
21

A method to build symbolic
representations of LOTOS
specifications

Riccardo Sisto
Politecnico di Torino
Dip. di Automatica e Informatica, Politecnico di Torino,
Corso Duca degli Abruzzi, 24, I-10129 Torino {Italy)
phone: +39 11 5647073, fax: +39 11 5647099, e-mail:sistofapolito. it

Abstract
A symbolic representation of a large state/transition system, based on Binary Decision
Diagrams (BDD's), is generally much more compact than an explicit representation like
a Labelled Transition System (LTS). This is due to regular and repetitive patterns oc­
curring in state/transition systems. By exploiting this property, huge state spaces can be
represented symbolically, and the resulting BDD representations can be profitably used
for activities such as model checking and sequential circuit synthesis. This paper presents
a method to build BDD representations from process algebraic specifications, taking LO­
TOS as a reference. The method exploits the compositionality of process algebras to avoid
the enumeration of all the states and transitions. First, small labelled transition systems
are created for representing the basic building blocks of the specification. These are con­
verted to BDDs, which in turn are combined together, according to the various process
algebraic operators, to obtain the overall BDD. An example is used throughout the paper
to illustrate the method.

Keywords
Protocol Engineering, LOTOS, Symbolic Model Checking, Binary Decision Diagrams.

1 INTRODUCTION

It is commonplace in protocol engineering to formally represent protocols by means of
state/transition models such as state machines and Labelled Transition Systems (LTS's).
One of the main problems with these representations is state explosion, which generally
limits their applicability to oversimplified versions of the real-life protocols.

Several techniques have been devised to cope with the state explosion problem. Some
of them are based on abstractions or parametrizations of specifications (Cousot, 1977).
Others start from the idea that state explosion mainly comes from the interleaving of
actions performed by parallel components: in order to reduce the problem, the explicit

P. Dembiński et al. (eds.), Protocol Specification, Testing and Verification XV
© IFIP International Federation for Information Processing 1996

332 Part Seven Verification: Model Checking

representation or exploration of all the possible event interleavings is avoided (Quemada,
1992, Valmari, 1990) or true concurrency semantics models such as event structures are
adopted (Winksel, 1989). In the area of formal verification by model checking, specific
techniques such as on-the-fly techniques, partial techniques, or reduction techniques have
been proposed to simplify the exploration of the state space (Fernandez et al., 1992,
Holzmann, 1994, West, 1986).

Another class of techniques for reducing the state explosion problem is based on the
symbolic representation of state transition relations. One of such techniques, Binary De­
cision Diagrams (BDD's), has already been applied to hardware verification and synthesis
with surprisingly successful results. Sequential circuits with up to 10120 states have been
formally verified, and the CPU time required for verification increases as a small polyno­
mial in the number of the circuit components (Burch et al., 1994). These results suggest
that similar techniques could be profitably used in the context of protocol engineering as
well.

In this paper, the possibility of employing symbolic techniques in the design of protocols
is investigated, considering specifically the domain of process algebraic specifications, and
LOTOS (ISO, 1989) in particular. Process algebraic specifications have many advantages,
among which compositionality and conciseness. In principle these features make it possible
to avoid the explicit representation of the state transition relation, but, as a matter of
fact, many design activities taking process algebraic specifications as inputs are carried
out by first generating the corresponding Labelled Transition System or a variant of it
(Bolognesi and Caneve, 1989, Caravel and Najm, 1989).

The main objective of this paper is to show that the technique of BDDs can be adopted
to get alternative models out of process algebraic specifications. These models are likely
to be tractable even when the usual LTS-like models have unmanageable sizes. More­
over, BDD-based model checking and hardware synthesis are efficient well-established
techniques.

