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Abstract 
We report on numerical tests with our recently introduced descent level bundle method for 
convex minimization. The test problems include standard non smooth problems, eigenvalue 
problems, and Lagrangian duals of traveling salesman, capacitated lotsizing, hierarchical 
production planning and unit commitment problems. 
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1 INTRODUCTION 

We have recently introduced a descent bundle method Brannlund et al. (1995) for min­
imizing a (possibly nondifferentiable) convex function f : JRN -> JR over a nonempty 
closed convex set S C JRN. We assume that at each xES we can compute f(x) and an 
arbitrary subgradient g(x) E af(x). 

At the kth iteration, having generated linearizations PO = f(yj) + (g(yj),. - yj) of f 
at trial points yj E S for j = 1: k, we approximate f from below by the piecewise linear 
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cutting-plane model P = maXjEJk f j , where Jk C {1: k} contains k and at most N other 
indices. We set 

(1) 

where the prox-center xk usually has the best f-value among the points {yj}j=l' and the 
target level fl~v < f(x k) is chosen to ensure frev -7 1* := infs f as k -7 00. If a finite 
lower bound fl~w ~ 1* is known, then usually fl~v = f(x k) - /i',[D,\ where 0 < /i',[ < 1 and 
the optimality gap D,k = f(x k) - fl~w provides the optimality estimate f(x k) - 1* ~ D,k. 
Since P ~ f, if the feasible set Sk = {x E S : p(x) ~ fl~v} of (1) is empty then 
fl~v < 1*, so setting fl~w = fl~v reduces D,k by at least /i',[. Also fl~v is increased and yk+1 

is recomputed if the direction dk = yk+l - xk is 'too large' relative to the desired descent 
Jk = f(x k) - fl~v' A descent step to x k+! = yk+l is taken if f(yk+1) ~ f(x k) - /i',dO\ where 
0< /i',d < 1 (i.e., if the actual descent is at least a fraction of the desired one). Otherwise, 
a null step xk+l = xk provides a new linearization p+l. 

The original level methods of Lemarechal et al. (1995) require S to be compact. They are 
hardly implement able because they employ Jk = {1: k} and fl~w = mins p. In contrast, 
our method needs bounded storage and is globally convergent without any compactness 
assumptions. 

2 THE DESCENT PROXIMAL LEVEL ALGORITHM 

The trial point finding subproblem (1) may be formulated as the QP problem 

mlllHillze Ix - x k
1
2/2 over all xES 

satisfying fj (x) ~ fl~v for j E J k. 

Algorithm 1 

(2) 

Step 0 (Initiation). Select an initial point Xl E S, a final optimality tolerance Eopt :::: 0, 
a multiplier bound tmax > 0 and parameters /i',d, /i',[, /i',s E (0,1). Choose fl~w ~ 1* (e.g. , 
fl~w = -00). Set D,I = f(x 1

) - fL. Set 01 = /i',/D,l if D,I < 00; otherwise choose 01 > O. 
Set J1 = {I}. Set the counters k = 1, 1=0 and k(O) = 1. 

Step 1 (Level feasibility check). Set fl~v = f(x k) - Ok. If (2) is feasible, go to Step 3. 

Step 2 (Update lower bound). Choose ffow E [Jl~v' 1*J (e.g. , fl~w = fl~v or infs P). Set 
D,k = f(x k) - fl~w' Ok = /i',/D,k and go to Step 1. 

Step 3 (Projection). Find the solution yk+l of (2) and its multipliers ,\7 such that the set 
jk = {J' E Jk . ,\k > O} satisfies Ijkl < N Set t k = '" . ,\k dk = yk+l_ xk pk = _dk/tk 

• J -' WJEJk J' , , 

h = p(yk+1) + (pk,. - yk+l) and a; = f(x k) _ j~(xk). 

Step 4 (Stopping criterion). If ak := min(~\max{lpkl,a;}) ~ Eopt, terminate. 

Step 5 (Multiplier check). If t k > tmax) replace Ok by /i',sOk and go to Step 1. 

Step 6 (Descent test). If f(yk+ l ) ~ f( xk) - /i',dO\ set t! = 1, k(l + 1) = k + 1 and increase 
the counter of descent steps I by 1; otherwise, set t! = 0 (null step). Set xk+1 = xk +t!dk

• 
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Step 7 (Selection). Select J; C Jk such that jk C J;. Set Jk+1 = J; U {k + I}. 

Step 8 (Gap update). Set fl~!1 = fl~w and f1k+l = f(xk+1)- fl~w' Htt = 0, set 8k+l = 8k; 
otherwise, choose 8k+1 E [min{8k,K/£lk+I},£lk+l). Increase k by 1 and go to Step 1. 

