
4

True versus artificial concurrency

A. M azurkiewicz1

Institute of Computer Science of PAS
Ordona 21, 01-237 Warsaw, Poland
tel. +48{022}362885, fax: +48{022}376564
e-mail: amaz@ipipan. waw. pl

Abstract
Some theoretical issues related to concurrent processed are discussed: formal description
of concurrent systems, concurrent systems synchronization, refinement of systems, fairness
assumption. These issues are considered on possibly high level of abstraction enabling
their proper identification, formulation, and formalization. So-called prefix functions serve
as a model of concurrent processes. The notion of prefix functions is a unifying concept
for description purposes of a number of existing representations of concurrent processes
based on finite set of atomic actions.

Keywords
Concurrency, processes, partial order, synchronization, fairness, refinement.

1 INTRODUCTION
Several theoretical issues came up while proving correctness of concurrent systems. The
main source of difficulties is confusion created by interleaving approach to concurrency,
hiding independence of actions by nondeterminism of their execution. Some of these
difficulties can be avoided by making independence of actions explicit and use it in a
properly chosen theoretical framework. The aim of this outline is to present some of
issues involving such an explicit reference to concurrency and to show - using rather high
abstraction level- a way and means to cope with them.

The present outline addresses some issues inherently involving concurrency: synchro­
nization of systems, introducing concurrency by collecting together systems (even sequen­
tial), actions refinement, where independent actions should have independent refinements,
and fairness, where concurrency must be taken into account for an adequate definition of
the notion. The event based approach is applied, as e.g. in the event structures (Winskel
1988); but here all events are occurrences of actions taken from a finite repertoire (alpha­
bet).

First, to create some useful theoretical tools, the notion of prefix function is defined.
The defined formalism is illustrated by some examples of simple and known systems.

1 Partially supported by grant 8 TllC 029 08 of KBN (Scientific Research Counsil of Poland)

P. Dembiński et al. (eds.), Protocol Specification, Testing and Verification XV
© IFIP International Federation for Information Processing 1996

54 Invited Paper

Behaviour of the introduced systems is presented in different ways, enabling comparison
of their descriptive possibilities. Using the introduced formalism, the synchronization
of systems is defined and illustrated by an example taken from the theory of Petri nets.
Next, the problem of action refinement is discussed and related to the properties of traces.
Finally, issues concerning inevitable properties of systems are taken into consideration.
The main topic of this issue is a proper definition of 'observations' of the system run;
observation is an increasing set of system histories such that any history of a single system
run is an initial part of a sufficiently extensive history of the observation. A property of
system states is inevitable, if any system observation encounters, sooner or later, a state
with this property. Thus, for proving inevitability of a property of system states, one has
to prove that fairness of an observation guarantees nonemptiness of its intersection with
the set of states meeting the property in question.

2 BASIC NOTIONS

LetS be a set. A binary relation::;<;:: S x Sis an 01·dering inS, if it is reflexive, transitive,
and antisymmetric. The pair (S, :S) where Sis a set and ::; is an ordering inS is called a
partially ordered set, abbreviated to poset. If the ordering relation is known, poset (S, :S)
is usually identified with S. If x::; y, y is said to dominate x, or x to be dominated by y.
Two elements of S are consistent, if both of them are dominated by a common element
of S. Two elements of S are comparable, if one of them is dominated by the other.
Clearly, comparable elements are consistent. A subset of Sis linear, if all its elements are
comparable. For any poset (S, :S) and any Q <;:: S, Q is ordered by the restriction of ::;
to Q, (the relation::; n(Q X Q)); the poset (Q,::; n(Q X Q)) is called a subposet of s. A
subset Q of Sis co final with S, if for each element of Sis dominated by a suitable element
of Q. In graphical representations of partial orderings arcs resulting by transitivity from
others are usually omitted.

Any finite set will be called here an alphabet and its elements symbols. If ~ is an
alphabet, ~· is the set of all finite sequences of symbols from ~, including the empty
sequence E, and ~+ = ~· - { E}. Sequences in ~· are called strings over ~. The number
of occurrences of symbol a in string u is denoted by u(a). Concatenation of string u with
string v is denoted by uv. Subsets of ~· are called languages over ~. String u is a prefix
of string w, if there exists a string v with ttv = w. Any language is ordered by the prefix
relation: u :S v if u is a prefix of v. The set of all prefixes of a string u is denoted by
P(u); the set of all prefixes of all strings in language L is denoted by P(L). Clearly,
L <;:: P(L) for any language L. A language Lis prefix closed, if P(L) = L. From above
definitions it follows that each nonempty prefix closed language contains the empty string.
The greatest prefix closed subset of language L is denoted by ker(L) (such a language
always exists and is unique).

