
9

Modeling Basic LOTOS by FSMs for
Conformance Testing

Q. M. Tan, A. Petrenko and G. v. Bochmann
Department d'IRO, Universite de Montreal
C.P. 6128, Succ. Centre-ville, Montreal, H3C 3J7, Canada
E-mails: { tanq, petrenko, bochmann} @iro. umontreal. ca
Fax: {514}343-5834

Abstract
A challenging issue is the derivation of a finite test suite from a given LOTOS specifica­
tion modeled by a labeled transition system (LTS) such that complete fault coverage is
guaranteed for a certain class of implementations with respect to a particular conformance
relation. It is shown in this paper that this problem can be solved by translating an LTS
into an input/output finite state machine (FSM) for trace or failure semantics, respec­
tively, and subsequently applying existing FSM-based methods for test derivation with
complete fault coverage. It is also demonstrated that the obtained tests can be further
optimized taking into account the specifics of the FSMs constructed from the LTSs.

1 INTRODUCTION

Conformance testing for communication protocols is one of the essenticil and challenging
issues. Because of the complexity of protocols, it is generally accepted that formal tech­
niques must be used. Amongst such formal description techniques (FDTs) are LOTOS,
which is based on Labeled Transition Systems (LTSs), and SDL and Estelle, which are
based on the Finite State Machine (FSM) model. Much work on the derivation of tests
from a given system specification has been done separately for the two models [14].

Systematic approaches have been developed for protocol conformance testing and the
generation of appropriate test suites based on the FSM model. Most work in this area
is limited to completely specified, deterministic specifications [5, 8, 17, 13]. However,
some recent research has addressed nondeterministic and partially specified specifica­
tions [11, 12]. A number of competing methods for deriving tests from FSMs that guar­
antee complete fault coverage for the given maximal number of states in implementations
have been elaborated [14].

Compared to FSMs, LTSs are in some sense a more general descriptive model, since
interactions of a specified system with its environment are usually considered rendezvous
interactions making no distinction between input and output. LTSs are usually not com­
pletely specified; the unspecified interactions are not possible. In the protocol engineering

P. Dembiński et al. (eds.), Protocol Specification, Testing and Verification XV
© IFIP International Federation for Information Processing 1996

138 Part Three Testing

community, there has been much work done on the derivation of test suites from a given
basic LOTOS, or corresponding LTS-based specification [3, 16, 19, 6], most of which deal
with nondeterminism. Test derivation from LTSs in various semantics is currently an
active research area.

Several attempts have been made to apply the ideas underlying the FSM-based meth­
ods to the LTS model [4, 7, 1]. In particular, this research is directed towards redefining
the state identification and eventually the checking experiments in the LTS realm. [4]
tries the UIO-based state identifiers which, as it is well known, do not always exist; [7]
considers the characterization sets; and [1] introduces the state identification machines.
However, in spite of these attempts, the problem of deriving a finite test suite with com­
plete fault coverage from an arbitrary LTS for a given conformance relation remains open.
Here we take another approach, initially outlined in [14]. It is suggested there that tests
for a given LTS specification and conformance relation could be obtained from tests di­
rectly generated by the existing FSM-based methods from a proper FSM constructed
from the LTS in the chosen semantics. This approach has the advantage of allowing reuse
of existing FSM-based methods and testing tools for the LTS specifications. Evidently,
the translation of an LTS into an FSM is semantic-driven and should be elaborated on
a case-by-case basis. In this paper, we try to elaborate this general idea for two par­
ticular types of semantics, namely, trace and failure semantics. We formally show that
LTS specifications can be modeled by proper input/output (1/0) FSMs in trace or failure
semantics, and that complete test suites produced from the corresponding FSMs and then
converted back to the LTS formalism can guarantee the given conformance relation when
the number of multi-states [7] of any implementation is bounded by a known integer. We
also demonstrate that the test suites can be further optimized taking into account the
specifics of the FSMs derived from the LTSs.

In Section 2, we give basic definitions and notations of the FSM and LTS models and
conformance relations. In Section 3, the FSM models for LTSs, in failure semantics and
in trace semantics respectively, are defined, and the transformations are validated. In
Section 4, the proposed FSM approach to test derivation from a given LTS specification
is illustrated, and the optimization of the tests as well as other related problems are
discussed.

2 BASIC DEFINITIONS AND NOTATIONS

In this section, we recall some basic definition and notations which are used to discuss
both finite state machines and labeled transition systems [3, 12].

2.1 Finite State Machine

Definition 1 Finite State Machine (FSM). A finite state machine is a 5-tuple < S, X, Y,
h, s0 >, where:
• S is a finite set of states, and so E S, is the initial state.
• X is a finite set of inputs.
• Y is a finite set of outputs, and it may include 0 which represents the null output,

that is, no output.

Modeling basic LOTOS by FSMsfor conformance testing 139

Figure 1: An FSM graph

• his a behavior function, h: D-+ powerset(S x Y)\{0}, where DC S x X and 0 is
the empty set. (q,b) E h(p,a) is also written p-aflr-tq, which is called a transition
from p to q with the label afb.

