
33 

A numerical procedure for 
minimizing the maximum cost 

Silvia Di Marco, Roberto L. V. Gonzo,lez 
Universidad Nacional de Rosario 
Fac. Cs. Ex., lng. y Agrim., Universidad Nacional de Rosario, 
Avda. Pellegrini 250, (2000) Rosario, Argentina. 
Fax: (54) 41 257164. e-mail: Dimarco@bibfei.edu.ar 

Abstract 
In this paper we consider the numerical solution of a minimax optimal control problem, 
where the cost to be minimized is the maximum of a function which depends on the state 
and the control. We present an approximation method which employs both discretization 
on time and on spatial variables. In this way, we obtain a computational implementable 
fully discrete problem. We give an optimal estimate for the error between the approxi­
mated solution and the optimal cost of the original problem. 
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1 INTRODUCTION AND DESCRIPTION OF THE PROBLEM 

We consider in the interval [0, T] a dynamic system which evolves according to the ordinary 
differential equation 

dy 
ds (s) = g(y(s), a(s)) 0:::; t :::; s :::; T, 

(1) 

(t) = x E n ~ Rr, n an open domain. 

The optimal control problem consists in minimizing the functional J 

J: (t,x,a(-)) E [O,T] x n x U(t,T) f-t esssup {J(y(s), a(s)) : s E [t,T)}. (2) 

The set of controls is U(t, s) = {a : [t, s]---> A c Rm : a(·) measurable}. 

This problem arises, for example, when we want to minimize the maximum deviation 
of the controlled trajectories with respect to a given special trajectory. This differs from 
those problems usually considered in the optimal control literature, where an accumulated 
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cost is minimized. As considering an accumulated cost is not always the best method to 
qualify a controlled system with an unique scalar parameter, problems of this type has 
received considerable interest in recent publications (see e.g. (Barron and Ishii, 1989)). 

The objective of this work is to approximate in a numerical way the value function u 

u: (t,x) E [O,T] x n f-+ inf {J(t,x,a(·)): a E U(t,T)}. (3) 

We assume that f and g are bounded and uniformly continuous functions on n x A, 
A is compact and the trajectory y(.) remains in n, for any control belonging to U(t, T). 
In that case, the function u has the following properties, which have been established by 
(Barron and Ishii, 1989): 

• u is a bounded and uniformly continuous function and it is also Lipschitz continuous 
in its second variable . 

• u satisfies the following dynamic programming principle V t E [0, T), x E n, s < t, 

u(t,x) = inf {max {esssup f(y(r),a(r)) , U(S,y(S))}: a E U(t,s),s E (t,T]}, 
TE[I,s] 

with final condition 

u(T,x) = min {f(x, a) : a E A}. 

The principal results obtained in our work are the following ones: 

1. We obtain a discrete time approximation using a finite differences scheme and we give 
an estimate of the error of this approximation. 

2. By using linear finite elements, we obtain a fully discrete approximation that converges 
to the solution of the original problem with rate Vk. 

3. We show the optimality of the estimation Vk. 

2 A DISCRETE TIME SCHEME OF APPROXIMATION 

Following the methodology used in (Gonzalez and Tidball, 1992), we define an auxiliary 
problem which is a natural discretization of the optimal cost u defined in (3). We divide 
the interval [0, T) into j1 subintervals with common length h = T / j1. We define recursively, 
V n = 0, ... ,j1 - 1, x E n. 

uh(n, x) = min {max {J(x, a), uh(n + 1, x + hg(x, a)l} } , 
aEA 

(4) 

with the final condition 

uh (j1,x) = minf(x,a). 
aEA 

(5) 

The function u h can be interpreted as the optimal cost function of a discrete time 
optimal control problem, which is a natural discretization of problem (3). From (4) and 
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(5), it is easy to prove that uk is bounded and Lispschitz continuous. The function uk 
approximates the function u with a rate of convergence given by the following theorem. 

Theorem 1 Let u(t,x) be the optimal cost of the original problem and uk(n,x) the dis­
crete time cost defined in (4) - (5), then the following estimate of the difference between 
u h and u holds 

I u(n,x) - uh(n,x) I::; Mvh. (6) 

3 FULLY DISCRETE SOLUTIONS 

With the previous scheme we have approximated the function u with one obtained by 
discretizing the original problem in its time variable. This approximation scheme is not 
directly implementable to be computed numerically. To obtain a fully discrete approxi­
mation with this property, we discretize the space n, using the methodology described in 
(Gonzalez and Rofman, 1985) or (Gonzalez and Tidball, 1992) 

3.1 A fully discrete scheme of approximation 

We identify the discretization of the spatial variables with the parameter k, which also 
indicates the size of the discretization. We consider a family of quasi-uniform triangula­
tions of nj i.e. a family of polyhedrons nk given by a finite collection of closed simplices 
{ Sj}, such that nk converges to n as k goes to 0. 

Let Vk = {xi, i = 1, ... ,N} be the vertices of nk, arbitrarily arranged and N its cardi­
nal. Every x E nk is a convex combination of the vertices xi of the simplex to which x 
belongs. Hence, 't:/ a E A there exists a matrix N x N, with components 'Yj(xi,a), such 
that: 

N N 

'Yj(xi,a) 2: 0, L'tj(xi,a) = 1, xi + hg(xi,a) = L'Yj(xi,a)xj . (7) 
j=1 ;=1 

We consider the set W k of functions w : nk -+ R, w E WI,oo(n k ), such that ow/ax 
is constant in the interior of each simplex of nk, i.e., the functions ware linear finite 
elements and they are characterized by their values on Vk • We denote Fk = (Wk)"+1 and 
the elements of Fk will be denoted w~(n,x), n = O, ... ,p" x E Vk . 