The problem is that, while in sequential circuit design techniques are also available
for automatically deriving BDD representations from hardware specifications given in
languages such as VHDL, or given directly as logic gate networks (Burch et al., 1994),
similar techniques are not available if the source specification formalism to be used is
a process algebra. A trivial solution to this problem would be to build the LTS of the
source process algebraic specification, and then convert the LTS to a BDD. However, this
kind of solution, which has already been adopted to get BDD representations from ATP
specifications (Nicollin et al., 1992) is not very satisfactory, in that the usefulness of BDD
representations stands mainly in the ability to manage specifications for which the LTS
is too big to be represented or even traversed.

In this paper, a more satisfactory solution is presented, which exploits compositionality
of process algebras, so as to build BDD representations without enumerating all the
states and transitions. The technique which is proposed consists in building small labelled
transition systems for representing the basic building blocks of the specification. These
are converted to BDDs which in turn are combined together, according to the various
process algebraic operators, to obtain the overall BDD.

The paper is organized as follows. In section 2, BDD concepts are recalled, and in section
3 the use of BDDs to represent LTSs is discussed and some notation is introduced. Section
4 describes the mapping from specifications written in LOTOS to BDD representations,

Building symbolic representations of LOTOS specifications 333

Figure 1 A sample BDD

whereas in section 5 the usefulness and applicability of the proposed method is discussed.
Finally, section 6 contains conclusive remarks and directions for further research.

2 BINARY DECISION DIAGRAMS

Ordered Binary Decision Diagrams (BDD's) are a canonical form representation for
boolean functions which is very compact and can be manipulated very efficiently (Bryant,
1986). A BDD is a directed acyclic graph with a root and two leaves. The leaves represent
the boolean values 0 and 1, whereas the other nodes are each labelled with one of the
boolean variables of the function. Each node has two outgoing edges, labelled with the
boolean values 0 and 1, representing the possible values of the variable which labels the
node. Variables are strictly totally ordered, and they occur in nodes according to such
ordering along any path starting from a leaf and ending in the root. Figure 1 shows a
sample BDD where nodes labelled by variables are represented as circles with a number
identifying the corresponding variable, whereas leaf nodes are represented as squares. Note
that, in order to make the graph more readable, the leaf node labelled 0 and the edges
ending in it are not represented explicitly: if a node has only one outgoing edge, the other
edge is assumed to be directed to the missing leaf node.

Given an assignment of the function boolean variables, the corresponding value of the
function can be determined by traversing the BDD starting at the root and branching at
each node according to the value assigned to the variable that labels the node. The value
of the function is given by the label associated with the leaf that is reached. For example,
if the assignment is {6, 5, 4, 3, 2, 1} = 000101, the value taken by the function represented
in Figure 1 is 1, whereas for {6, 5, 4, 3, 2, 1} = 111111 it is 0.

For any boolean function and ordering of variables, there exists a unique canonical
minimal BDD representation, which makes it possible to test for function equality very
efficiently. A BDD is canonical if no node has both outgoing edges inciding on the same
node, and no distinct nodes V and V' are such that the subgraphs rooted by V and V' are
isomorphic. Efficient algorithms for combining functions according to the main boolean

334 Part Seven Verification: Model Checking

algebraic operators and for restricting or composing functions represented as canonical
BDD's are also available (Bryant, 1986).

Let V be an ordered set of n boolean variables. The notation f(V) indicates a boolean
function defined over V. If K is an assignment of V, i.e. K is an n-uple of boolean
values, the notation V = K denotes the boolean function on V that takes value 1 iff
the assignment of Vis K. For example, if V = {v1,v2}, and K = (0, 1), V = K equals
-w1 A v2. If V1 ~ V, and g(V1) is a function on V1, f(V)Ig(Vl) denotes function f
restricted on g(V1). For example, if f(V) = v1 A v2, V1 = {v1}, and g(V1) = v1, we
have f(V)I 9(V1) = v2.

3 BDD REPRESENTATION OF LTS'S

A Labelled Transition System (LTS) is a quadruple < S, sO, :E, R > where:

• S is a countable set of states;
• sO E S is the initial state;
e :E is a countable set of events;
e R ~ S X :E X S is the transition relation.