Let I be a set (of indices); a function which to each i E I assigns a set X; is called
a family of sets and is denoted by {X;}iei· Let {~;}iei be a family of alphabets; for any
w E (Uiei ~i)* and any i E I the string arising from w by erasing all symbols not in ~i is
called the projection of w onto ~i and is denoted by rr;(w).

A mapping ¢ : X ____. Y is an injection, if </l(x') = <P(x") => x' = x" and it is a
surjection, if it is for each y E Y there is x E X such that ¢(x) = y. A mapping is a
bijection, if it is an injection as well as a surjection. If ¢ 1 : X ---+ Y is a surjection,¢2 :

True versus artificial con.currency 55

Y ---+ Z is any mapping, then c/J1 o c/J2 is the mapping c/J : X ---+ Z defined by c/J(x) =
cP2(cPI(x)).

A binary relation .,P ~ X X Y is a partial function from X to Y if x.,Py', x.,Py" implies
y' = y". To denote partial functions from X to Y the notation .,P : X ---+ Y is used, if
partiality of .,P is understood from the context. For any partial function .,P : X ---+ Y the
set {x EX I 3y E Y: .,P(x) = y} is the domain of .,P, denoted by Dom(.,P), and the set
{y E Y I 3x E X : .,P(x) = y} is the range of .,P, denoted by Rng (.,P). If c/J, .,P are partial
functions the equality c/J(x) = .,P(x) means that either both are defined for x and their
values for x are equal, or both of them are undefined for x.

3 PREFIX FUNCTIONS
Let !; be an alphabet. Any partial function defined on !:* with a prefix closed domain
will be called here a prefix function over !:, abbreviated sometimes to a function over !:,
if its prefix closedness is understood. The domain of a prefix function is its language and
its range is its set of states. Any superset of the range of a prefix function forms its state
space. Two prefix functions O"J, u2 are isom01·phic, in symbols u1 ~ u2, if their alphabets
are identical and there exists a bijection c/J between their ranges such that

Isomorphic prefix function are considered a.s identical; it means that prefix function are
in fact classes of isomorphic functions with prefix closed domains. From this it follows
that each prefix function u over ~ has its canonical form with 2E* as its state space:

u(w) = {u E Dom(u) I u(u) = u(w)}

for each string w in the domain of u. To each prefix function corresponds an equivalence
relat'ion =:,. in its domain called the natural equivalence of u, such that u =u v <=> u(u) =
u(v). Equivalence classes of ::::17 are denoted as usual: [w]u is the equivalence class of=:,.
containing string w.

Prefix functions can be viewed as a tool for the discrete systems behaviour description,
interpretating their arguments as the system actions sequences and their values as the
resulting states. The function assigning to each (initiated) transition sequence of a Petri
net the resulting marking is an example of a prefix function. Another example is related
to transition systems with a fixed initial state: a function, assigning to each sequence of
transitions its resulting state is a prefix function.

For any prefix function u over ~ and each a E ~ let the transition relation of u be
defined as follows:

s' ~ .. s" <=> 3tt E ~·: s' = u(u),s" = u(ua).

for each s',s" E Rng(u) and a E ~- The step relation of u is the relation --+17 defined as

s' --+17 s" <=> 3a E ~ : s' ~u s"

and the transitive and reflexive closure of --+17 is the progress relation of u. The subscript
u is omitted if it causes no ambiguity. Graphical representation of the transition relation
of a prefix function is the diagram of this function.

56 Invited Paper

b b b b

c(X)(···A
a a a a

Figure 1 The diagram of prefix function a0 from Example 1.

Example 1. Let L = ker{ w I w(a) ~ w(b)}. Thus, L is a prefix closed language with
strings containing not more occurrences of b than of a. Then ao : L ---+ N such that
a0 (w) = w(a) - w(b) for all w E L is a prefix function. The diagram of a0 is shown in
Figure 1. 0

A prefix function is monotonous, if its progress relation is an ordering; in this case the
symbol ~ rather than --->* is used. A monotonous prefix function is strongly monotonous,
if s' ---> s" =} s' # s". Monotonous prefix functions are of primary interest in the present
outline, since they can serve as a tool for converting sequences of actions of concurrent
system into its histories that can be ordered in a different way. In concurrent approach
some different sequences of actions may be only different descriptions of the same system
run; by collecting them it is possible to recover the 'true' history of the system behaviour,
ordered by the casual relation. In such cases the values of a monotonous prefix function
can be interpreted as system (initial) histories rather than system states. The assumed
monotonicity reflects the fact that the system histories can only grow, hence never can
be repeated in the system execution.