3 MODIFIED LEVEL CONTROLS 

The level control of Algorithm 1 can be modified in order to increase its efficiency without 
destroying convergence. We list a few (implemented) possibilities below. 

Suppose Step 1 finds another lower bound h~w of j* by computing infs P, or from a 
feasible point to the primal problem in Lagrangian relaxation. If jl~w 2': f(x k) - K/f1k for 
some fixed K/ E [KI, 1) (i.e., jl~w is significantly better than fl~w)' then Step 2 may be 
entered to set fl~w = jl~w and reduce £lk by K/. 

If infs P is not computed, then fl~v :::::: infs P may be detected by the test Ipkl ::; maa; 
with a small rna > O. Hence Step 5 may use this additional test for decreasing 8k

• 

We may use the optimality measure &k = minj=1 {Ipkl + a;} for decreasing 8k to 
min{K/f1k,&k} and min{K68k,&k} at Steps 2 and 5 respectively, and for letting Step 8 
choose 8k+l E [min{8k,K/f1k+t,&k},f1k+l). This allows 8k to decrease when f(x k) ap­
proaches j*, as indicated by smalllpki and a;. 

If the stepsize bound tmax is too small, the algorithm may crawl towards the solution. 
Hence our implementation sets t max = 100tl, possibly increasing it to min{lOtmax,lO lO

} 

at Step 5 if tk > tmax and more than two consecutive descent steps occured. 

4 SUB GRADIENT AGGREGATION 

To trade off storage and work per iteration for speed of convergence, one may replace 
subgradient selection with aggregation as in Kiwiel (1995b). Alternatively, one may employ 
selective aggregation Kiwiel (1995c) as follows. If we pick i,3 E Jk with A7, Aj > 0, replace 
p by (AU' + Aj p) / (Af + Aj) and drop ifrom J\ then the solution of(2) does not change. 

5 SOLVING QP AND LP SUBPROBLEMS 

Instead of using a separate LP solver for checking feasibility of (2) and possibly finding 
mins P, we employ the QP solver of Kiwiel (1989) within the exact penalty approach of 
Kiwiel (1995a). In this approach, given a penalty parameter t > 0, one solves 

(3) 

Kiwiel (1995a) shows how to choose a sequence of penalty parameters so as to solve 
(2) or determine that (2) is infeasible and then deliver mins p. For handling large-scale 
problems, we intend to replace the QP solver of Kiwiel (1989) by that of Kiwiel (1994). 
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6 NUMERICAL EXPERIENCE 

We present comparisons of Algorithm 1 with our implementation of the simplest level 
method of Lemarechal et al. (1995). In our notation it can be stated as follows: 

Algorithm 2 
Step 0 (Initiation). Select an initial point Xl E S and a final optimality tolerance Copt ~ O. 
If S is unbounded, choose fl~w E (-00,1*]. Set Jl = {I}. 

Step 1 (Call oracle). Compute f(x k ) and g(x k ). 

Step 2 (Compute lower bound). Compute fl~w = infs p. 
Step 3 (Optimality test). Set /)"k = f(x k) - fl~w' If /)"k < Copt then stop. 

Step 4 (Projection). Set fl~v = fl~w + /)"kj2. Solve (2) to obtain Xk+I. Set Jk+1 = Jk U 
{k + 1}. Increase k by one and return to Step 1. 

Our implementations of Algorithms 1 and 2, called DPLM and LNN respectively, were pro­
grammed in MATLAB, using mex-interfaces to Fortran QP routines. LNN calls CPLEX 
for its LP subproblems. Our results for LNN deviate slightly from those of Lemarechal et 
al. (1995), perhaps because a different LP solver was employed. 

DPLM stores at most N + 10 subgradients, whereas LNN stores all of them. For problems 
where S is not compact we used a known lower bound on 1* for both methods. We tested 
two versions of DPLM: one with fl~w = max{infs p, f l:-;/} calculated by the QP solver 
only when (1) is infeasible, and one in which fl~w is calculated at every iteration using 
a separate LP solver. The latter version, which in the modified Step 1 used iq = 0.9999, 
is denoted by DPLM(LP). We used the parameters "d = 0.05, "/ = 0.8, "5 = 0.1. The 
values of fl~w are specified for each example. Step 4 of DPLM used the stopping criterion 
/)"k ::; Copt, unless stated otherwise. 

6.1 Standard test problems 

Table 1 gives results for standard test problems Kiwiel (1990), reporting iteration numbers 
at which the methods find solutions optimal to about six digits. 

6.2 Traveling salesman problems 

Table 2 gives results for Lagrangian minimum spanning tree relaxations of traveling sales­
man problems with N cities, starting from the origin. Neither method solved the 442 node 
problem to the required accuracy; LNN had reached a value of -50434 after 600 iterations 
and DPLM had reached a value of -50499 after the same number of iterations. 