A variant of this definition is an LTS with multiple initial states, which is a quadruple
< S, SO, :E, R >, where S, :E, and R are defined as before, but SO ~ S is a set of initial
states.

In a finite LTS, states can be represented by means of a finite set of boolean state vari­
ables, each state being represented by one of the possible assignments of these variables.
Similarly, events can be represented by means of a finite set of boolean event variables.

(Burch et al., 1994) suggests a method for representing sets of states and unlabelled
transition relations (i.e. relations defined on S X S) by means of BDD's when states are
represented by means of boolean state variables. A single state s can be represented as the
boolean function which takes value 1 only for the state variable assignment representing
s. If V is the set of state variables, this function is denoted s(V). A set of states U
can be represented as the boolean function taking value 1 for all and only the variable
assignments representing the states in U. This function is denoted U(V). Finally, an
unlabelled transition relation T ~ S X Sis a set of ordered state pairs. It can be represented
as a boolean function defined over two sets of state variables: the present state variables
V and the next state variables V'. This function, which is indicated by T(V, V'), takes
value 1 if and only if the assignments of V and V' represent respectively two states s, s'
such that T holds for (s, s') (i.e. (s, s') E T).

In order to represent a labelled transition relation R ~ S X :E X S as a BDD, we
can use a boolean function denoted R(V, E, V'), where E is the set of boolean event
variables. R(V, E, V') takes value 1 if and only if the assignments of V, E and V' represent
respectively a states, an event e, and a next state s' such that (s, e, s') E R.

As a conclusion, a finite LTS with multiple initial states < S, SO, :E, R > can be repre­
sented by means of the quadruple < V, VO, E, R >, where: Vis the set of boolean state
variables, VO = {sOi(V)} is the set of BDD's representing the initial states, E is the set
of boolean event variables, and R(V, E, V') is the BDD representing R.

Building symbolic representations of LOTOS specifications 335

4 THE ALGORITHM TO BUILD BDD REPRESENTATIONS

In this section, the specification language LOTOS (ISO, 1989) is taken as the reference
specification formalism, even though the method can be easily adapted to other pro­
cess algebras. Moreover, to simplify the treatment of the problem, only basic LOTOS is
considered.

Without loss of generality, it is assumed that the source LOTOS specification is already
flattened, i.e. it is made up of a fiat set of process definitions (no nested definitions), and
gates and processes are assigned unique identifiers. Any LOTOS specification satisfying
the static semantics requirements can be flattened, according to IS8807 (ISO, 1989).

Moreover, to simplify the description of the method, both the operands of parallel, en­
abling, and disabling operators are assumed to be process instantiations. This assumption
is indeed not restrictive, since any specification can be easily and automatically modified
so as to fulfill it, by eventually adding more process definitions.

Since the aim here is to obtain finite sized models, it is necessary also to exclude
LOTOS specifications with an unbounded number of states or transitions. The feature of
the language that has to be eliminated so as to ensure finiteness is unbounded (recursive)
creation of processes and gates, which can be eliminated by requirig that

• Recursions are guardedly well defined;
• Any expression taking the form AI[G]IB is such that all the definitions of processes in­

stantiated directly or indirectly by A and B do not contain AI[G]IB as a sub-expression.
• Any expression E taking the form A[> B or A > > B is such that all the definitions of

processes instantiated directly or indirectly by A do not contain E as a sub-expression.

In the description of the method, the basic LOTOS specification of Figure 2 will be
used as an illustrative example. It is the specification of the transport protocol handler
presented in (ISO, 1989, annex C), where processes Connected, and Data_Term_Fhase
have been added so as to fulfill the requirements stated above.

4.1 Preliminary definitions

The BDD representation of a LOTOS behavior expression B is actually the representation
of the corresponding LTS < VB, JB, EB, RB >, where VB is the set of boolean state
variables, JB(VB) is the BDD representing the initial state, EB is the set of boolean event
variables, and RB(VB, EB, V~) is the BDD representing the transition relation.