The formalism introduced by prefix function allows us to make a clear distinction
between sequential and nonsequential behaviours.

Example 2. Consider two discrete systems executing actions a and b. The first one
performs action a, then action b, and halts, or action b, then action a, and halts. The
choice between these two possibilities of acting is random. The second performs con­
currently actions a and b and halts. The difference between the two systems becomes
clear by describing them by two different prefix functions, a' and a". Both function
have the same alphabet, namely {a,b}, and the same domain, namely P{ab,ba}; but a'
is the identity function, while the canonical representation of a" is given by equalities
a"(E) = {E},a"(a) = {a},a"(b) = {b} and a"(ab) = a"(ba) = {ab,ba}, identyfying in
this way executions ab and ba. Both prefix functions are monotonous. Clearly, a' is not
isomorphic with a"; the above description makes explicit the difference between choice
and concurrency. However, for special purposes both models can be equally useful; the
choice between them depend exclusively upon the aims of formalization. 0

The above example suggests calling sequential those prefix functions that are iso­
morphic to identity functions, and as nonsequential the others. The state ordering of
sequential prefix functions is tree-like; nonsequentiality of a monotonous prefix function is
related to the existence in its range some states incomparable but consistent. Interpret­
ing values of a prefix function as initial histories and the state ordering as their inclusion,

True versus artificial concun·ency 57

incomparable but consistent values of prefix function correspond to incomparable initial
parts of the same history; incomparable and inconsistent values correspond to initial parts
of different histories. Thus, histories in the range of sequential prefix functions are either
linearly ordered, then they are initial parts of the same global history, or incomparable,
then they are initial parts of different histories. In the range of a nonsequential prefix
function two incomparable histories can be initial parts of the same global history, then
they are consistent, or can be initial parts of some different global histories, then they are
parts of different histories.

If actions creating the behaviour of a discrete system occur in a linear order, its partial
histories are ordered linearly too. If some actions occur independently of each other, their
occurrences in the behaviour are not comparable but they contribute to create in some
future a common history. Existence of non comparable but consistent histories of a system
is an evidence of concurrent execution of some system actions.

In the prefix function formalism independent execution of actions can be expressed
by assigning to different sequences of action symbols a common value, representing com­
mon history composed by their independent executions. The natural equivalence of a
prefix function identifies different segmentation of the same global history into its initial
subhistories.

Figure 2 An elementary net system.

Let ~ be an alphabet and Dep ~ ~2 be a symmetric and reflexive relation called
dependency in ~ and Ind = ~2 - Dep independency in L An alphabet together with
a dependency (or independency) relation is a concu1·renl alphabet. Let = be the least
congruence in ~· such that ab = ba for all (a, b) E Inc! (i.e. transitive and reflexive
closure of the relation

{(ttabv, ttbav) ju, v E ~·,(a, b) E Inc!}.

This equivalence is the trace equivalence in ~ w.r. to Ind (or Dep) and equivalence
classes of= are called traces over (~, Ind) (or (~, Dep)) (Mazurkiewicz, 1977). A trace
containing string w is, as usual, denoted by [tv]; the set of all traces with representants in
L ~ ~· is denoted by [L]; in particular, [~*] denotes the set of all traces over~- If L is a
prefix closed language over~, then the function defined by u(w) = [w] for all wE [L] is a
prefix function. The canonical form of this function is given by equalities u(w) = [w] n L
and = nL2 is the natural equivalence of u. Prefix functions with traces as values will be
called trace prefix functions.

58 Invited Paper

[abca]

y~b
[abc] [abcea]- ...

a b / ~ y'
[E]-[a]-[ab] [abce]

~y
[abe]

Figure 3 The diagram of the prefix function from Example 3.

In fact, an attempt to generalize the trace concept was the primary motivation for
introducing prefix functions. The traces, as defined above, turned out to be an adequate
tool for behaviour descriptions of so-called elementary net systems, (Rozen berg, 1987 and
Thiagarajan, 1987) being a restricted version of Petri nets (Petri, 1976). More information
about traces can be found in (Diekert, Rozen berg, 1994).