The behavior function defines the possible transitions of the machine. If D = S x X
then the finite state machine is called completely specified or a complete FSM (CFSM),
otherwise, it is partially specified or a partial FSM (PFSM). If ih(p, a)I = 1 for all (p, a) E
D then the FSM is deterministic (DFSM); otherwise, it is nondeterministic (NFSM). Note
that the finite state machines in the above definition may be complete nondeterministic
(CNFSM) or partial nondeterministic (PNFSM).

An FSM can also be represented by a directed graph in which the nodes are the
states and each directed edge with a label is a transition linking two states, as shown in
Figure 1. For the convenience of the presentation, we use I, P, S, ... to represent FSMs;
I, P, Q, .. . , for sets of states; a, b, c, ... , for inputs or outputs; and i, p, q, s .. . , for states.
Other notations are given in Table 1.

By convention, the traces of an FSM S are the sequences in Tr(so), thus we also denote
Tr(S) = Tr(so). In the following, we define two relations between FSMs, which are useful
for test generation.

Definition 2 Reduction. The reduction relation between two states p and q in FSMs,
written p::; q, holds if and only if Trin(q) ~ Trin(p) and for all -yin E Trin(q) : Tr(p) ~
Tr(q).
Given two FSMs S and I, we say that I is a reduction of S, written I ::; S, if and only if
io::; so.

notation
r
r·
p=c=?q
p=-y=?q

meaning
X x Y, a set of input/output pairs; v denotes such a pair
set of sequences over r; "{ denotes such a sequence
p = q; c is the empty sequence
there exist Pk for 0 ::; k ::; n such that
P = Po-V!-+ PI· • .-Vn-+ Pn = q; 'Y = V1 • • • Vk
there exists q such that p = -y ==? q
Tr(p) = {'y E r*lp=-y=?}
for -y E r•, -yin E X* is an input sequence obtained by
deleting all outputs in -y
Trin(p) = {'yinlp=-y=?}

Table 1: Notation for finite state machines

140 Part Three Testing

Figure 2: An LTS graph

This conformance relation is defined in (14] and requires that all output sequences that
are produced by the implementation in response to all acceptable input sequences should
be described by its specification. Any sequence in Trin(so) is said to be an acceptable
input sequence for the FSM S.

Definition 8 Equivalence. The equivalence relation between two states p and q in FSMs,
written p"' q, holds if and only if Tr(p) = Tr(q).
Given two FSMs S and I with initial states s0 and i 0 respectively, we say that I is equivalent
to S, written S"' l,.if and only if so"' io.

The above definition of equivalence is given in [12, 11] for CNFSMs and PNFSMs,
similar to that in [8, 5] for deterministic and completely specified FSMs.

It can be shown that the reduction relation is a pre-order one and I "' S if and only if
S ~I and I~ S.

Definition 4 Observable FSMs (OFSMs). An FSM S is said to be observable if and only
iffor all pEs and all afb E r, l{q I V(q,b) E h(p,a)}l ~ 1.

In observable machines, a state and an 1/0 pair can uniquely determine at most one
next state. However, OFSMs may still be nondeterministic in the sense that a state and
an input can not determine a unique next state and a unique output. On the other hand,
deterministic FSMs are observable. Any non-observable FSM can be transformed into an
equivalent OFSM, in which each state corresponds to a subset of states in the original
FSM. The test generation methods for ONFSMs can be found in [11, 12, 15].

2.2 Labeled Transition System

Definition 5 Labeled transition system (LTS). A labeled transition system is a 4-tuple
< S, ~,~'so >, where:
• S is a finite non-empty set of states, s0 E S, is the initial state.
• ~ is a finite set of labels, called observable actions; T ¢ ~ is called an internal action.
• ~ s;; S x (~ U { T}) x S is a transition set. An element (p, p., q) is denoted by p- p.-+ q.

A state p is unstable if there exists q E S such that p-T-+ q E ~; otherwise it is stable.
If there exists p- p.-+ q E ~. p is said to be active; otherwise it is inactive. A stable LTS
has no unstable states, whereas a unstable LTS has such states.

An LTS is said to he nondeterministic if it is unstable or there exist p-a-+ Pl>p-a-+
p2 E ~ but p1 =f. p2 • In a deterministic LTS, the outgoing transitions of any state are
uniquely labeled.

The notations are shown in Table 2 that are relevant to a given LTS, as introduced in

Modeling basic WTOS by FSMs for conformance testing

notation meaning
l:* set of sequences over l:; u denotes such a sequence
p-J.LI .. ·l'n-+ q there exists Pic for 0 ~ k ~ n such that

p=E:=>q
p=a=>q
p=u=>q

p=u=>
p:f:u=>
out(p)
p after u

Tr(p)

P = Po-J.LI-+PI· • .-J.Ln-+Pn = q
p-rn-+q (1 ~ n) or p = q (note: Tn means n times r)
there exist PI, P2 such that PI = E: =>PI- a-+ P2 = E: => q
there exists Pic for 0 ~ k ~ n such that
p =Po= ai =>PI ... =an=> Pn = q; u = a I ... an
there exists q such that p = u => q
no q exists such that p = u => q
out(p) ={a E l:lp=a=>}
p after u = {q E Slp=u=>q}
Tr(p) = {u E l:*lp=u=>}

Table 2: Notation for labeled transition systems

141

[3]. Here we also use I, P, S, ... to represent LTSs; I, P, Q, .. . , for sets of states; a, b, c, ... ,
for actions; and i, p, q, s . .. , for states. Similarly, Tr(S) = Tr(s0), S after u = s0 after u,
and the sequences in Tr(S) are called the traces of S.