VB is assumed to be a set of ordered elements VB = {v1 , .. , vn}. This makes it possible
to identify state variables by means of an integer index. The number of elements in VB is
indicated by size(VB) (where n = size(VB)) and depends on the number of states of B.

Let GB be the set of gates occurring in B, and ActB = GB U {i, 5} the set of events.
EB is such that, for each event e E ActB occurring in B, there exists a unique assignment
corresponding to e. The notation e(EB) indicates a boolean function which takes value 1
iff the assignment of the variables in EB corresponds to e. Similarly, if His a set of events,
H(EB) = 1 ¢} 3e E Hle(EB) = 1, i.e. if the assignment of variables EB corresponds to
an element of H. The BDD's of these functions can be determined directly when the
encoding of gates has been decided.

In the following, for simplicity, all the behavior expressions B defined within a LOTOS

336 Part Seven Verification: Model Checking

specification transp[CReq,Cind,CRes,CCnf,DatReq,Datind,DisReq,Disind] :noexit
behaviour

Handler[CReq,Cind,CRes,CCnf,DatReq,Datind,DisReq,Disind]

where

process Handler[CReq,Cind,CRes,CCnf,DatReq,Datind,DisReq,Disind] :noexit :=
Conn_Phase[CReq,Cind,CRes,CCnf,DisReq,Disind]
>> Connected [CReq,Cind,CRes,CCnf,DatReq,Datind,DisReq,Disind]
endproc

process Connected[CReq,Cind,CRes,CCnf,DatReq,Datind,DisReq,Disind] :noexit :=
Data_Term_Phase[DatReq,Datind,DisReq,Disind]
>> Handler[CReq,Cind,CRes,CCnf,DatReq,Datind,DisReq,Disind]
endproc

process Data_Term_Phase[DatReq,Datind,DisReq,Disind] :noexit :=
Data_Phase [DatReq,Datind] · [> Term_Phase [DisReq,Disind]
endproc

process Conn_Phase[CReq,Cind,CRes,CCnf,DisReq,Disind] :exit :=
i; Calling[CReq,Cind,CRes,CCnf,DisReq,Disind]

[] Called[CReq,Cind,CRes,CCnf,DisReq,Disind]
endproc

process Calling[CReq,Cind,CRes,CCnf,DisReq,Disind]:exit :=
CReq; (CCnf; exit [] Disind; Conn_Phase[CReq,Cind,CRes,CCnf,DisReq,Disind])
endproc

process Called[CReq,Cind,CRes,CCnf,DisReq,Disind] :exit :=
Cind;
(i; CRes; exit [] i; DisReq; Conn_Phase[CReq,Cind,CRes,CCnf,DisReq,Disind])
endproc

process Data_Phase[DatReq,Datind] :noexit :=
(i; DatReq; Data_Phase[DatReq,Datind]) [] (Datind; Data_Phase[DatReq,Datind])
endproc

process Term_Phase[DisReq,Disind] :exit :=
(i; DisReq; exit) [] (Disind; exit)
endproc

endspec

Figure 2 The specification of the transport protocol handler

Building symbolic representations of LOTOS specifications 337

specification are represented using the same set of event variables EB = E, where E is such
that for any event occurring in the whole specification there exists a unique assignment.

The BDD representation of a LOTOS behavior expression B can be determined directly
if the representations of its sub-expressions are already known. Let Bl and B2 be any
behavior expressions for which a BDD representation is known, and let nl = size(VB 1),

n2 = size(VB2)· The representation of B can be computed as follows.

