: 20
precision : 10
speed_max : 2500
type: cnc
wp_weight_max: 20
fe<d_max' [800,1000,1500}
rnpid' [1000,1000,1500}

~=~~=J!f·Jj·jj
zero_positmn: {-100,100,212]
I

lsc_functionality: [machining,milUng]
lsc_org_id: nil
registered_ BAA: [[<EAA_id>,<manager_EAA_id>,

<availability>,<maintenance>], ...]
received_E~: U<EA_id>,<BP_job_id>], ...]
selection_cntena: [[due_dale,J],{minimum_paJh,2],{less_numb_EAA,3],

[greaJer_EAA_cost,4], ... J
time_ out: 25

check_inexistence_candidates_BP: rrt_check_inexistence_candidates_BP
check_inexistence_candidates_EA: mt_check_inexistence_candidates_EA
choose_EAAs_to_send_EABR: mt_choose_EAA_to_send_EABR
receive_answer_EAA: rrtJeceive_answer_EAA
select_EAA : mt_select_EAAs
send_EAA_to_Consortium: mt_send_EAA_to_Consortium
send_EABR_to_EAA: mt_send_EABR_to_EAA
send_answer_to_EAA: mt_send_answer_to_EAA
send_answer_to_EAA: mt_verifyJelaxation
send_answer_to_EAA: mt_evaluate_candidates
)

EAA agent class I LSC agent class

Figure 6 Example of the agents' classes.

~g~: =~~:~o'::iU~~~~~~~_all_oonsortium
show_consortium: mt_show_consortium
get_EA_status : mt_get_EA._status
get_BP _status: rri_get_BP _status
scheduling_ execution: mt_scheduling_execution
I

Frame: <consortium id>
I -
controlled_ by : <consortium_i>
bp_1d: <BP _id>
type: make
COflllOSed_by :
[[<manager_id><server_id><EA_id><start_tinr><end_time>],.

consortium_receive_EAA: mt_consortium_receive_EAA
scheduling_ execution: mt_consortium_scheduling_execution
modify _BP _information : mt_modify _BP _information
fmd_substitute : mt_find_substitute
get_EAA_status : mt_get_EAA_status
give_EA_status_to_SS: mt_give_EA_status_to_SS
give_BP _status_to_SS: mt_give_BP _status_to_SS
I

SS agent class I Consortium (C) agent class

In the HOLOS approach, a derived dynamic scheduling system is represented as a particular
configuration of agents organized for a concrete scenario, and that can be supervised during the
execution of a scheduled production plan. A derivation basically consists in creating instances

188 Part Seven Scheduling Systems

of the agents' classes and then filling their skeleton along some derivation phases (discussed
later). In fact, these phases represent a stepwise way through which the HOLOS methodology
is utilized. Thus, hidden under those phases, the methodology's procedures are applied.
Briefly, they are :

a) Agents Specification
This procedure is related to the knowledge to be incorporated into each type of HOLOS agent
(SS, LSC, Consortium (C) and EAA) when instances of them are created. This knowledge is
represented by attributes and functionalities, which in turn can be :
• Generic : those which each agent should have, independently of the particular site *
• Customized : the generic attributes and functionalities which need to be customized

(within a set of options) for a particular scheduling system, but still independently of the
particular physical site.

• Particular : the attributes and functionalities which should exist and/or have to be customized
taking into account the particular physical site.

al) Selection of EPS Criteria
The EPS aspects are directly or indirectly indicated (selected) via customized attributes. In
general terms there is a method associated to each indicated EPS aspect. Nevertheless, the
specification of an attribute may be a result of a combination of EPS aspects.

a2) Consistency Verification
The indication of the EPS aspects can be a difficult task, specially when they have to be
combined to each other. A wrong specification and/or combination can provoke a situation of
domain inconsistency. Two consistency verification levels exist : a simple check to guarantee
that all terms indicated are defined in a glossary; and a more sophisticated analyses to guarantee
a valid combination between those aspects (based on a 'derivation map', which could model all
possible combinations for each aspect). Due to the complexity, this last level can suggest a
decision support module may be used to help the user.

b) Agents Implantation
Implanting the agents means to make them exist in the 'world'; i.e., they can be recognized in
the system, can communicate to the other agents and can execute actions. In this sense, once the
logical agents instances are completed created, they do a self-announcement making use of their
respective communication channels previously assigned. The 'compilation' of all agents'
functionalities and other programs, the creation of libraries and adjustment of graphical
interfaces are other steps to be pursued.

c) Agents Integration
In the HOLOS approach, agents have to communicate to external and heterogeneous entities in
order to execute a scheduling. Such entities are the CIM-IS, other sub-systems (specially those
related to the planning and supervision activities) and the production resources' local
controllers. There are three possible integration layers to be made (see Figure 11) :
1- PLC (or other local controller) : Server- it aims at transforming the local production

resource's controller (its PLC) in a server; i.e., creating a higher level client (in DOS or Unix
for instance) which can communicate with the server. The communication process can make
use of RPC, for instance.