An LTS can also be represented by a directed graph where nodes are states and labeled
edges are transitions. An LTS graph is shown in Figure 2.

There are different criteria for determining whether an implementation conforms to
its LTS specification [14]. In this paper, we use the following implementation relations as
the criteria of the LTS conformance.

Definition 6 Trace equivalence. The trace equivalence relation between two LTSs S and
I, written S =tr I, holds if and only if Tr(S) = Tr(l).

The above definition of trace equivalence corresponds to the equivalence relation be­
tween specifications and implementations in the FSM formalism [5, 8, 11]. The relation
requires that a conforming implementation has the same set of traces as its specification.

Definition 7 Refusal function. The refusal function of an LTS S, Ref : S x l:* -+
powerset(powerset(l:)), is defined at each pES for each u in l:* by Ref(p,u) ·={A~
l: l3q E p after u (Va E A,q=/:a=>)}.

The refusal function gives the set of all the action sets which may be refused by the
LTS after a given trace u is executed from a given state p. Ref(p, u) is called a refusal
set at p after u. Similarly, the refusal set of the LTS after u is that of its initial state
after u, so Ref(so,u) = Ref(S,u). Ref(p,E:) is called a state refusal set of state p. The
notation Ref(p,E:) may be simplified into Ref(p).

Definition 8 Failure reduction. The failure reduction relation between two LTSs S and
I, written I redS, holds if and only iffor all u E l:* Ref(l,u) ~ Ref(S,u).

The failure reduction relation [3] between the specification S and its implementation I
requires that everything that I does must be allowed by S. The definition states that for
any sequence u in l:*, if u is a trace of I then it is also a trace of S; and after u is applied,
if an action set A may be refused by I then A may also be refused by S.

142 Part Three Testing

P=u=?Q =def Vq E Q 3p E P (p=u=?q)
Tr(P)
Ref(P,u)
P after u

u(pEP) Tr(p) out(P) u(pEP) out(p)
u(pEP) Ref(p, u) Ref(P) u(pEP) Ref(p)
Uc,ePl p after u

Table 3: Extended notations for labeled transition systems

Definition 9 Failure equivalence (or testing equivalence}. The failure equivalence re­
lation between two LTSs S and I, written S =te I, holds if and only if for each u in
E*,Ref(S,u) = Ref(l,u).

Obviously, S =te I implies that S red I and I red S. Therefore, the failure equivalence
relation not only states that everything that I does must be allowed by S, but also requires
that everything prescribed by S should be implemented by I.

If a set A is refused after u, obviously, each B ~ A is refused as well. Thus, we may
consider a minimal representation of the refusal functions of LTSs, denoting Refmin (p, u),
by deleting each element in Ref(p,u) that is a subset of another. Generally, for a set of
sets R, ~in= R\{A I 3B E R (A C B)}.

In the case of nondeterminism, after an observable action sequence, an LTS may enter
one of a number of different states. In order to consider all possibilities, a state subset
(multi-state [7]), which contains all the states which are reachable by the LTS after this
action sequence, is used.

Definition 10 Multi-state set. The multi-state set of LTS Sis a set ITs= {S; ~ S l3u E
Tr(S) (S after u = S;)}.

Note that the empty sequence c; is supposed to be in E*. So = s0 after c; belongs to the
multi-state set, and is called the initial multi-state. The multi-state set can be obtained by
a known algorithm which performs a deterministic transformation of a nondeterministic
automaton using the trace-equivalence [10, 7, 4]. For Figure 2, the multi-state set is
{{so,st},{s2,s3},{s2},{so,sl,s4,ss},{ss}}. Obviously, each LTS has one and only one
multi-state set.

As said before, in the case of nondeterminism, after an observable action sequence,
different states in a corresponding multi-state may be reached. Thus from the test per­
spective it makes sense to define the transition checking and state identification on multi­
states, rather than single states. The viewpoint is reflected in the FSM realm by the
presentation of a nondeterministic FSM specification as an observable FSM, in which
each state is a subset of states of the non-observable FSM. The viewpoint is also reflected
by the refusal graphs [6].

Next, we extend some of the above notations to a subset of states, as shown in Table 3.
From the extended notations, we can directly derive the following proposition:

Proposition 1 Given LTSs S and I with the initial multi-states So and 10 ,

1. Tr(S) Tr(So);
2. S after u So after u;
3. Ref(S,u) Ref(So,u);
4. Ref(S, u) Ref(S;) if S after u = S;;

Modeling basic WTOS by FSMsforconformance testing 143

3 TRANSFORMING LTSs TO FSMs

We focus in this section on how to represent the behavior specified by a given LTS, based
on trace semantics or failure semantics respectively, using an FSM model.

3.1 General Idea
In the context of conformance testing, an LTS implementation under test (IUT) is viewed
as a black box, which, in each interaction, chooses autonomously one action from a set of
offered actions to execute a transition, or it blocks all the actions [9]. According to the
LOTOS semantics, no further action can be executed after the deadlock occurs. Under
the assumption that at least one action is offered in each interaction, we have 2IEI - 1
possible sets of offered actions to test the conformance of the IUT to its specification in
failure semantics for each interaction. Now we wish to model the given behavior by an
FSM, in which, for each interaction with the LTS, the set of offered actions is viewed as
an input, the chosen action in the executed transition as an output, and the deadlock as
a "null" output [14]. Producing the null output, the FSM enters a specific state that has
the null output for all inputs. Based on this interpretation, we can represent a given LTS
specification as an FSM, which models the behavior of the corresponding LTS in trace
semantics or failure semantics, respectively.