• If B = hide H in Bl, where H is a set of gates, the representation of B can be
computed from the representation of Bl by simply replacing events at gates in H by
internal events:

VB
IB(VB)

RB(VB, E, V~)

VBl
JBl(VB)

(RB 1(VB, E, V~) 1\ •H(E)) V (RB 1(VB, X, V~)iH(X) 1\ i(E))

• If B = Bli[GJIB2, where G is a set of gates, the state of B can be represented as an
ordered pair (sl, s2), where sl is the state of Bl, and s2 is the state of B2. Hence, the set
of state variables VB can be considered as being divided into two parts: Vi = {v1, .. , vn1}
is the subset of variables representing sl, and l;2 = { Vnl+l, .. , Vnl+n2} is the subset of
variables representing s2. The representation of B is given by:

VB
IB(VB)

RB(VB, E, V~)

{ V1, · ·, Vnl+n2} = Vj U l;2

JBl(V1) (\ JB2(l;2)

(Fn V F22 V F) where

RB 1(Vi,E, v;) A (V2 ¢? v;) A ·(G(E) v o(E))
RB2(V2, E, v;) 1\ (Vi ¢o> V;) 1\ •(G(E) V o(E))
RB 1(Vi, E, V;) 1\ RB2(l;2, E, V;) 1\ (G(E) V o(E))

F11 and F22 represent transitions involving Bl or B2 only, while F represents interac­
tions of Bl and B2.

e If B = Bl > > B2, any state of B is either a state of Bl or a state of B2. Hence, the
set VB can be considered as being composed of a variable s, which represents whether
the current state is a state of Bl (s = 0) or a state of B2 (s = 1), plus a set of variables
used to represent alternatively the state of Bl or the state of B2, according to the
value of s. Let VB = {v1 , .. , v,, vl+I}, where l = max(nl, n2), and the selector variable
iss = vl+l· With this choice, we have VBl ~ VB, and VB2 ~ VB. The remaining items
of the representation of B are given by:

IB(VB)

RB(VB, E, V~)
•VI+l (\ IB1(VB1)
Fn V F22 V F12 where

Fn RB 1(VB1, E, v~l) (\ •VI+l (\ (v;+l ¢? Vf+l) 1\ •o(E)

F22 RB2(VB2, E, v~2) (\ V!+l (\ (v:+l ¢? V!+l)

338 Part Seven Verification: Model Checking

F11 and F 22 represent transitions of Bl and B2 respectively, whereas F12 represents
transitions corresponding to enabling events.

e If B = Bl[> B2, the set of state variables is the same as for the enabling operator.
The representation of B is given by:

VB
IB(VB)

RB(VB, E, V~)

{ VlJ .• , vr, vi+ I}, where l = ma:z:(nl, n2)

-w,+I A I 81 (VB1)
where

R81 (VB1, E, v~l A •VI+l A (vl+l <=> v:+l))

RB2(VB2, E, v~2 A Vl+l A (vl+l <=> v:+l))

R82(X, E, v~2)1JB2(X) A •VI+l A v:+l

• If B = Bl[H/G], where H and G are two lists of gates with the same length, the
representation of B can be computed from the representation of Bl by relabelling gates
in G by means of the corresponding gates in H. Let us indicate by [H/G](El, E2)
the function that takes value 1 iff El represents the relabelled version of the event
represented by E2. The representation of B is given by:

VB
I 8 (VB)

RB(VB, E, V~)

VBl
181(VB)

(RBI (VB, X, V~) A G(X))i[H/GJ(E,X)

The choice, action prefix and nullary operators have not been considered here, because
they are dealt with in a different way later in the paper.

The composition rules described above are useful, but they cannot be used directly, in
the presence of recursion. In the following sections, a systematic approach to build a BDD
representation of a LOTOS specification is described.

4.2 Partitioning the set of process definitions

Let PO, .. , Pn be the process definitions of a given specification S, where PO defines the
behavior of the whole specification. The first step in the construction of a BDD for S is
to define a partition of the set of process definitions P ={PO, Pl, .. , Pn}.

Let us indicate by Beh(Pi) the behavior expression associated with process definition
Pi. In the following, the shorthand process Pi will be used instead of the process whose
definition is Pi whenever it is non-ambiguous.

Let us define the instantiation relation --+~ P X P in the following way: Pi --+ Pj (Pi
instantiates Pj) if and only if Beh(Pi) contains an instantiation of process Pj.