Example 3. Consider elementary net system represented graphically in Figure 2. From
the theory of such systems it follows that the dependence relation of this system is Dep =
{a, b, c, dJ2 U {b, e)2; hence, Inc! = {(a, e), (c, e), (d, e), (e, a), (e, c), (e, d)}. Thus, the trace
equivalence contains pairs: ae = ea, ce = ec, de = ed. The behaviour of this system can
be described by prefix function u over alphabet {a,b,c,d,e}, with u(u) = [u], Dom(u) =

P{w I 3u E (abce)*d: w = u}. The initial part of the diagram of u is given in Figure 3.
0

Let :E be an alphabet and let I;ffi denote the set of all mappings from :E to the set
of all nonnegative integers. Elements of I;ffi are called multisets over :E. Multisets over I;
can be viewed as the elements of the free commutative monoid (I;ffi, +, 0) generated by
:E, with + as the (totally commutative) monoid operation, called addition, and 0 as the
neutral element). Multisets over :E can be represented by linear forms

where n ~ 0 (if n = 0 the above form is reduced to 0}, /.c1, k2 , ••• , kn are nonnegative
integers and a1 , a2, ... , an are members of E. Let E = { a1 , a2 , ... , an} and let Jl : :E* -----+

I;ffi be mapping such that p(w) = k1 a1 + k2a2 +···+!.:nan, where k; = w(a;) for each
i, 1 :'::: i :'::: n, i.e. mapping converting strings into multisets over the same alphabet (recall
that w(a;) denotes the number of occurrences of symbol a; in string w). Prefix function
u such that u(w) = p(w) for each win its domain is called a multiset prefix function.

Example 4. Now, let us consider four different description of the same discerete process,
namely the behaviour of the so-called producer - consumer system, consisting of two
agents; one of them is producing objects and putting them into a common store, the
second is consuming stored objects. Both actions are independent of each other, with
only one obvious restriction: if the store is empty, the consuming agent must wait until
some objects are supplied by the producer. All processes has then the same alphabet
{a, b} of actions: a denotes production, b consuming. The domain of all prefix functions

True versus artificial concurrency 59

discussed here is the set D, defined already in Example 1:

D = ker{w I w(a) ~ w(b)}.

(a prefix closed language with all strings containing not more occurrences of b than of a).
The first prefix function, ao has been already defined in Example 1. The second,

a~, is the identity function: a 1 (u) = u for all u E D. Then states are simply execution
sequences, induced equivalence is the identity relation, equivalence classes are singletons.
The ordering of a 1 is presented in Figure 4.

__-abab­
aba

/ ~abaa--
ab --_ I ~aabb-

•-• / .. ~_ .. c::::_
-----aa ---~ --aaab~

aaa

~
aaaa<

Figure 4 State ordering of a 1 .

The third prefix function is defined by the function a2 where a2(u) = p(u) for all
u E D (recall that Jt is the function which for a given strings returns corresponding it
multiset). The state ordering of a2 is componentwise:

The natural equivalence of a 2 identifies all strings with the same number of symbol occur­
rences, independently of their arrangement within strings; they are permutation classes
of strings in D. The state ordering of a2 is given in Figure 5.

The last one is a3 ; its value for any u ED with u(b) = m.,u(a) = n(n,m ~ 0), is a
node labelled graph with nodes a 1 , a2 , ••• , a,. lahellccl with a, nodes b1 , b2 , ••• , bm labelled
with b, and the following arcs:

States of a3 are node labelled graphs expressing explicitely causal relationship between
producing and consuming actions. The state ordering of a3 is the ordering of the set of

60 Invited Paper

2a+2b- 3a+2b --

// /
a+b- 2a+b - 3a+b - 4a+b -

// // /
o- a 2a 3a 4a Sa-

Figure 5 State ordering of u2 •

b b b b

////
a a a a a----a

Figure 6 The state u3 (aababa) (corresponding to multiset 4a + 2b).

oriented acyclic graphs by the relation 'to be an initial full subgraph'. An example of a
state in the range of u 3 is given in Figure 6.

No two of prefix functions u 0, u 11 u2 a.re isomorphic. Functions u 11 u2, and u 3 are
ordered, while u0 is not; the state ordering of u, is a tree-like ordering, while those of
u2 and U3 are not. Equivalence classes of u, are singletons; those of uo contain infinitely
many strings, and those of u2 and u3 contain only finite number of elements. Functions
u2 and 0'3 are isomorphic.

The first prefix function, u0 from Example 1, represents the point of view of a store
manager. Sequences of producing and/or consuming are identified, if they result in the
same number of items in the store.

The second function, ur, describes the producer - consumer activity from the view­
point of sequential observers. Any of them, despite the existing independency of the agent
actions, observes the system run as a sequence of producing and consuming actions. Dif­
ferent observers can see these sequences in different ways; the sequential order of action
occurrences they notice does not reflect faithfully the causal ordering of agents actions.