In the case that we are only interested in trace semantics, all relevant properties can
be tested by offering single actions. Therefore we assume a simplified FSM model in this
case which defines the behavior only for single action offers, thereby reducing the number
of inputs from 2IEI - 1 to ll:l. For the case that the environment offers several actions
simultaneously, we assume that a demon chooses arbitrarily one of the offered actions for
execution by the FSM. The deadlock properties of the system are not completely modeled.
Therefore the implementation may deadlock before the end of a possible test case. We
consider this an inconclusive test result, and as usual for nondeterministic systems, the
test should be repeated.

Trace Semantics
Given an LTS, we wish to construct an FSM that produces as output all of the traces of
the LTS and signals by the null output 0 that the given input action cannot form a valid
trace of the LTS. As a simple example, Figure 3 (a) shows an LTS specification and (b) its
corresponding FSM representation in trace semantics. In (a), the LTS has the alphabet
set l: = {a,b}. In (b), the FSM has the input set X= l:, the output set Y = {a,b,0};
and each transition is labeled with an input/output pair, in which the output is either
the same as the input or 0. For example, afa means that when a is offered, a can be
executed, and b/0 means that when action b is offered, nothing but deadlock can be
observed. To keep the picture clear, label a, b/0 corresponds to the pairs a/0 and bf0.

The transformation from an LTS to the FSM involves the mapping of the LTS multi­
states onto the FSM states. In the above example, {so} is mapped to p0, {s1,s2} to p1,
{s3} to P3 and {s4} to P2·

The sink state se in our FSM model represents the situation of the corresponding
LTS after any deadlock has occurred and before a reset is applied. Once the deadlock is
detected, the tester has to stop the current test run, regardless of whether it has been

144 Part Three Testing

a

(a)AnLTS (b) The FSM fir trace semantics (c) The FSM for failure semantics

Figure 3: Representation of an LTS using the FSM model

completed successfully [3). This is modeled in our FSM by the sink state se and all
transitions to/from se which output the null output e.

Failure Semantics
We can also construct from a given LTS such an FSM that not only produces as output
all the traces of the LTS, but also signals by the null output e that certain sets of actions
on its input form a refusal set of the LTS after a given trace. An example of the FSM
representation for the LTS in Figure 3 (a) in failure semantics is shown in Figure 3 (c).
This FSM has the input set X = {{a}, {b}, {a, b}} and the output set Y = {a, b, e};
and each transition is labeled with an input/output pair, in which the output is either an
action in the input or e. For example, {a, b} /a, in which {a, b} is the set of offered actions
and a is the action that is chosen for execution. If the output is e, then a deadlock may
be observed for the set of offered actions. The mapping from multi-states of the LTS to
states of the FSM as well as the sink state se are the same as for trace semantics.

It can be shown that, given an LTS, the FSM constructed for trace semantics is a
deterministic submachine of the FSM for failure semantics. Both machines have the same
states. The trace FSM only determines whether or not an input action can form a valid
trace for the corresponding LTS. So does the failure FSM, and it also indicates whether
or not a set of actions offered as input may be refused after a valid trace. The difference
between these two FSMs reflects the fact that failure equivalence is a refinement of trace
equivalence.

In the following sections, we will formalize this idea of representing an LTS specifica­
tion by an FSM model.

3.2 '!race Finite State Machines
The FSM model for a given LTS specification in trace semantics, called the corresponding
trace finite state machine (TFSM), is defined as follows.

Definition 11 Trace finite state machine w.r.t. LTS. Given an LTS 5=< S, ~. ~. s0 >,
a trace finite state machine w.r.t. S, is a finite state machine P =< P, X, Y, h,Po >,such
that:
eX=~.

• Y\{e} =~.where e represents the null output.

Modeling basic WTOS by FSMs for conformance testing 145

• P is a finite state set, and the sink state se is in P.
• Let lis be the multi-state set of S. There exists a one-to-one mapping .,P: IIs-+P\{se}

and for all S; E lis and all a E X,
· (.,P(S;),a) E h(.,P(S;),a) if and only if S;=a=*-S;;
· (se, 9) E h(lf/J(S;), a) if and only if a E E\out(S;);
· {(se, 9)} = h(se, a).

According to the definition, it is possible to construct from the LTS S the corresponding
TFSM P, which is a complete FSM. Figure 3 (b) is an example of the TFSM w.r.t. the
LTS in Figure 3 (a). From the above definition, it can be seen that all transitions in the
TFSM are labeled with a pair of the form "a/a" or "b/9". Furthermore, each trace of
the TFSM is a sequence of pairs of the form "a/a", possibly followed by a sequence of
one or several pairs "b/6". It is implied that once the first 9 occurs, the TFSM enters
the special sink state se, and outputs 9 for any subsequent input.

Given an action sequence u E E*, we use evOt(u) to represent an input/output sequence
such that both of its input part and output part are u. Formally, we define evo1(c:) = c:;
and evo1(u.a) = evo1(u).afa. TFSMs have the following properties.