• As already mentioned, the HOLOS methodology assumes that all agents' classes and information models are
already composed before starting a derivation. However, a class concept can be changed (by the user), and this
may be done due to some requirements of the particular site.

HOLOS 189

2- Server : EAA Manager- it aims at allowing the server to be integrated and representable into
the community of agents. The paradigm client (EAA Manager I Unix) : server (Server I Dos
or Unix) is applied. The communication process can make use of RPC, sockets, etc., in
UDP or TCP, depending on the server's communication services.

3- EAA Manager : other agents - it aims at allowing the EAA Manager to make a conversation
(in an abstract 'multiagent scheduling language') to the other agents of the architecture, to
other subsystems and to the CIM-IS. A high level protocol can be utilized for that, which
can be supported by RPC, sockets, etc. , in UDP or TCP.

d) Agents Reconfiguration
An open solution implies giving the user the possibility to refine the Particular Architecture
Infrastructure, after its generation, for the specific target system. This can be done through
modifications (or extensions) and/or insertions of attributes and/or functionalities not generated
during the derivation.

e) Architecture Reconfiguration
Production domain and scheduling policies and their control structures can change along the
time, either due to its obsoleteness or due to some adaptation for a specific derivation (as
mentioned in the Agents Specification procedure) . Thus, an open architecture has to
contemplate the possibility to the user for changing the agents' classes and the domain
knowledge.

4.1 The Derivation Phases

Five derivation phases are utilized in the HOLOS methodology (Figure 7) . Briefly they are :

GA
Logical

-,J.­
GAI

Logical

-J-
PA

Logical

-1-
PAl
Real

-l-
cheduling
System

Real

Eq?EBt:ptp
-- ------

j·_·itifi_
~· ·w· ·a·a
----- -------

~

Figure 7 HOLOS derivation phases.

• Agents ' Classes
• Generic agents's knowledge

description and possible linking

• Attributes/Methods dealing with
creation and agents communication

• Inhibition of some attributes and
methods.

• Instantiation of attributes/method
"~"and "Customized".

• Instantiation of attributes/methods
"~".

• Real agent creation.
• Commurrication channels assignment
• Portability of Graphical interface

• Agents integration :
- PLC : Server ;
- Server : EAA :
- EAA : other agents. subsystems

and CIM-IS
• Adding new attributes/methods

not created in the derivation.

190 Part Seven Scheduling Systems

Generic Architecture (GA)
In this initial phase all classes of agents are abstract objects. Examples of these classes were
shown in the Figure 6. They represent the 'genesis' of the scheduling system.

Generic Architecture Infrastructure (GAl)
It is the first stage of the derivation process. The main goal in this phase is to give the agents the
first 'seeds of life', i.e., a set of primitives related to their creation and communication
(including with the CIM-IS). The RPC protocol has been used to support the agents
communication. Due to the difficulties for calling RPC services from a program (a method)
written in Prolog, C programs are used as an 'intermediate binding' for that (Figure 8). Generic
attributes and/or methods can be inhibited for the particular system.

Frame ~ < LSC_1d >
{

time_out; ~ .- ..-

--
Prolog

char•
get_amwer_EAA_RPC (<li.st_arp, client)

Aru.wer • <lLSt_arg>:
Chent •ctnt

.statiecbarres;

b.t:ero((cbar •)&re.s. 5tUof(rc.s)}~
lf(tlnt_call (tlnl. get_An$\\.<er_EAA_RPC. xdr_mt..

c

<hst_arg>. xdr_ch:M, &rc.s, Time_ Out)[:;; RPC_SUCCESS l
{
return (i'1JLL);

)
rctum(&ra);

gcUiJOI. (< LSC_1d >.time_out. Time_Out) .
calL method (< LSC_1d >, r«:eave_answer_EAA,

I< EAA_id >. < EA_id >.1imc_Out. R l).

mt_.-eceive_anS'A't-r_EAA (< LSC_id ;>, < EA_id >. Tune_Out, R) :·
get_ruuwer_EAA (< LS _id >. < EA_id >, Tame_Out, R).

fl_ncludc ...

void gtt_answcr_EAA (< LSC_id >. < EA_td >. Ttme_Ou t. R)
{

cl,.v. pe: - ...
pc: :~: gct_&~.!iwcr_EAA_RPC (< EA_id >. T-me_Out, < LSC_id >);

Ra ... ;
I

Figure 8 Example of an agent LSC in the GAl phase.