The third prefix function, u2 , is intended to describe the existing concurrency be­
tween producing and consuming actions explicitely. It turns out that accepting multisets
over alphabet {a, b} as the state descriptions the required concurrency is captured in a
satisfactory way. It also turns out that the causal relationship between producing and
consuming actions can be inferred from the ordering of states of u2 • In this setup two
execution sequences are identified, if they describe the same run of the system, with dif­
ferent ordering of actions caused by their mutual independence. Prefix function 0'2 is
isomorphic with u3 ; the last one presents causal dependencies in the system as a graph.
Values of u3 are graphs; in this graphs the transitive and reflexive closure of arc relation
indicates the partial order of action occurrences. V!1henever there is no causal relationship

True versus artificial concurrency 61

between producer and consumer actions, there is no chain of arcs joining their occurrences
in the graph. In other words, u3 function uses labelled partial order (lpo) technique for
describing concurrency; labelled partial orders are the same objects as pomsets of Pratt
(1986). 0

4 PREFIX FUNCTIONS SYNCHRONIZATION
One of the most important operations on discrete systems is their synchronization. Syn­
chronization of systems corresponds to the synchronization of prefix functions defined
below and can be used as a tool for combining simple systems into more complex ones.
Let I be a finite set (of indices) and let F = {a;};ei be a family of prefix functions,
CT; = (~;)* --+ S; for i E /. The synchronization of family a is a prefix function CT over
the union of alphabets ~;:

a: cuE;)* ----->II S;
iE/ iEl

with domain
ker{w E ~· l1r;(w) E Dom (u;)}

and with values being tuples of values of component functions:

(u(w)); = a;(1r;(w)) (i E I),

where (u(w)); denotes the i-th component of the tuple u(w) from the cartesian product.
Notice the kernel operation in the definition of the domain of the synchronized family; its
application guarantees the prefix closedness of the domain. The idea of the synchroniza­
tion defined above has been used for modular description of Petri nets {Mazurkiewicz,
1985) and for creating string vectors of Shields (1979).

The synchronization of family { a;};ei will be denoted by llieT a;.

1. The synchronization of any finite family of Jn·e.fi.r. functions is a prefix function.

For two-element family of prefix functions write CTJ II a2 rather than llie{l,2} u;; thus,
II can be viewed also as a binary operation on prefix functions.

2. Synchronization operation is idempotent, commutative, and associative, z.e. for all
prefix functions a, CTt, u2, u3:

alia

a1 II u2

(u1 II a2) II CTJ

a,

a2 II a1.

CT1 II (u2 II a3).

Idempotency follows from the fact that the mapping which to each argument assigns
its two identical copies is a bijection. Commutativity is clear; associativity follows from
the associativity of product operation.

3. Synchronization of monotonous p1·efix functions is monotonous.

62 Invited Paper

It follows from the definition of synchronization, since the ordering of the synchronized
prefix functions is the product of its components orderings.

For any family of sequential prefix functions define an independence relation Ind in
the union of the family alphabets as follows:

(a, b) E lnd ¢> Vi,j E I: a E ~;,bE ~i =? i #=j,

where I is the set of indices of the family and u;, ~i are alphabets of prefix functions of
the family. Such a relation is called the independence generated by the family.

4. Synchronization of any family of sequential prefix function is a prefix function with
values being traces w. r. to the independence relation generated by the family.

Therefore, synchronization can be viewed as a tool for introducing independency of
some actions; this independency, however, is 'static', i.e. fixed for all possible runs of the
described system. By the defined above synchronization it is not possible to introduce a
'context-sensitive' concurrency (depending upon the system history).

5. Synchronization of any family of multiset p1·efi;r functions is a multiset prefix function.

It follows from the fact that for all strings u, V over UiE/ ~i the following equivalence
holds:

p(u) = p(v) ¢>ViE I: lt(rr;(u)) = lt(rr;(v)),

where rr;(w) denotes the projection of w onto ~;.
Let I be a finite set of indices and let Ap, Bp be alphabets for each p E P, with

Ap = {a~, a~, ... , a~.}, Bp = {bi, b~, ... , b!:,.}, np, mp ~ O,p E P. Let, for each p E P and
u E (Ap U Bp)*,

ap(u) ¢> mp + u(ai) + u(a~) + · · · + u(a!;.) ~ u(bi) + u(b~) + · · · + u(b:;..). (1)

Let (JP : (Ap U Bp)* --+ (Ap U Bp)ffi be a multiset prefix function with the domain Dom p:

Comparing the above definition with that from Example 2, 0; leads to the conclusion that
8; can be viewed as the prefix function description of the producer - consumer system
with producers represented by elements of Ap and consumers represented by elements of
Bp, with mp as the initial contents of the store, for all p E P. It can be viewed as well as
a one-place Petri net NP, with a single place p, initial marking mp, input transitions Ap
and output ones Bp. In Figure 7 an example of such net is given, with input transitions
a1, a2, a3, output transition bh b2, and the initial marking 3. The behaviour of Np is given
by multiset prefix function fJP.