Taking in mind the equation (4)-(5), we define the fully discrete solution to be the 
function ui E Fk such that, 't:/ xi E Vk, uZ(p" xi) = min f( xi, a) and, 't:/ n = 0, ... ,p, - 1, it 

a€A 
verifies the relation 

(8) 

Obviously, the solutions of these equations are unique and can be computed recursively. 
This allows us to implement the computational procedure. 
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3.2 Central result: Rate of convergence 

The central result of convergence is given by the following theorem which establishes an 
estimate of the difference between the optimal cost and the fully discrete solution. The 
proof is based on regularization techniques; essentially, it consists in obtaining estimates 
for the differences between sub solutions and supersolutions of problems introduced ad-hoc. 

Theorem 2 II there exist constants Cl and C2 such that clk :::::: h :::::: c2k, then there exists 
C such that V x E Vk , V n = 0, ... ,ft, it results 

lu(nh,x) - u~(n,x)1 :::::: Cvk. (9) 

Note 1 Some computational applications of our discretization procedure have been pre­
sented in detail in (Di Marco and Gonzalez, 1995a). 

4 OPTIMALITY OF THE ESTIMATE 

In this problem, even thollJ!;h the data I and 9 are semiconcave in x, it is not possible 
to improve the estimate 'l/h which appears in (6), as it was done in the problem studied 
in (Gonzalez and Tidball, 1992). There, under semi concavity hypotheses on I and g, it 
was shown that the optimal cost function u also results semiconcave. In that case, the 
estimate for Ilu - u"l1 can be improved to order h, improvement that was crucial to prove 
an estimate of type pr3 for the fully discrete approximation. The following example shows 
that, for the minimax problem, an improvement of this type is not possible. 

Let the dynamic of the system be 

{ 

~~ (t) = (~1 ~) y(t), V t E [0,10], 

. y(o) = x E R2. 

(10) 

We define the instantaneous cost function as follows 

I(y(t)) = (1 - (yi(t) + yi(t))) Yl(t), (11) 

where Yi(') is the ith component of ye). 

The system moves freely in R2 and the functions I and 9 verify the assumed hypotheses. 
Clearly, they are semiconcave. 

Let r = vx? + x~. It is easy to check, after elementary calculus that the optimal cost 
function is 

u(O,x) = max I(y(t)) = 11-r2Ir, 
tE[O,lOj 

(12) 
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which is not semiconcave. 
The discretization procedure introduced here coincides with the methodology studied by 
(Gonzalez and Tidball, 1992). In that work, the authors proved that the estimate Vk is 
critical. In fact, here we can prove - using a special triangulation and calculations entirely 
similar to those employed in (Gonzalez and Tidball, 1992) - that the error lu(O,x) -
u~(O, x) I verifies 

lu(O,x) - uZ(O,x)l2': CVk. (13) 

In consequence, we have that for approximations of this type the better error that can be 
expected, is of order Vk. 

5 GENERALIZATION TO ACCUMULATED COSTS 

Similarly to what we have done for function (2), we can deal with the general problem 
of minimizing a functional J that includes an integral cost. Specifically, we consider the 
functional 

J(t,x,a(.)) = esssup {f(y(s),a(s)) + J8 b(y(O),a(O)) dO} , 
SE[t,T) 

t 

where y(.) is the solution of the dynamical system (1) and the function b is bounded and 
Lipschitz continuous in x. Here, the optimal 

cost function u takes the form 

u: (t,x) E [O,T] x n ....... inf {J(t,x,a(.)): a E U(t,T)}. (14) 

Similarly to (8), we define recursively the fully discrete approximation of u as follows, 

(15) 

where "u(xi,a) are the functions defined in (7). 

Also for this problem, it holds the following convergence result: 

Theorem 3 If there exist constants Cl and C2 such that clk ~ h ~ c2k, then there exists 
a constant C such that \;/ x E Vk , \;/ n = 0, ... , !l 

lu(nh,x) - uZ(n,x)1 ~ CVk. (16) 



290 Contributed Papers 

Hence, for the general problem we can get fully discrete approximations and an estimate 
of convergence of the same order as that obtained for the original problem. 

6 FINAL COMMENTS 

Here, we have developed a discretization procedure to obtain the numerical solution of 
the problem of minimizing the maximum cost, analyzed from the continuous point of view 
by Barron and Ishii (see (Barron and Ishii, 1989)). 

The numerical procedure obtained is easily implement able and it converges to the so­
lution of the original problem, with an error estimate of the form 

[u - uZ[ :S CVk. (17) 

This estimate was shown to be optimal. 

The optimality of the estimate (17) stems from the fact that this minimax problem is 
a disguised differential game problem. In that game, the controller is trying to minimize 
the cost 

J(t,x,a('),r) = f(y(r),a(r)), (18) 

while a hidden opponent - using full information of actions of the other player - chooses 
at any instant the stopping time r of the process. The pay-off (18) is given as out-come 
of the complete game. As a result of the action of the ~econd privileged player, the first 
player must - in a strict way - minimize a functional that is not semiconcave with res­
pect to the spatial variable y. In this way, once a fully discrete approximation - using 
finite differences or finite elements - is applied, the resultant fully discrete optimal control 
problem reflects this property in the validity of the estimate of type Vk, 

Except for very special trajectories, where some carefully chosen triangulations may 
be used, it seems not possible in general to get approximations with better convergence 
properties. 

In fact, the error worsens as time grows and for the case T = 00, the phenomenon of 
non-convergence arises. This undesirable effect is studied more detailed in (Di Marco and 
Gonzalez, 1995b). 
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