The transitive closure of--+ is the indirect instantiation relation~. In practice, Pi ~ Pj
iff Pi instantiates Pj directly or indirectly.

Building symbolic representations of LOTOS specifications 339

The transitive reflexive closure of----+ will be indicated by ~~ and is defined as:

Pi ~ Pj <=> (Pi = Pj) V (Pi ..::!:. Pj).

Finally, the symmetric closure of~ is the mutual instantiation relation ?.:

Pi ?. Pj <=>(Pi ~ Pj) A (Pj ~ Pi).

In practice, Pi ?. Pj means that Pi and Pj are either the same process definition or
they define processes which can instantiate each other, i.e. mutually recursive processes.

The mutual instantiation relation is an equivalence which defines a partition on P. Each
class C E P/ ?. is a set of mutually recursive process definitions, i.e. each process in C
may instantiate directly or indirectly any other process in C. Let us indicate by [Pi] the
class to which Pi belongs. For example, in the specification in Figure 2, the classes are:

Class 0 {Conn_Phase, Calling, Called}
Class 1 {Term_Phase}
Class 2 {Data_Phase}
Class 3 {Data_Term_Phase}
Class 4 {Handler, Connected}
Class 5 {transp}

A partial ordering on P/?. can now be defined based on the~ relation:

[Pi] ~ [Pj] <=> 3(Ph E [Pi], Pk E [Pj]) I Pk ~ Ph.

[Pi] < [Pj] <=> ([Pi] ~ [Pj]) A ([Pi] f= [Pj]).

This partial order has the following meaning: [Pi] < [Pj] implies that: processes in [Pj]
can instantiate directly or indirectly processes in [Pi], but the converse is false. In other
words, process definitions in [Pi] are needed to determine the behavior of processes in
[Pj], whereas the behavior of processes in [Pi] can be determined without knowledge of
process definitions in [Pj]. For example, in the specification of Figure 2, [Data_phase] <
[Data_Term_phase].

Any LOTOS specification is such that

1. lJPk E p I Pk..::!:. PO
2. VPk E P PO~ Pk

The first statement means that PO (the specification) cannot be instantiated. The second
means that all the process definitions are reachable from the process defined by PO.
These properties imply that [PO] contains only PO, and [Pk] ~ (PO] VPk E P. As a
consequence, (PO] is the greatest element of P/ ?..

The construction of the BDD representation of a LOTOS specification is accomplished
by building a BDD representation for each one of the classes of process definitions. The
partial order defined above determines the order in which classes must be processed: if

340

B

g;B'
stop
exit
B1I[G]IB2
B1 » B2
B1 [> B2
P[G]
P[G]
B1[]B2
hide G in B1

Part Seven Verification: Model Checking

Table 1 Expandibility definition

is_fexpc(B) is_pexpc(B)

true
true
true
false
false
false

P E C is_texpc(Beh(P[G]))
P ¢ C false

is_texpc(B1) 1\ is_texpc(B2)
is_texpc(B1)

true
true
true
false
false
false
is_pexpc(Beh(P [G]))
false
is_pexpc(B1) V is_pexpc(B2)
is_pexpc (B 1)

[Pi] < [Pj], [Pj] will be processed after [Pi]. This ensures that the BDD representations
of the classes containing process definitions referenced in [Pj] have already been computed
when [Pj] is processed. The processing of [PO] comes last ([PO] is the greatest element)
and yields the BDD of the whole specification. A possible evaluation order for the classes
of the specification in Figure 2 is the one in which they have been enumerated above.