Particular Architecture (PA)
In this phase the logical instances of the agents' classes are originated. The Generic
functionalities and attributes are added (by inheritance) to the respective instances, the
Customized functionalities and attributes can be chosen and/or indicated from a set of options
(library), and the Particular ones are specified (Figure 9). This is the first step in direction to the
particular system instantiation.

Frame · sebeduhng_.wpcrvi.sor
{

~-Con.sorttum_c.\'al : fcompldioo_time, tiUdmeu,
La.teoe.u,lcad_tune-. sla.::k_time. idle_time-, .

evaluate_ConsonuJm mLevaJuatt_Coll.SOrtium - -

.sbow_consortrum : mt_show_conson.ium

c::a/l_nu~thDd (sclredulrng_Jup~rvisor, evaluat~_ConJortium.
{<coiUortium_id>. romplttron_tun~. V j) .

mt_e\'aluoue._Coo.sortiwn (<cons011•um_id>.<para.m_e\'ai>,Value) :-

mt_c.\'aiWIItc._ C'on5Qftium (<coO.Sortlurn_Hb.corrrpll!'tion_tinr~. Value) :-
- ~ get_frame_value (<coo~ium_id>, tudy_time, Rt).

get_rrame_\'alue (<eonsonium_Kb, ~«:c:.ss_time. Tt) .
get_rraniC_'Yalue (<consorttum_id>. waiting_ time, Wt),
VaJue is Rt + Tt + Wt.

Figure 9 Example of an agent SS in the PA phase.

HOLOS 191

Particular Architecture Infrastructure (PAl)
This phase is responsible for the real creation of all logical agents instances composed in the
previous phase. The communication channels have to be assigned to the agents according to
their topology and enterprise model in order to connect them to each other. The adequacy of
user interfaces is another aspect to take into account. In this phase, the agents become 'real'
entities.

Dynamic Scheduling System
The user takes the PAl and makes the necessary adaptation for the particular system as well as
handles the system (agents) implantation. An old derivation is replaced by the new one. This
last phase represents a PAl completely instantiated and implanted.

5 HOLOS - THE SYSTEM GENERA TOR
Likewise the other areas, the systems development technology has also suffered the 'Pendulum
Law' effects. From the one extreme situation in which the systems were designed all custom­
tailored and hence with high costs in development, it has passed to the other extreme in which
the systems became generic, less expensive but 'black boxes'. More recently, due to the
increasing of the development complexity of industrial systems and, at the same time, their need
being open, modular, reusable and integratable, the 'derivation approach' has stood in
significance and seems to be a balanced trend (Dietrich, 1994). Its basic idea corresponds to
create generic systems architectures and then to create particular 'instances-of from that. The
BOLOS System Generator (HOLOS-SG) (Rabelo,l994b) can be seen as an example in that
mentioned direction. It represents an automatic way to guide a derivation. In fact, the BOLOS­
SO appears to be a 'computer aided derivation' tool. By means of a strong interaction with an
user deriver the BOLOS derivation phases are passed so that at the end of the process a P AI is
generated.

It is not the objective here to describe it in details, but just to give a rough idea about it and its
philosophy. Figure 10 shows its generic architecture. Some aspects deserve a brief explanation.
The first one refers to the user intervention. Beyond his/her position as a deriver (and as a
decision maker to some extent), he/she can alter I have access to the system concepts and
libraries. Further, once the P AI is generated and in order to generate the particular scheduling
system, it is necessary to implant, to integrate and, possibly, to reconfigure agents. The second
one is just related to the CIM-IS role. Basically, it is the source of all information models
needed for a derivation as well as the repository of a derivation representation (old ones, current
one, or even one in progress). The last aspect is concerned with the rules to guide a derivation,
which is supported by other structures (a Help, derivation maps and a decision support system)
for consistency verification, specially in the PA phase.

