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Abstract 
The present paper considers the problem of obtaining Bayesian estimates of the entity 
reliability characteristics. Bayesian estimates are calculated in the grouped data structure. Some 
properties and certain aspects of construction of Bayesian estimates in grouped data structure 
are studied. 
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1 INTRODUCTION 

While studying or designing complex entities, there appear numerous problems requiring 
research of quantitative and qualitative laws of their functioning. To solve these problems, the 
entity considered is interpreted as a complex system, and mathematical simulation apparatus 
can be applied to its study. In constructing the mathematical model of the system studied, its 
major properties and laws of functioning are described by certain quantitative characteristics. 
Applying the mathematical simulation and optimization methods, these characteristics can be 
studied and, probably, improved. 

The paper considers one of the characteristics of complex systems, its reliability. Reliability 
is the most important property of system's functioning quality, and the problem of its 
estimation reduces, in its turn, to the estimation problem of certain reliability quantitative 
properties such as average system lifetime, failure rate, etc. These properties have a probability 
character and are based on the assumption that system's lifetime duration is a random value. 
Note that everything concerning the system reliability and discussed above may be extended to 
its separate components. 
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2 PROBLEM STATEMENT 

Let us denote by x the random value equal to the entity lifetime period, F(x) is its probability 
distribution function. The reliability function F(x) = 1 - F(x) is considered as the major 
property of the entity reliability. In practice, function F(x) and, consequently, F(x) is known as 
a rule to an accuracy of unknown parameter e, i.e. F(x) = F(x; e). (Values x and e can be 
multivariate ones.) In this case the researcher faces a problem of unknown parameter 

estimation. The paper suggests to apply the Bayesian approach for obtaining estimates e of 
unknown parameters e. Prior to considering directly the issues of Bayesian estimation, let us 
describe the data structure used for constructing estimates. 

3 DATA STRUCTURE USED 

According to the definition, the point estimate e is statlstlcs, i.e some measurable function of 
the sample used instead of the unknown parameter e. Traditionally in statistics, almost 

everywhere it is assumed that the random sample, according to which the estimate e is 
constructed, consists of individually known observations. But in practice of statistical and 
experimental computations such a 'pure' data structure does not exist, as a rule. That is why 
development of methods for parameter estimation in the grouped data structure is of great 
practical value (Denisov, Lemeshko and Tsoi, 1993). Let us introduce the concept of grouped 

sample in the following way. Partition a set of X possible values of variable x into k'?2 

non-intersecting intervals R j = (XU-I), x(i)]' i = 1, ... ,k, x(O) = inf(X), x(k) = sup(X), 

x(O) < x(l) < ... < x(k-I) < x(k). Then the grouped data are a population composed of non­

random partition for random value x chahges' domain into k intervals R j and discrete random 

values nj, i = 1, ... , k, which represent a number of observations belonging to the ith grouping 

interval. Thus we obtain a grouped sample n = (n!> ... , nk). 

A grouped sample is a special case of more general concept: partially grouped sample. Let 

xi!, ... , Xjnj are individual values of observations, belonging to the ith grouping interval. 

According to Kulldorf (Kulldorf, 1961), let us introduce the definition of partially grouped 
sample. 

Definition 1. The sample is called a partially grouped one if the information available is 
connected with the multitude of non-intersecting intervals which divide the range of random 
values such that each interval belongs to one of the two types: 

R *, the ith interval belongs to the first type if the number nj is known, but the individual 

values xi}' j = 1, ... , nj are unknown; 

R **, the ith interval belongs to the second type if not only the number nj, but also all the 

individual values xi} are known. 

The concept of partially grouped sample combines non-grouped, grouped, and censored 
samples. 
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Let us note that some methods of estimation work only with data structures of a definite 
type. The Bayesian approach suggested in the paper do not impose any limitations on the data 
structure used. Thus, the Bayesian estimates can be constructed according to non-grouped, 
grouped, and partially grouped samples. 

4 BAYESIAN METHOD OF PARAMETER ESTIMATION 

Let us describe the scheme of constructing a Bayesian estimate for unknown parameter 8 E 0 . 
Let f(x; 8) be the density function corresponding to the distribution function F(x; 8). Let us 
consider the general case and assume that data D represent a partially grouped sample, i.e., the 
domain X is partitioned into k:2: 2 non-intersecting intervals, and part of these intervals 

belongs to the type R *, and the remaining part to the type R **. Then the likelihood function 
will have the form 