4.3 The BDD representation of a class

The behavior of the processes composing a class can be represented by means of an LTS
for each member of the class. Since the process definitions composing a class are mutually
recursive, the LTS of a given process definition is likely to contain many states which
are observationally equivalent to corresponding states in the LTS's of the other process
definitions in the same class. In most cases, the LTS's of the process definitions that
constitute a class are even characterized by isomorphic state sets, isomorphic event sets,
and isomorphic transition relations (this applies, for example, to the LTS's of processes
belonging to classes 0 and 4 in the sample specification). The only item which really
distinguishes them is the initial state. For this reason, it is advantageous to merge the
LTS's of the process definitions constituting a class into a single LTS with multiple initial
states, one initial state for each process definition. Therefore, the BDD representation of a
class Cis defined as < Vc, Ic, E, Rc >,where Vc = {v1, .. , vn}, JC = {IB•h(Pi)(Vc)IPi E
C}, E is the global representation of events occurring in the specification, and Rc is the
BDD representation of the state transition relation.

4.4 Building the BDD representation of a class

Let us give some preliminary definitions.
Given a behavior expression B and a class of process definitions C, B is said fully

expansible inC if predicate is_fexpc(B), defined in Table 1, is true. B is said partially
expansible in C if predicate is_pexpc(B), defined in Table 1, is true. Finally, B is said
non-expansible inC if is_pexpc(B) is false. Note that is_fexpc(B) => is_pexpc(B).

Table 2 contains a set of equalities modulo strong bisimulation congruence, that will
be applied in the following. In Table 2, P[G] denotes a process instantiation referencing

Building symbolic representations of LOTOS specifications

Table 2 Strong bisimulation congruence preserving transformations

(1) P[G]
(2) hide G in Bl[]B2
(3) hide G in g; Bl
(4) hideGing;Bl

Beh(P[G])
(hide Gin Bl)[](hide Gin B2)
g; hide G in Bl
i; hide G in Bl

ifg f/_ G
if g E G

341

process definition P, where G is the list of actual gates, whereas Beh(P[G]) denotes
Beh(P) with formal gates of P replaced by actual gates G.

The Partially Expanded Labelled Transition System (PELTS) of a class Cis a pruned
version of the LTS with multiple initial states which describes the behavior of the class
members. It is defined as the result of the following construction algorithm:

1. For each process definition Pi E C such that Pi = PO or Pj ---> Pi for some Pj f/. C,
an initial state si is created, and si is labelled by the behavior expression Beh(Pi).

2. For each state s, created in the previous step of the algorithm:

e If the behavior expression B which labels s is at least partially expansible in C, the
following expansion step is carried out:
By applying the strong bisimulation congruence preserving transformations in Table
2, B is put in the form B = []{Bk}, where each Bk takes one of the following forms:

(a) gk; Bk'
(b) exit
(c) A non expansible behavior expression

• For each Bk taking form a), a new state sk labelled Bk' is created, if not yet present,
and a transition (s, gk, sk) is added to the transition relation. Similarly, for each Bk
taking form b), a new state sk labelled stop is created, if not yet present, and a
transition (s, 5, sk) is added to the transition relation.

3. Step 2 is repeated until no new states are created.

As an example, let us consider the specification in Figure 2. The PELTS of classes 0,
1, and 2 are depicted in Figure 3. They are characterized by fully expanded states only.
Note that a state corresponding to process Called is not present in the PELTS of class
[Conn..Phase], because it is not instantiated by processes belonging to other classes. The
PELTS's of the other classes contain only unexpansible states. For example, the PELTS
of class 3 contains a single state corresponding to process Data_Term_Phase.

Once the PELTS has been built, it is straightforward to represent it by means of BDD's.
Let the resulting representation be < Vo, 1°, E, R0 >,where ! 0 = {IPiiPi E C}.

For example, in Figure 3, the binary strings in the states represent a possible state
encoding. The BDD in Figure 1 is a possible representation for the boolean function R0

of the PELTS of class [Data..Phase], where E = {1, 2, 3, 4}, V0 = {6}, Vo' = {5}, i = 0000,
Datind = 1010, and DatReq = 0010.

If the PELTS of a class contains only fully expanded states, it is the full representation

342 Part Seven Verification: Model Checking

Datlnd

[Data_ Phase]

c_ ___
DisReq

[Conn_Phase] [Term_ Phase]

Figure 3 Graphical representation of the PELTS's for classes 0, 1, 2 of the sample
specification

of the corresponding class. Instead, if it contains at least one non fully expansible state, it
represents the behavior of the class members only partially, and a complete model must
be computed by integrating the missing behavior components into the model.