Set now A = UpEP Ap, B = UpEP BP and consider Petri net (P, T, F, m0) with un­
bounded capacity of places and !-weighted arcs such that

T =AU B, m 0(p) = m.p, for all pEP
F = {(a,p) I a E Ap,p E P} U {(p,b) I bE Bv,P E P}.

True versus artificial concurrency 63

a2 ---- <..·• .. t

Figure 7 An atomic place/transition net.

The above net is constructed from atomic nets by identyfying some transitions of compo­
nents, with places that form a vector indexed by elements of P, and with marking inherited
from markings of atoms.The behaviour of the constructed net is the synchronization of
behaviours of its components:

It can be shown that 0 is a multiset prefix function with domain

ker{w E (AU B)* I 1\ ap(w)}
pEP

where ap is the condition defined in (1) for each p E P. Thus, the prefix function syn­
chronization enables establishing a compositional semantics of Petri nets (Mazurkiewicz,
1985) and illustrates the use of synchronization technique in describing some complex
concurrent systems.

5 PREFIX FUNCTIONS REFINEMENT
Intuitively, refinement of a discrete system consists in replacing an original system actions
by some combination of other actions giving more accurate description of the system
behaviour. A good candidate for a formal model of refinement is string substitution: a
string of symbols is substituted for a single symbol in the behaviour description and this
substitution is extended from symbols to strings and languages. In case of nonsequential
systems the situation is not so simple.

Example 5. Let consider a system in which actions a and b are performed indepen­
dently of each other, and next the system halts. The behaviour of such a system can be
represented traditionally by the prefix language P { ab, ba} . Suppose the system is refined
by replacing action a by the sequence a1a2 of 'finer' actions. Then the system behaviour
might be transformed in a straightforward way into P{ a1 a2b, ba1a2}. But, according to
intuitive understanding concurrency, such a. refinement should lead to another behaviour,
namely to P{ala2b,a1ba2,bala2}. In other words, refinement of an action should respect
its independence of other actions, hence a1 a.s well a.s a2 should be independent of b. It is
not the case while using sequential description of systems. 0

64 Invited Paper

The above example shows that the behaviour of refined system is not the same as the
refinement of the original system behaviour; to transform properly the original behaviour
into the refined one, additional information on mutual dependencies (or independencies)
in the set of refined actions should be supplied.

It is worthwhile to note, however, that for sequential systems in which there are no
independent actions, the refinement procedure as given above leads to satisfactory results.
It suggest to combine refinement of sequential systems with synchronization operation for

validation of more complex, nonsequential systems (see also: Abadi, Lamport 1989).
Prefix functions considered in this section are assumed to be monotonous. Let u1 , u 2 be

prefix functions over I:1 , I:2, respectively. Refinement injection of u1 into u2 is any mono­
tone and cofinal injection of Rng (ui) into Rng (u2), i.e. any mapping <P : Rng (ui) ---->

Rng (u2) such that

Vs',s" E Rng(ut): s' :S s" =* <P(s') :S </J(s"), and

Vs" E Rng (u2) : 3s' E Rng (uJ): s" :S (</J(s')).

A prefix function u2 is a refinement of another prefix function u1 if there exists arefinement
injection of u1 to u2.

3

0
2

2

Figure 8 An example of refinement.

In Figure 8 a refinement of the prefix function defined in Example 5 is given. The
states corresponding by injection to others are shadowed.

The intuition behind this definition is the following. The refined system has in general
more actions and states than the original one. Anyhow, it should imitate the behaviour of
the original system. It means that some states of the refined system must correspond to all
states of the original one (hence injection). Moreover, they have to come out in the same
order as corresponding to them states of the original system (hence monotonicity) . To
guarantee that the refined system is doing nothing more than the original one (up to the
new introduced actions and stales) , any state of it, interpreted as an initial history, should
be extended to a state corresponding to an original system state, hence the cofinality
requirement.