Proposition 2 Any TFSM is deterministic and completely specified.

Proof: See (18].

Proposition 3 Given an LTS S and its corresponding TFSM P, for all u E E* and all
'Y = evo,(u) E r•, u E Tr(S) if and only if 'Y E Tr(P).

Proposition 3 comes directly from the definitions of TFSMs and the multi-state set.
This proposition shows the way in which an 1/0 FSM models the behavior of an LTS in
trace semantics. The TFSM and its corresponding LTS exhibit identical behavior: any
action sequence is a trace of the LTS if and only if it is accepted and produced by its
TFSM. On the other hand, since the TFSM is completely specified, any action sequence
that is not a trace of the LTS corresponds to a trace of TFSMs with 9 outputs.

Accordingly, the trace equivalence relation in LTSs directly corresponds to the equiv­
alence relation in FSMs, as stated by the following theorem.

Theorem 1 For any given two LTSs S, I and their corresponding TFSMs S', 1', I =tr S
if and only if I' "' 5'.

Proof: See (18].

By virtue of Theorem 1, the tests for the TFSM model can be used to test the LTS im­
plementations with respect to their specifications for the trace equivalence relation. Now
it becomes clear that the methods based on CDFSMs (5, 8, 13, 17] are fully applicable to
derive tests from LTS specifications. However, the tests derived from the TFSM model
should be transformed to tests in the LTS context, because LTSs have a different, i.e.
rendez-vous, interface to interact with their environment. We explain this transformation
in Section 4.

3.3 Failure Finite State Machines
In this section, we present the FSM model for a given LTS specification in failure seman­
tics. It is similar to the TFSM constructuion, and is called a failure finite state machine,

146 Part Three Testing

or FFSM. In the FFSM, sets of actions, along with single actions, are treated as inputs.

Definition 12 Failure finite state machine w.r.t. LTS. Given an LTS 5=< S, I:, D., so >,
a failure finite state machine w.r.t. S, is a finite state machine P =< P, X, Y, h, Po >,such
that:
• X= powerset(I:)\{0}.
• Y\{8} =I:, where 8 represents the null output.
• P is a finite state set, and the sink state se is in P.
• Let Ils be the multi-state set of S. There exists a one-to-one mapping '1/J : Ils-+ P\ { se}

and for all Si E Ils and all A E X,
· ('1/J(S;), a) E h('f/J(Si), A) if and only if a E A and Si =a~ S;, or
· (se, 8) E h('f/J(Si), A) if and only if A E Ref(Si)i
· {(se, 8)} = h(se, A).

Figure 3 (c) shows an example of the FFSM w.r.t. the LTS in Figure 3 (a). From the
above definition, it can be seen that all transitions in the FFSM are labeled with a pair of
the form "A/a" where a E A, or "B/8". Similar to the TFSM, each trace of the FFSM
is a sequence of pairs of the form "A/a", possibly followed by a sequence of one or several
pairs "B/8"; and once the first 8 occurs, the FFSM also enters the state se, and outputs
8 for any subsequent input.

It can be easily shown that {a E Elp,-Afa-+} = out(Si) and {A~ I:lp.-A/8-+}U{0} =
Ref(Si) for each state Pi in P, where Si is a multi-state in its LTS S and Pi = 'f/J(Si)·
Therefore we define out(p) ={a E I: I p--Afa-+} and Ref(p) ={A~ I: I p--A/8-+}U{0}.
Similarly, for u E I:*, we also define evoJ(u): evoJ(c) = cj and evoJ(u.a) = evoJ(u).A/a
where a E A and A E X. The properties of FFSMs are expressed by the following
propositions.

Proposition 4 For any FFSM P, for all p E P and all BE Refmin(p) out(p) U B =I:.

Proof: See [18].
From I:= out(p) UB we get E\out(p) ~ B, which means that in any state, the output

complement is always refused.

Proposition 5 Any FFSM is observable and completely specified.

Proof: See [18].
Unlike a TFSM, an FFSM is nondeterministic if its corresponding LTS is nondeter­

ministic.

Proposition 6 Given an LTS S and its corresponding FFSM P, for all u E I:* and all
'Y = evoJ(u) E r•, if there exists pEP such that Po ='"f~ p, then Ref(p) = Ref(S, u).

Proof: See [18].
This proposition shows the way in which an 1/0 FSM models the behavior of an LTS

in failure semantics. The FFSM and its corresponding LTS exhibit identical behavior:
a set A may be refused after trace u by the LTS if and only if its FFSM may produce
output 8 once A is applied after trace evo1(u).

Accordingly, the failure equivalence and reduction relations in LTSs directly corre­
spond to the equivalence and reduction relations in FSMs, as stated by the following

Modeling basic LOTOS by FSMs for confonnance testing

Po

c/c

(a) (b)

Figure 4: An example for test generation

theorem.

Theorem 2 For any given two LTSs S, I and their corresponding FFSMs S', 1',
(1} I redS if and only if I'~ 5'. (2} I =te S if and only if I',..., S'.
Proof: See (18].