6.3 Eigenvalue problems 

Table 3 gives results for eigenvalue problems stated as min'\l (M + pT XQ + QT X T P), 
where M, P and Q are constant matrices, X is a matrix variable, and '\I(A) is the largest 
eigenvalue of a symmetric matrix A. In these five examples X is 4 x 5 and M is 7 x 7, 
and we used fi~w = -0.1, S = [-1, I]N and Copt = 10-5 . These problems are extremely 
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Table 1 Standard test problems 

Problem N fopt fl~w LNN DPLM DPLM(LP) 

MXQUAD 10 10-5 -10 74 60 60 
GOFFIN 50 10-6 -10 73 53 53 

HILB 50 10-4 -100 437 48 48 
TR48 48 10-0 -700000 209 183 183 

SHUR 5 10-4 0 40 33 36 
LlHILN 10 10-6 -10 32 22 22 

MINSUM 6 10-4 0 54 50 44 
LOCATN 4 10-5 0 24 31 32 
POLAK2 8 10-5 -10 110 86 86 

Table 2 Travelling salesman problems 

N f* t:opt fl~w LNN DPLM DPLM(LP) 

6 -617.000 10-3 -1000 15 32 33 
14 -3322.000 10-2 -4000 38 42 42 
29 -2013.500 10-2 -3000 90 78 77 

100 -20937.950 10-1 -30000 312 125 130 
120 -6911.250 10-2 -8000 434 211 210 
442 -50505.675 10-1 -51000 

ill-conditionend. For termination we had to use the weaker criterion of Step 4 in DPLM 
and the corresponding one for LNN. DPLM(LP) performed exactly as DPLM. 

Table 3 Eigenvalue problems 

LNN DPLM 
Problem f(x k

) k f(x k ) k 

EIG1 -2.03590866e-04 234 -2.035181426e-04 445 
EIG2 -1.l4572767e-05 204 -1.015554397 e-05 366 
EIG3 -3.89598493e-03 296 -3.898228667e-03 457 
EIG4 -2.80409331e-03 326 -2.846003463e-03 520 
EIG5 -1.51148612e-04 223 -1. 806084067 e-04 487 

Mean 257 455 
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Table 4 Lotsizing problems 

Test problem LNN DPLM DPLM(LP) 

Cap. Cost 1* 
Tight High 27906 60 54 54 
Tight Med. 7997 52 49 58 
Tight Low 2893.3 20 15 15 
Med. T High 24363 54 36 39 
Med. T Med. 7722 27 28 35 
Med. T Low 2893.3 13 15 19 
Med. L High 20293 36 32 29 
Med. L Med. 7534 21 15 19 
Med. L Low 2865 1 1 1 
Loose High 18872 20 14 21 
Loose Med. 7464 13 13 12 
Loose Low 2865 1 1 

Mean 26.5 22.75 25.25 

6.4 Lotsizing problems 

The capacitated multi-item lotsizing problem is a scheduling model, which aims at schedul­
ing production of several products over a planning horizon, while minimizing production 
costs, inventory holding costs and setup costs subject to demand and capacity constraints. 
The dual problem which is considered here arises from relaxing the capacity constraints 
using Lagragian multipliers. In each iteration we attempt to find a primal feasible solution 
in order to get a lower bound on the objective. The test problems have 8 variables which 
are constrained to the nonnegative orthant. For details, see Thizy and van Wassenhove 
(1985) and Brannlund (1993). We used fl~w = 1* and Eopt = 1O-6+r1oglO(/f"I+l)l, i.e. 6 digits 
of accuracy. 

6.5 Hierarchical Production Planning Problems 

A variation of the multi-item lotsizing problem was introduced by Graves (1982). The test 
problems, which are specified in the appendix II of Graves (1982), are randomly generated. 
They fall into 3 different test sets. The test problems have different level of capacity limits 
(Tight, Medium, and Loose) and different levels of setup costs (High, Medium, Low). Each 
test problem has 36 dual variables. We generate one random problem for each test set, 
each capacity limit and each setup cost. In each iteration we attempt to find a primal 
feasible solution in order to get a lower bonnd on the objective. For details, see Graves 
(1982) and Brannlund (1993). We used fl~w = 1* and Eopt = 10-6+ r1og,o(iJ'I+I)l, i.e. 6 digits 
of accuracy. 
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Table 5 Hierarchical production planning problems 