Refinements of a special form can be defined for trace prefix functions. Consider
two concurrent alphabets (I:;, Dep ;), where Dep i is a dependence relation in I:;, Ind i =
I:~ - Dep ;, i = 1, 2.. Denote by Dep? the strict dependency in I:;, i.e. the relation

True versus artificial concu1Tency 65

Dep i- ~;, where ~; is the identity relation in E;. Trace equivalence class containing a
string wE Ei w.r. to dependency Dep; is denoted by [w];, (i = 1,2).

Let 1/J: E1 ---> Ei be a mapping (a substitution), let .,p• : E~ ---> E; be the extension
of 1/J to strings over E1 defined as usual :

1/J * (wa)

For any string w, let A(w) denotes the set of all symbols occurring in the string w.
Let o-1 be a trace prefix function over concurrent alphabet (E1, Dep 1), with domain

Dom 1 such that o-1 (w) = [w]t for each w E Dom 1, and 1/J : E1 ---> Ei be a substitution
mapping meeting the following conditions:

(a, b) E Indt =} A(.,P(a)) x A(.,P(b)) ~ Ind2,

(a, b) E Dep~ =} A(q)(a)) x A(,P(b)) ~ Dep~.

In other words, substitution 1/J respects independence as well as strict dependence of
symbols. Such substitutions will be called concUJTency p1·ese1·ving. Let the domain of
trace prefix function o-2 over concurrent alphabet E2, Dep 2 be

Dom2 = P{w l3u E Dom 1 : wE [1/•*(u)h}

and let o-2(w) = [wh for each w E Dom 2. o-1 .

{2)

6. If 1/J is a concurrency preserving substitution, domains of trace prefix functions o-1 , o-2

meet condition {2), then the mapping q) : Rng(at) --+ Rng(o-2) such that .P([w]I) =
[1/J*(w)h is a refinement injection of o-1 to o-2 .

Correctness of the definition of q) follows from the preservation properties of the sub­
stitution 1/J that guarantee that

[w']t = [w"h =} [1/•*(w')h = [4'*(w")]2,

and cofinality of injection follows from the domain definition of o-2 , which ensures that
any string wE Dom 2 is a prefix of a string equivalent to 1/•* (u) for some u E E~. It means
that any trace [wh is dominated be the trace [~··(u)h for suitable u E E~ .

[abce'a]

Figure 9 Refinement of a trace prefix function.

66 Invited Paper

Example 6. Consider elementary net system from Example 3, represented graphically
in Figure 2. It is described by the trace prefix function a-1 over alphabet {a, b, c, d, e} with
dependency Dep 1 = {a, b, c, dJlU{b, e Jl, where Dam (u!) = Pref { w I 3u E (abce)*d: wE
(u]I}. Let substitution 1/' be such that 1/!(x) = x for all x E {a,b,c,d} and 1/!(e) = e'e".
Then trace prefix function a-2 over alphabet {a, b, c, d, e', e"} with dependency Dep 2 =

{a, b, c, dJ2 U {b, e', e"J2, the domain Dam (a-2) = Pre!{ w I 3u E (abce'e")*d : w E (u]I}
is a refinement of a-1 • The diagram of a-2 is given in Figure 9 and can be compared with
that in Figure 3. Injected states are shadowed. 0

6 FAIR SEQUENCES AND OBSERVATIONS

The notion of fairness is needed for proving some eventual properties of concurrent sys­
tems. To prove that a property of a system states will be eventually reached by the
system, one must prove that any system run encounters sooner or later at least a state
meeting the required property. Representing nms by sequences of states and properties
by sets of states, a property will eventually hold, if any sequence of states representing a
system run intersects (has nonempty intersection with) the set of states with the required
property. To make this requirement precise, first the notion of a system run should be
properly formulated and next, the set of sequences representing runs properly should be
defined. The straightforward idea is to represent system runs by arbitrary maximal se­
quences of states that can come up during the system action. To guarantee maximality of
such sequences, each of them should be either infinite or terminating with a state unabling
execution of any further action. However, defining such a run as a maximum sequence of
the system states (or actions) causes difficulties (Owicki, Lamport 1982). The problem is
that not all maximal sequences describe system runs properly. As an example, consider
a system consisting of two entirely independent components acting endlessly. It is clear
that any infinite sequence containing only states of one component cannot represent the
run of the system as a whole, since it ignores action of the second component - we call
such a sequence 'unfair'. The problem is how to define 'fair sequences'? A liberal require­
ment gives rise of too much sequences and hence some obviously inevitable properties will
be unable to prove. On the other hand, too restrictive requirements cause acceptability
as inevitable some intuitively avoidable properties. Dealing with concurrency expressed
explicitely in the system specification, the definition of fair sequences becomes simple and
self-explanatory.