147

By virtue of Theorem 2, the tests for the FFSM model can be used to test the LTS
implementations with respect to their specification for the conformance relations of fail­
ure semantics. The existing methods for CNFSMs and the reduction relation (15] or
equivalence relation (11, 12] can be exploited to derive relevant tests from LTS specifica­
tions through the FFSMs. Like in the case of trace testing, the tests obtained should be
translated into tests that obey a rendez-vous interface of LTSs.

However, it should be noted that the failure FSMs constitute a specific subclass of
FSMs that have the following peculiarity from the test perspective: Certain transitions
are implied by others and may not require testing according to the LTS semantics. (see
Section 4.2.) This observation suggests that the test derivation methods based on the
FSM model should be modified for FFSMs, rather than directly applied.

4 TEST GENERATION

4.1 Testing trace equivalence
It follows from the results of the previous section that the derivation of a finite test suite
with complete fault coverage from an LTS specification with respect to trace equivalence
can be solved by transforming the specification into an TFSM, applying a CDFSM-based
method to it, and then converting the obtained tests back to the LTS formalism. The
approach is illustrated by the following examples.

From the definition of the corresponding TFSM, we can get the TFSM shown in
Figure 4 (a) for the LTS specification S of Figure 2. This TFSM is not minimal, so
it is transformed into its minimal form P, shown in Figure 4 (b), as required by the
W-method (5].

148 Part Three Testing

Let any LTS implementation of the LTS specification S be viewed as a TFSM and
let the number of states in an equivalent minimal form of the TFSM be not more than
the number of states in P. According to theW-method, the set of input sequences of a
complete test suite TS is constructed in the following way: TSin = Q.({e} U ~). W, where
Q is a state cover, Q.({ e} U ~) is a transition cover and W is a characterization set. From
the TFSM in Figure 4 we may select Q = { e, a, b, c} and W = {a, b. a}. The resulting test
suite is as follows.

{afa.bfb.afa, bf0.b/0.a/0, cfc.bfb.a/0, afa.af0.a/0, afa.af0.b/0.a/0,
afa.b/b.b/0.a/0, afa.cfc.a/0, afa.cfc.b/0.a/0, b/0.af0.a/0, b/0.af0.b/0.a/0,
bf0.b/0.b/0.a/0, b/0.cf0.a/0, b/0.c/0.b/0.a/0, c/ c.a/0.a/0, c/ c.af0.b/0.af0,
cfc.b/b.b/0.af0, cfc.cfc.a/0, cfc.cfc.bf0.a/0}

Since all implementations of P are assumed to be TFSMs, in which the 0 for an input
implies 0 for all subsequent inputs, there is a certain redundancy in this test suite. For
example, the suffix a/0.a/0 of test case b/0.a/0.a/0 is not necessary because of the 0
for the first input b. According to the LTS semantics, if b can not form a valid trace of
S, then b.a.a can not do it either. These suffixes can be removed and the resulting tests
still constitute a complete test suite of the TFSM:

{afa.bfb.afa, b/0, cfc.bfb.a/0, afa.a/0, a/a.b/b.b/0, afa.c/c.a/0, afa.cfc.b/0,
cfa.a/0, c/c.b/b.b/0, cfc.cfc.a/0, c/c.c/c.b/0}

In general, for any complete test suite of a given TFSM [2] w.r.t. a certain class of
TFSMs, after removing the suffixes of tests that follow the first pair "b/0", the resulting
test suite is also complete w.r.t. the same class. In order to state this in a formal way, we
use pref(TS) to represent all prefixes oftests in TS, i.e. pref(TS) = {11 I 11 E r·/\11·12 E
TS}. The following theorem gives the validity of the simplification of tests.

Theorem 3 Given a TFSMS, ifTS is a complete test suite w.r.t. a certain class of TF­
SMs then TS' ={IE pref(TS) I 3u.b E ~*((I= evot(u.b) 1\1 E TS) V 1 = evo1(u).b/0)}
is also a complete test suite w.r.t. the same class.

Proof: See [18].
Another solution to the redundancy problem is to modify the existing method in

such a way that the sink state is excluded from the computation. The null output 0 will
distinguish the sink state from others; and furthermore, in the LTS semantics it represents
the IUT in the deadlock, so it is not necessary to check the transitions which leave this
state.

As an example, we consider again the TFSM of Figure 4 (b), p4 is equivalent to the
sink state se, but we keep it separately. Exculding the sink state, we use the harmonized
identifiers [13] H = {{a, b }, {b. a}, {b. a}, {a, b}} rather than the characterization set W,
because theW set also causes redundancy. A state cover is now {e,a,a.c,c}. From this
we obtain the transition cover T = { e, a, b, c, a.a, a.b, a.c, a.c.a, a.c.b, a.c.c, c. a, c.b, c.c }. In
the transition cover, b, a.a, a.c.a, a.c.b, a.c.c and c.a lead to se, so no identifier is needed
to check the tail state. Thus, the resulting test suite is:

{b/0, afa.a/0, cfa.a/0, afa.bfb.afa, afa.bfb.b/0, afa.cfc.a/0, afa.cfc.b/0,
afa.cfc.c/0, cfc.bfb.a/0, cfc.bfb.b/0, cfc.cfc.a/0, cfc.cfc.b/0}

Modeling basic LOTOS by FSMs for conformance testing 149

r.~~- ~~con i:con
a a b

inc

in con in con in con in con

in con

a c

c

pass
fail fail

a b

pass fail fail fail fail fail fail fail fail

Figure 5: A test suite for the LTS specification in Figure 2

The test cases for the TFSM model can be transformed for the LTS testing by con­
verting each action sequence into a corresponding LTS with state verdicts. Let s0 -a1-+
s1 ... Sn-1 -an-+ Sn be an LTS corresponding to action sequence a1.a2 an, which out­
puts the first 9 at ak in the TSFM model, 1 ::::; k ::::; n + 1. (Note that if there is no 9
output for this sequence, then k is assumed to be n + 1) We have the state verdicts as
follows.