5.1 Prototype under development
A test case for the NOV AFlex (Barata,l993), the UNINOVA's FMS/FAS pilot system, is in
development. The objective is to derive a dynamic scheduling system based on the BOLOS
methodology. NOV AFlex is composed by three robots (one scara and two 6 dof), two
numerical control machines (a lathe and a milling), an automatic warehouse and a pallet based
transport system with sensors. The current prototype has been in development and being
implemented in Prolog for Aix language with an object-oriented extension (Seabra
Lopes,1994), in an IBM Rise 6000 workstation.
The integration aspect is vital in manufacturing. Apart this prototype, other works on
integration have been in development at UNINOV A. In short, we have faced with the legacy
system problem. The production resources' controllers are quite heterogeneous, and they need
to be recovered in such a way they can be integrated into the architecture infrastructure, i.e.,
they can be represented within the community of intelligent agents. The UNINOV A's approach
is the development of encapsulating layers (as mentioned in Agents Integration in chapter 4).

192 Part Seven Scheduling Systems

The first integration layer (PLCs-Servers) is already finished for all NOV AFlex' s servers, in
PCs, with implementations inC and C++ languages, Linux and DOS operational systems, and
Xll and TCL Tool-Kit for graphical interfaces. It means that all servers can 'offer their
services' to the other agents I applications. Other works were made on how to integrate agents
with other subsystems and with the CIM-IS (third integration layer). We are now concentrated
in the second layer, i.e., the integration of these servers with their 'managers'. Thus, an EAA
is modeled as a logical clustering of two basic interacting processes, a Manager and a Server -
a tandem architecture (Figure 11). The Server, representing the resource's local controller, is a
slave process which gives its Manager an allowance for offering services which it is capable to
execute. The Manager 'represents' this Server within the manufacturing environment. Its
basic function is 'selling' (via negotiation) the Server's services. In fact, a Manager can also
represent more than one Server, depending on the production resources' topological model.

User

Figure 10 HOLOS System Generator architecture .

..... , ' A=1 Mailbox '

tolf-~~!!...--M-Ianager y-' w 1:

Agendas

' .
~~-I

''""I
.. ·

Figure 11 An example of the EAA architecture.

User

Panicufar

PAl -----+ Dynamic
Schtduling

Sy11em

HOLOS 193

6 CONCLUSIONS
The BOLOS, a methodology for derivation particular dynamic scheduling systems from a
generic architecture, was presented. It makes a matching with most of the characteristics
considered as trends and emerging concepts in scheduling (Szelke,1994). It utilizes some
anthropocentric concepts in applying a decentralized control and in exploiting the autonomy of
the production resources. The negotiation between intelligent agents is used as the support
technique for that.

The Engineering-Tool-Kit (Hirsh,1994) and OPIS (Smith, 1994) represent two other related
works. In spite of they are older, apply different approaches and are already more established
than BOLOS, their general objective is equivalent : generating particular architectures and
systems based on generic concepts. However, due to the BOLOS potentiality in terms of
flexible modeling and control, system modularity and expandability, integration and MAS
approach, a BOLOS instance system appears to fit in a more suitable way with the requirements
of the industries which have envisaged for a virtual manufacturing towards the extended
enterprise paradigm.

It does not intend to cover all kind of industries. The first prototype is directed to discrete and
jobshop manufacturing. Further, this prototype assumes that the generic architecture is 'good
enough' and that the human deriver has all knowledge on how the particular dynamic
scheduling (the instance-of) has to be. However, the architecture can be modified along the
time, and the instance can be adapted by the user after a derivation.

The BOLOS System Generator, a 'computer aided derivation' tool, was briefly presented,
allowing the user to be assisted during a derivation.

A prototype has been in development in order to generate an instance-of for NOV AFlex. After
the first implantation, the evaluation and methodology validation correspond to the main next
steps to be pursued. Further, in being this work a cooperation between UNL and Federal
University of Santa Catarina I Brazil, the intention is also to derive a particular system for its
manufacturing cell.

7 ACKNOWLEDGMENTS

We would like to thank the UNINOV A Institute for the general infrastructure, the support
provided by the JNICT CIM-CASE and ECLA Cimis.net projects, and Francisco Bemardes
and Roberto Espenica for their support in the implementation of HOLOS-SG. The first author
also would like to thank CNPq - Brazilian Council for Research - for the scholarship, Mafalda
Leitao for her comments about BOLOS from the sociological point of view, and Gentil Lucena
for his holistic way of being.

8 REFERENCES

AMICE (1993) CIM-OSA: Open Systems Architecture for CIM. 2nd revised and extended
version, Springer-Verlag, Berlin.

Barata, J. and Camarinha-Matos, L.M. (1993) Development of a FMS/FAS System- The CRis
Pilot Unit. Proceedings ofECIA-CIM93, Lisbon, Portugal.

Bernhard, R., editor (1992) CIM Systems Planning Toolbox - Project Survey and
Demonstration. Proceedings ofCIMPIATO Workshop on CIM Planning Tools, University
of Karlsruhe, Germany.