Test problem LNN DPLM DPLM(LP) 
Set Cap. Cost J* 

Tight High 67435.0 143 130 143 
Tight Med. 27560.3 129 184 152 
Tight Low 13769.7 104 93 84 
Med. High 60163.2 133 130 100 
Med. Med. 21803.8 167 133 l31 
Med. Low 5666.1 101 68 68 
Loose High 59118.5 121 112 124 
Loose Med. 21792.0 99 64 63 

1 Loose Low 5654.0 61 27 44 
2 Tight High 67334.0 128 146 178 
2 Tight Med. 28336.4 148 190 176 
2 Tight Low 14541.6 94 77 79 
2 Med. High 59698.9 138 116 150 
2 Med. Med. 22015.2 149 180 132 
2 Med. Low 7148.4 138 128 152 
2 Loose High 58116.9 126 129 169 
2 Loose Med. 21479.1 144 153 136 
2 Loose Low 5597.8 69 56 55 
3 Tight High 62346.1 88 110 129 
3 Tight Med. 32719.1 133 143 154 
3 Tight Low 22114.0 61 57 59 
3 Med. High 55385.9 122 109 123 
3 Med. Med. 26112.1 147 115 105 
3 Med. Low 15911.3 79 66 83 
3 Loose High 50000.5 102 99 98 
3 Loose Med. 20712.6 142 125 124 
3 Loose Low 10408.3 77 103 70 

Mean 116.4 112.7 114.1 

6.6 Unit Commitment Problems 

The thermal unit commitment problem is a large mixed-integer non-linear mathematical 
programming problem which arises in short-term power production planning. The problem 
consists of minimizing production costs over a planning period, satisfying system load and 
reserve constraints as well as technical constraints on each production unit. 

We refer to Wood and Wollenberg (1984) for a description of the unit commitment 
problem. Thorough descriptions of the BARD test problem can be found in Bard (1988), 
and for the EPRI50 in Zeminger et al. (1977). BARD2 is a relaxed modification of BARD. 
ABB and ABB2 can be obtained from the authors. We used fl~w = J*. 
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Table 6 Unit commitment problems 

Test problem N 1* Eopt LNN DPLM DPLM(LP) 

BARD 20 540952 399 709 386 
BARD2 20 539923 1 334 751 260 
ABB 40 105973 1 97 77 84 
ABB2 40 143696 1 138 72 93 
EPRl50 96 2843720 10 309 156 330 

Mean 255 353 231 

REFERENCES 

Bard, J.F. (1988) Short-term scheduling of thermal-electric generators using Lagrangian 
relaxation. Operations Research, 36, 756-66. 

Brannlund, D. (1993) On relaxation methods for nonsmooth convex optimization. Ph.D. 
thesis, Department of Mathematics, Royal Institute of Technology, Stockholm. 

Brannlund, D., Kiwiel, K.C. and Lindberg, P.O. (1995) A descent proximal level bun­
dle method for convex nondifferentiable optimization. Operations Research Letters (to 
appear). 

Graves, S.C. (1982) Dsing Lagrangian techniques to solve hierarchical production planning 
problems. Management Science, 28, 260-75. 

Kiwiel, K.C. (1989) A dual method for certain positive semidefinite quadratic program­
ming problems. SIAM Journal on Scientific and Statistical Computing, 10, 175-86. 

Kiwiel, K.C. (1990) Proximity control in bundle methods for convex nondifferentiable 
minimization. Mathematical Programming, 46, 105-22. 

Kiwiel, K.C. (1994) A Cholesky dual method for proximal piecewise linear programming. 
Numerische Mathematik, 68, 325-40. 

Kiwiel, K.C. (1995a) Finding normal solutions in piecewise linear programming. Applied 
Mathematics and Optimization, 32, (to appear). 

Kiwiel, K.C. (1995b) Proximal level bundle methods for convex nondifferentiable opti­
mization, saddle-point problems and variational inequalities. Mathematical Program­
ming, (to appear). 

Kiwiel, K.C. (1995c) The efficiency of subgradient projection methods for convex op­
timization, part II: Implementations and extensions. SIAM Journal on Control and 
Optimization, (to appear). 

Lemarechal, C., Nemirovskii, A.S. and Nesterov, Yu.E. (1995) New variants of bundle 
methods. Mathematical Programming, (to appear). 

Thizy, J.M. and van Wassenhove, L.N. (1985) Lagrangean relaxation for the multi-item 
capacitated lot-sizing problem: A heuristic implementation. IIE Transactions, 17, 308-
13. 

Wood, A.J. and Wollenberg, B.F. (1984) Power Generation Operation and Control. John 
Wiley and Sons, New York. 

Zeminger, H.W., Wood, A.J., Clark, H.K., Laskowski, T.F. and Burns, J.D. (1977) Syn­
thetic electric utility systems for evaluating advanced technologies. EM-285. Electrical 
Power Research Institute (EPRI). 