{
pass i = k -1

s; = fail i ~ k
inconclusive otherwise

An LTS test suite obtained by transforming the above test suite of the TFSM in
Figure 4 (b) is shown in Figure 5. This test suite can be used to test implementations of
the LTS specification in Figure 2 with respect to trace equivalence.

4.2 Failure FSMs
In an abstract 1/0 FSM, every transition is usually completely independent of others.
However, this is not the case for an FFSM, as we mentioned before; certain transitions
are implied by others. Consider, for example, a transition from a multi-state S; labeled by
action a, in a given LTS. In the FFSM, such a transition yields exactly 21EJ-l transitions
with the same output a from the corresponding state. These transitions have different
inputs denoting all the supersets of a and are implied by a single transition labeled by
{a}fa.

Implied transitions in an FFSM should not be treated as completely independent for
test derivation. The traditional transition checking approach relies on the general transi­
tion fault model, according to which any transition can be mutated independently of the
others (2]. The dependency among transitions of the FFSM would be fully neglected if an
existing test derivation method is applied to the FFSM in a straightforward manner, and
hence any resulting test suite with complete fault coverage would definitely be redundant.
Consider two transitions Po-{a}/a-+pl and Po-{ab}/a-+pl in the FFSM in Figure 3 (c)
as an example, where once the first is checked there is no need to check the second. The
reason is that if Po-{ab}/9-+se is implemented then it implies Po-{a}/9-+se.

Another distinctive feature of FFSMs comes from the closure property of refusal sets.
Consider a refusal set Ref(S;), IRef(Si)l > 1, of multi-stateS; in the given LTS. This

150 Part Three Testing

set creates exactly 21Re/(S;)I-l transitions in the corresponding FFSM. Again, there is no
need to test all these transitions separately. Checking transitions corresponding to the
minimal refusal set Refmim(S;) is sufficient.

Finally, similar to TFSMs, in FFSMs, the sink state does not require any identification
and the transitions which leave this state do not require checking.

It follows from the above analysis that one can also derive tests for the LTS with
respect to failure semantics based on the existing FSM-based methods for FFSMs in a
way similar to TFSMs - by directly applying an existing method for a test suite and
subsequently removing redundancy in it, or by modifying the existing method to avoid
the redundancy. However, since the implications among transitions in FFSMs raise a new
redundancy of tests, a further research is needed for removing or avoiding this redundancy.
This is our work in progress.

5 CONCLUSION

LTSs are the basic semantics for LOTOS and other specification formalisms. This paper
deals with test suite development from a specification given in the LTS formalism. We
have shown that in the context of trace semantics, LTSs can be represented equivalently
by an input/output FSM model - the trace finite state machines (TFSMs); and in the
context of failure semantics, by the failure finite state machines (FFSMs). The benefit of
this transformation is that the problem of deriving a conformance test suite for an LTS
can be transferred into the realm of the FSM model, where the test derivation theory has
been elaborated for several decades and a number of testing tools have been constructed
already.

Trace FSMs are deterministic, completely specified FSMs, so the existing methods
for CDFSMs can be applied to the TFSMs directly for the derivation of test suites to
check the corresponding LTSs with trace equivalence. An example is presented which
illustrates the process of test derivation from an LTS specification for trace equivalence,
by transforming the LTS into a TFSM and subsequently applying the W-method. The
removal of redundant tests is discussed. A slight modification of the HSI-method for
TFSMs is also proposed to avoid the redundancy of tests.

Failure FSMs are observable, completely specified, nondeterministic FSMs, so the
existing testing methods for CNFSMs can be applied to the FFSMs for the derivation
of test suites to check the corresponding LTSs in the failure semantics. However, since
certain transitions in FFSMs may not require testing according to the LTS semantics, an
adaptation of the existing methods to FFSMs is needed to avoid redundancy. Our work
in progress deals with this problem.

Acknowledgments

This work was supported by the Hewlett-Packard-NSERC-CITI Industrial Research Chair
on Communication Protocols, Universite de Montreal. The authors would like to thank
S. A. Ezust for comments.

Modeling basic LOTOS by FSMs for conformance testing 151

References
[1] J. Arkko. (1993) On the existence and production of state identification machines

for labeled transition systems. In IFIP Formal Description Techniques YI (ed. R. L.
Tenney, et al), 351-365.

[2] G. v. Bachmann, A. Petrenko, and M. Yao. (1994) Fault coverage of tests based
on finite state models. In the IFIP 7th International Workshop on Protocol Test
Systems, 91-106, Japan.

[3] E. Brinksma. (1988) A theory for the derivation of tests. In IFIP Protocol Specifica­
tion, Testing, and Verification VIII (ed. S. Aggarwal and K. Sabnani), 63-74.