Camarinha-Matos, L.M., Pinheiro-Pita, H. and Moura-Pires, J. (1991) CIM Glossary - 4th
Revision. UNL-Report.

Chryssolouris, G. (1992) Manufacturing Systems : Theory and Practice. Springer-Verlag,
New York.

194 Part Seven Scheduling Systems

Davis, R. and Smith, R. (1983) Negotiation as a Metaphor for Distributed Problem Solving.
Artificial Intelligence, 20, 63-109.

Dietrich, B. (1994) Automation in Manufacturing, Control versus Chaos, in Advances in Agile
Manufacturing (ed. P.T. K.idd and W. Karwowski), lOS Press.

Gielingh, W. and Suhm, A., editors (1993) IMPPACT Reference Model: An Approach to
Integrated Product and Process Modelling for Discrete Parts Manufacturing. Springer­
Verlag, Berlin.

Hamacher, B., Klen, A. and Hirsh, B. (1994) Production Management Elements for the
Learning Enterprise. Proceedings of IFIP WG5.7 Conference on Evaluation of Production
Management Methods, Gramado, Brazil.

Hirsh, B., Kuhlmann,T. and Marciniak, Z. (1994) Engineering Tool-Kit for Implementation of
Shop Floor Control Systems. Proceedings IFIP WG5.7 Conference on Evaluation of
Production Management Methods, Gramado, Brazil.

Hitchcock, M. (1994) Virtual Manufacturing - A Methodology for Manufacturing in a
Computer. Proceedings of Workshop on The Automated Factory of the Future: Where do
we go from here ? I IEEE 1994/nternational Conference on Robotics and Automation, San
Diego.

Huhns, M., editor (1987) Distributed Artificial lnteligence. Pitman Publishing I Morgan
Kaufmann Publishers, San Mateo, USA.

Jones, B. (1992) Essential Cultural Aspects, Strategies and Techniques- A Comparative View
of Work Technology and Flexible Production, in Flexible Manufacturing Systems and Work
Reorganization [in portuguese] (ed. Ilona Kovacs at all), Lisbon, Portugal.

Nakazawa, H. (1994) Human Oriented Manufacturing System, in Advances in Agile
Manufacturing (ed. P.T. K.idd and W. Karwowski), lOS Press.

Osorio , A. and Camarinha-Matos, L.M. (1993) Information based control architecture for
CIM. Proceedings IFIP Conference Towards World Class Manufacturing, Phoenix, USA.

Rabelo, R. and Camarinha-Matos, L.M. (1994a) A Holistic Control Architecture Infrastructure
for Dynamic Scheduling. IFIP KBRS94 - Knowledge-Based Reactive Scheduling
Workshop, Budapest, Hungary. In press by Chapman & Hall.

Rabelo, R. and Camarinha-Matos, L.M. (1994b) Generation of Multi-Agent Infrastructures for
Dynamic Scheduling and Control Architectures. Proceedings 27th ISATA I Conference on
Lean/Agile Manufacturing in the Automotive Industries, Aachen, Germany.

Schenck, D. and Wilson, P. (1994) Information Modelling : The EXPRESS Way. Oxford
University Press.

Seabra Lopes,L. (1994) GOLOG 2.0- A Frame Engine in Prolog.Technical Report UNL12-94.
Smith, S. (1994) Configurab1e Systems for Reactive Production Management, in IFIP

Transactions- Knowledge-Based Reactive Scheduling (eds. E. Szelk:e and R. Kerr), North­
Holland.

Szelk:e, E. and Kerr, R. (1994) Knowledge-Based Reactive Scheduling, in IFIP Transactions­
Knowledge-Based Reactive Scheduling (eds. E. Szelke and R. Kerr), North-Holland.

9 BIOGRAPHY

Mr. Ricardo J. Rabelo received his degree on Computer Science in 1984, worked as consultant
for several Brazilian companies as a collaborator of GRUCON I Federal University of Santa
Catarina, and he is actually taking his Ph.D. at New University of Lisbon I UNINOV A on
Robotics and CIM. His main interest are : dynamic scheduling and virtual manufacturing.

Dr. Luis M. Camarinha-Matos received his Computer Engineering degree and Ph.D. on
Computer Science, topic Robotics and CIM, from the New University of Lisbon. Currently he
is auxiliary professor (eq. associate professor) at the Electrical Engineering Department of the
New University of Lisbon and leads the group of Robotics Systems and CIM of the
UNINOV A's Center for Intelligent Robotics. His main research areas are : CIM systems
integration, Intelligent Manufacturing Systems, and Machine Learning in Robotics.