[ l
ni 

. X(I) ni 

1(8ID) = y n i f(x; 8)dx nn f(xij;8) 
(1) xU-I) (2) J=l 

where y is a certain constant, indexes (1) and (2) indicate that multiplication is done 

correspondingly according to intervals of the first and second type, xij are individual values of 

observations belonging to the ith interval. Let n(8) be an a priori density function 8. The a 
posteriori density function will have the following form 

n(8ID) = n(8)/(8ID) 
i n(8)/(8ID)d8 
e 

We take as the Bayesian estimation of parameter 8 with respect to a priori distribution n(8) 

the estimate minimizing the a posteriori risk iL(8, t(D»n(8ID)d8 where L(8, t(D» is the 
e 

given loss function, t(D) is the estimation of parameter 8 constructed according to the data D 

(Zacks, 1971). Let us denote by 8(D) = e the Bayesian estimate according to partially grouped 
sample. Then 

jL(8, SeD»~ n(8ID)d8 = inf j L(8, t(D» n(8ID) d8. 
e t~e 

where T is set of all possible estimations of parameter 8. 
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5 CONVERGENCE OF BAYESIAN ESTIMATES IN THE STRUCTURE OF 
GROUPED DATA 

As sample data D, let us consider a certain fixed non-grouped sample x = (xl> ... , xN) from 

distribution f(x; S). Let us denote correspondingly by eng and 1tng (Slx) the Bayesian 

estimate and a posteriori density function constructed from x. Let n=(n/, ... ,nk) be a 
grouped sample corresponding to X and connected with grouping intervals boundary points 

X(O) = inf(X) <xl <",<x(k-l) <X(k) =sup(X). Let us denote correspondingly by egr and 

1tgr (Sin) the Bayesian estimate and the a posteriori density function constructed according 
to n. 

Let us note that there exists the following connection between the grouped data structure 

and non-grouped one. If ..1Xmax = . max (X(i) - X(i-l)~ 0, x(l) ~ x(O), x(k-l) ~ x(k), 
1=2,_.,k-1 

then the number of grouping intervals k~ 00 and grouped sample n = (nj, ... ,nd degenerates 

into non-grouped one x = (Xl, ... , xN)' In this connection a question arises: how do the 

function 1tgr(Sln) and estimate e gr as k ~ 00 behave with respect to function 1tng(Slx) and 

estimate eng respectively? 

This paper shows that under performing a number of conditions functions 1tgr (Sin) 

converge uniformly on the set E> to the function 1t ng(Slx). Before formulating these 
conditions let us introduce some designations and definitions. 

We consider the set A of all possible partitions of the domain X into k 2': 2 non-intersecting 
intervals. Elements of set A are sets of points 

x(O) =inf(X) < x(l) < ... < x(k-l) < x(k) = sup(X), 

those define the partition of set X into grouping intervals. We will have to designate these 
partitions by one way from following ones 

Let us name the quantity d(a.) =. max (x(i) - XU-I) as diameter of partition a.. To every a. 
1=2, ... ,k-1 

we set in conformity the density 1t!r (Sin) = 1t!r (S) depending on partition a.. Thus we 

obtained a sequence of functions {1t!f(S)}a.EA where indexes a. are ordered as follows: 



Simulation and optimization of complex systems reliability characteristics 359 

Then the definition of uniform convergence 1t!f(9) to 1tng (9Ix) = 1tng (9) can be formulated 

as follows. 

Definition 2. The sequence of functions {1t!f(9)}a.eA converges uniformly with respect to 

9 on the set E) towards the function 1t ng (9) as d(a) ~ 0, x(l) ~ X(O), X(k-l)""'~ x(k) 

simultaneously if 

\;1&>0 30e >0 3re>x(O),Se<X(k) \;IUEA: d(u)<oe,x0)<re,x(1_1»se \;IeEEl 

In practice the problem with X = (-00; + 00) is often substituted by the problem in which 

inf (X) <00 and sup(X) < 00. For this particular case the diameter of partition d(a) can be 

defined as d(a) = max (x(i) - XU-I). Indexes of a considered sequence of functions 
1=1, ... ,k 

{1t!f (9)}a.eA will be ordered in accordance with the following rule: 0.2> 0.1 <=> d(a2) < d(al). 

We will formulate the following theorem about uniform convergence of the a posteriori 
density functions. 

Theorem 1. Let 1t(9) be a priori density function of 9; f(x;9) be density function of 

distribution of X EX; 9 be unknown parameter; x = (x1, ... , XN ) be a some fixed sample from 

distribution f(x;9); 1t!f(9) be a posteriori density function constructed according to the 

grouped sample connected with partition a EA, where A is set of all possible partitions of the 

domain X into k ~ 2 non ... intersecting intervals; 1tng(9) be a posteriori density function 

constructed according to the non ... grouped sample x. Let the following conditions are 
performed: 

1)3M<00 \i9EE) 1t(9)<M; 

2)3K<00 \iXEX \i9EE) f(x;9)<K; 

3) function f(x;9) is continuous uniformly on the X x E). 