[4] A. R. Cavalli and S. U. Kim. (1992) Automated protocol conformance test generation
based on formal methods for LOTOS specifications. In the IFIP 5th International
Workshop on Protocol Test Systems (ed. G.v. Bachmann, et al), 212-220.

[5] T. S. Chow. (1978) Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering, SE-4(3):178-187.

[6] K. Drira, P. Azema, and F. Vernadat. (1994) Refusal graphs for conformance tester
generation and simplification: a computational framework. In IFIP Protocol Specifi­
cation, Testing, and Verification XIII (ed. A. Danthine, et al), 257-272, 1994.

[7] S. Fujiwara and G. v. Bachmann. (1991) Testing nonterministic finite state machine
with fault coverage. In the IFIP .{th International Workshop on Protocol Test Systems
(ed. J. Kroon, et al), 267-280.

[8] S. Fujiwara, et al. (1991) Test selection based on finite state models. IEEE Trans­
actions on Software Engineering, SE-17(6):591-603.

[9] R. J. Glabbeek. (1990) The linear time-branching time spectrum. Lecture Notes on
Computer Science, 14(1):25-59.

[10] Z. Kohavi. (1970) Switching and Finite Automata Theory. McGraw-Hill Computer
Science Series, New York.

[11] G. Luo, G. v. Bachmann, and A. Petrenko. (1994) Test selection based on communi­
cating nondeterministic finite state machines using a generalized Wp"method. IEEE
Transactions on Software Engineering, SE-20(2):149-162.

[12] G. Luo, A. Petrenko, and G. v. Bachmann. (1994) Selecting test sequences for
partially-specified nondeterministic finite machines. In the IFIP 7th International
Workshop on Protocol Test Systems, 91-106, Japan.

[13] A. Petrenko. (1991) Checking experiments with protocol machines. In the IFIP .{th
International Workshop on Protocol Test Systems (ed. J. Kroon, et al), 83-94.

(14] A. Petrenko, G. v. Bachmann, and R. Dssouli. (1993) Conformance relations and
test derivation. In the IFIP 6th International Workshop on Protocol Test Systems
(ed. 0. Rafig), 91-106.

[15] A. Petrenko, N. Yevtushenko, and G. v. Bachmann. (1994) Experiments on nonde­
terministic systems for the reduction relation. Technical Report 932, Dept. of I.R.O.,
University of Montreal.

(16] D. H. Pitt and D. Freestone. (1990) The derivation of comformance tests from
LOTOS specifications. IEEE Transactions on Software Engineering, SE-16(12):1337-
1343.

[17] K. Sabnani and A. T. Dahbura. (1988) A protocol test generation procedure. Com-

152 Part Three Testing

puter Networks and ISDN Systems, 15(4):285-297.
[18] Q. M. Tan, A. Petrenko, and G. v. Bochmann (1995) Modeling Basic LOTOS by

FSMs for Conformance Testing. Technical Report 958, Dept. of I.R.O., University
of Montreal.

[19] J. Tretmans. (1990) Test case derivation from LOTOS specifications. In the IFIP
2th International Conf on Formal Description Techniques for Distributed Sysytems
and Communication Protocols (ed. S. T. Vuong), 345-359.

Biographies

Qiang-Ming Tan received the B.S. degree and the M.S degree in computer science
from Chongqing University, Chongqing, China, in 1982 and 1984, respectively. Since
1993, he has been with the Universite de Montreal, PQ, Canada for the Ph.D. degree in
conformance testing on communication protocols. From 1984 to 1992, he was a lecturer
in the Department of Computer Science of Chongqing University.

Alexandre Petrenko received the Dipl. degree in electrical and computer engineering
from Riga Polytechnic Institute in 1970 and the Ph.D. in computer science from the
Institute of Electronics and Computer Science, Riga, USSR, in 1974. Since 1992, he has
been with the Universite de Montreal, PQ, Canada. From 1982 to 1992, he was the head
of a research department of the Institute of Electronics and Computer Science, Riga,
Latvia. From 1979 to 1982, he was with the Networking Task Force of the International
Institute for Applied Systems Analysis (IIASA), Vienna, Austria. From 1969 to 1979, he
was a researcher and the head of a research department of the Institute of Electronics and
Computer Science, Riga, Latvia. His current research interests include communication
software engineering, protocol engineering, conformance testing, and testability.

Gregor v. Bochmann (M'82-SM'85) received the Diploma degree in physics from the
University of Munich, Munich, West Germany, in 1968 and the Ph.D. degree from McGill
University, Montreal, P.Q., Canada, in 1971. He has worked in the areas of programming
languages, compiler design, communication protocols, and software engineering and has
published many papers in these areas. He holds the Hewlett-Packard-NSERC-CITI chair
of industrial research on communication protocols in Universite de Montreal, Montreal.
His present work is aimed at design methods for communication protocols and distributed
systems. He has been actively involved in the standardization of formal description tech­
niques for OSI. From 1977 to 1978 he was a Visiting Professor at the Ecole Polytechnique
Federale, Lausanne, Switzerland. From 1979 to 1980 he was a Visiting Professor in the
Computer Systems Laboratory, Stanford University, Stanford, CA. From 1986 to 1987
he was a Visiting Researcher at Siemens, Munich. He is presently one of the scientific
directors of the Centre de Recherche Informatique de Montreal (CRIM).