Let u be a (monotonous) prefix function over I:. A finite or infinite sequence:

(a; E I:),

is said to be fair with respect to u, if the set:

is the observation of u, i.e. if V has the following (completeness) property: if a state
of u is consistent with all elements of V, then it is dominated by some elements of V.
Interpreting states as histories, any observation is a set of increasing histories such that
any history of a. system run is an initial part of some sufficiently large history in the
observation. In other words, it means that histories in an observation exhaust the whole

True versus artificial concurrency 67

history of one (of possibly many) runs of the system. A property of system states is
inevitable, if any system observation intersects it. Having defined fair observations, a
subset Q ~ Rng (u) is inevitable in u, if every observation of u contains an element of Q.
For more details see (Mazurkiewicz, Ochma1iski, Penczek 1989).

Example 7. Consider prefix function u2 from Example 4. Prove that for each n, m the
property {u3 (w) J n ~ w(a),m ~ w(b)} is inevitable w.r. to u3. Indeed, since any two
states in the range of u3 are consistent, any observation for its completeness should contain
elements dominating any chosen element of the range. In particular, for completeness such
an observation must contain element u3(w) with w(a) ;::: n, w(b) ;::: m, but it means that
any complete observation intersects Q.

Inevitability of Q cannot be proved representing the system by prefix function u1

from the same example. Namely, since the only consistent elements of the range of O"J

are comparable, the sequence with all elements equal to a should be accepted as fair, but
the corresponding observation does not intersects Q. Note also that the set {u3(aabb)} is
not inevitable w.r. to u2 ; e.g. sequence (a, a, a, b, b, b, a, b, a, b, ... , a, b, .. .) is fair, but the
corresponding observation does not intersect the above set. 0

7 CONCLUSIONS
Some issues typical for concurrent systems have been presented and discussed. For this
purpose a formal model of such systems has been established and used, namely that of pre­
fix function. This model, in spite of its generality, offers a. sufficient tool for identification,
formalization, and discussion of the some basic concurrency phenomena. Formalization
by means of prefix functions can be 'customized': within the same framework different
description methods can be used, beginning from interleaving, through traces, multisets,
semiwords, to pomsets. Each customized version of prefix functions can serve specific
purposes; the choice of suitable version depends upon acua.l needs. Each version of a
prefix function is a filter for looking at concurrent processes from a chosen viewpoint. In
such a way prefix function supply us with a unified framework for different approaches to
the concurrent systems theory.

The abstraction level of the used model proves the phenomena discussed here to
be fundamental for the theory and acceptable as paradigms of concurrent behaviour of
systems. No complete results are given in this outline; the aim was only to present some
issues and to show a (possible) directions of further investigation that might be helpful
in overcoming the difficulties.

8 REFERENCES

Abadi, M., Lamport, L. (1989) Composing Specifications. Lecture Notes in Computer
Science, 430,1-41

Dickert, V., Rozenberg, G. (eds.) (1994) The book of traces. World Scientific,
Singapore,New Jersey,London,I-Iong Kong.

Mazurkiewicz, A. (1977) Concurrent Program Schemes and Their Interpretation.
Technical Repod DAIMI PB-78, A1·hus University

68 Invited Paper

Mazurkiewicz, A.(1985) Semantics of Concurrent Systems: A Modular Fixed-Point
Trace Approach. Lecture Notes in Compute1· Science, 188.

Mazurkiewicz, A., Ochmanski, E. ,Penczek, W. (1989) Concurrent systems and
inevitability. Them·etical Compute!' Science, 64, 281-304.

Owicki, S., Lamport, L. (1982)Proving liveness properties of concurrent programs.
ACM Trans. Programming, Languages, and Systems, 4(3), 455-495.

Petri, C.A. (1977) Non-Sequential Processes.GMD Repo1·t ISF-77-05.

Pratt, V. (1986) Modeling Concurrency with Partial Orders. International Journal of
Parallel Processing, 15, 33-71.

Reisig, W. (1985) PetTi Nets: an Introduction, EATCS Monographs on Comp.Sci.

Rozenberg, G. (1987) Behaviour of Elementary Net Systems. Lechtl'e Notes in
Computer Science, 254, 26-59

Shields, M.W. (1979) Non-sequential behaviour, part I. Int. Report CSR-120-82, Dept.
of Computer Science, University of Edinburgh.

Thiagarajan, P.S. (1987) Elementary Net Systems. Lecture Notes in Computer
Science, 254, 26-59.

Winskel, G. (1988) An introduction to event structures. LectuTe Notes in Computer
Science, 354, 123-172