Then the sequence {1t~(9)}a.eA converges uniformly with respect to 9 EE) towards the 

function 1tng(9) as d(a)~O. 

For the sequence of density functions {1t!f (9)}a.eA there exists a sequence of independent 

random values {9a.}a.eA. Hence we can speak about a sequence of Bayesian estimations 

{e!f}a.eA obtained as solution of the problem of minimization for corresponding a ... posteriori 

risk. 
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Theorem 2. Let the conditions of Theorem 1 be performed. For squared-error loss 

function, if set e is compact, the convergence of Bayesian estimates e~ in the grouped data 

structure towards Bayesian estimate eng in the non-grouped data structure takes place as 

d(a) -+ o. 

6 COMPUTATIONAL DIFFICULTIES OF BAYESIAN 
ACCORDING TO GROUPED DATA 

ESTIMATION 

As was mentioned above, the ideas of Bayesian approach are equally acceptable both for 
grouped and non-grouped data. Nevertheless, the Bayesian approach is mostly applied for 
constructing estimates from non-grouped and censored samples. For computing parameter 
estimates from completely grouped data, the Bayesian method practically is not applied. It may 
be due to the difficulties of computational character, the researcher faces in constructing 
Bayesian estimates with grouped data structure. 

It is rather rare that one can succeed in obtaining an analytical expression for the Bayesian 
estimate from grouped data. That is why in the process of computing the estimate there is 
constantly a necessity to carry out numerical integration, and the integrals can have large 
dimension. The other practical difficulty consists in the fact that in the work with the grouped 
data it is necessary to compute the probabilities of the random value x falling in the ith 

grouping interval: Pice) = f f(x; e)dx, i = 1, ... , k. In the case when the dimension of the 
R; 

domain X is larger than 1, in computing Pi (e), there appear some technical difficulties owing 

to the dimensions of the integrals and to the fact that the region of grouping R i in the general 
case can have an arbitrary form. 

One more problem, specific for the Bayesian estimation from the grouped data, consists in 
violating the property of closure of the conjugate distribution families. As is known, the 
conjugate distribution families which are widely applied to the Bayesian estimation, are 
characterized by the closure property in relation to the process of experimental data choice. In 
other words, if the a priori distribution n(9) belongs to some conjugate family, then, with 

any sample x, the a posteriori density function n(9Ix) will also belong to this family. Due to 
the violation of the closure property, the analytical or numerical computation of the Bayesian 
estimates from grouped data becomes even more complicated. In this paper, the following 
scheme of the Bayesian inference from grouped data, which allows to get round the problem of 
violating the property described. 

Let us apply the binomial formula to the likelihood function from grouped data 

k k 
1(9In) = y np7; (e) = Y n(F(x(i); 9) - F(x(i-l); 9))ni Then the a posteriori density function 

i=l i=l 
from the grouped data can be written down in the following way 



Simulation and optimization of complex systems reliability characteristics 361 

where 

With this approach we can construct for the density functions 7t(9) and 7ti2 ... ik (9In) the 

conjugate density families corresponding to the grouped data structure. Note that in some 
cases the conjugate families for grouped and non-grouped data will coincide. The scheme 
suggested allows, in a number of cases, to obtain an analytical form of Bayesian estimates from 
grouped data and avoid numerical integration. In the next section, an example of constructing a 
Bayesian estimate according to the scheme described is given. 

7 EXAMPLE 

Let the random value x belongs to the exponential distribution with distribution function 

F(x) = F(x; 9) = 1- e-ex and density function f(x; 9) = 9 e -eX, x;:: 0, 9;:: 0, 9 is unknown 
parameter. We will construct the Bayesian estimate of parameter 9 from grouped data. As a 
priori distribution we take the gamma distribution with parameters a, 13 and with density 

function 7t(9) = a J3 9 13- 1 e-a.e / nl3). Consider the grouped sample n = (n], ... , nd. 
Likelihood function has the following form 

In this example it is more convenient to apply the scheme from the section 6 to the likelihood 
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k 
function written as W(Sln)=y n(F(x(i_l)-F(x(i)ti , where F(x)=I-F(x). Then we obtain 

i=1 

k-2 
where <i>i1 ... ik_1 (n) = L X(l)(i/-il+1 +nl+1) + X(k-1) (ik-1 + nk) + u. We see that 1ti1 .. .ik_1 (Sin) 

1=1 

is density function of the gamma distribution with parameters <i>i1 ... i
k

_
1 
(n), /3. Thus we can 

write the analytical expression for the Bayesian estimate from grouped data with the 
squared-error loss function: 
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