Let us consider the states si labelled by non fully expanded expressions Bi. In general,
Bi can be put in the form Bi = Ei[]([]Bij), where Ei is the fully expansible component
of Bi (if any), and Bij are the non-expansible components of Bi. From Table 1, and
from the conditions imposed to obtain finiteness, each Bij must take one of the following
forms:

hide H in Ql

hide H in (Qli[GJIQr)
hide H in (Ql >> Pr)

hide H in (Ql[> Pr)

(1)
(2)
(3)
(4)

where H is an eventually empty set of gates, Ql and Qr are instantiations of processes
belonging to other classes, and Pr may be any process instantiation.

For each Bij taking one of the forms (1) or (2), a BDD representation< V;;, Jii, E, ~i >
can be built by applying the composition rules given in section 4.1. In fact, the BDD
representations of Ql and Qr are already known, because they are references to process
definitions of already processed classes. The same applies if Bij takes one of the forms
(3) or (4), and Pr is a reference to a process definition of another class. This is the case,
for example, with class [Data_Term_Fhase]: the PELTS of this class contains a single state
labelled with an enabling expression referencing other classes. The representation of this
expression can be computed directly: the resulting transition relation BDD is represented
in Figure 4, along with the BDD representing the transition relation of class [TermYhase].

Building symbolic representations of LOTOS specifications 343

0

[Data_Term_Phase] [Term_Phase]

Figure 4 The BDD's of two transition relations

The encoding of events is: li = 1000, DisReq = 0001, and Disind = 1001, whereas the
encoding of states is: V = {8, 6}, V' = {7, 5} for class [Term_Fhase], and V = {8, 6, 10},
V' = {7, 5, 9} for class [Data_Term_Fhase].

Instead, the case of expressions Bij taking one of the forms (3) or (4), with Pr refer­
encing a process definition in class C, will be treated later on.

Class [Data_Term_Fhase] represents a special case, because its BDD representation can
be computed directly by combining representations of other classes. In general, the PELTS
of a class may contain more Bij expressions to be integrated in the model. The behaviors
defined by expressions Bij are all mutually exclusive, in that they define alternative
behaviors which may be taken by the specification. Initially, the behavior of a process Pi
defined in class C is represented by the state of the PELTS of C defined by]Pi(Vo). As
soon as one of the expressions Bij is activated, the state is represented by an assignment
of variables l/i;. For this reason, the global state sofa process behaving as specified by a
class C can be thought of as made up of two components: s = (z, w), where z represents
which of the behavior expressions Bij is active (if any), whereas w encodes the state
within the state space of the relevant Bij. More precisely, z can take a value for each Bij
(denoted by zij), plus a value (denoted by zO) to represent the condition that none of the
Bij1s is active.

The state variables of a class C are therefore Ve = Ze U We, where Ze is the set of
variables encoding z, while We is the set of variables encoding w.

We take, as usual, Ve = {v1, ... ,v,}, and we define We = {v1, ... ,vh}, with h =
ma:c(size(Vo),max;;(size(l/i;))), and Ze = {vh+t 1 ••• ,vh+k} with k = flog2(N)l, where
N is the number of Bij expressions in the PELTS of C.

344 Part Seven Verification: Model Checking

The initial state of a member Pi of class Cis given by JPi(Vc) = (Zc = zO) 1\ JPi(Va)
while the BDD representation of the transition relation is

Rc(Vc, E, v~) = Foo v (V Fn(ij)) v (V Fol(ij))

Foo

ij ij

zO(Zc) 1\ (Zc {? Z~) 1\ Ro(Va,E, V~)
zij(Zc) 1\ (Zc {? Z~) 1\ R;;(V;;, E, V;j)

where

Fn(ij)

Fo1(ij) zO(Zc) 1\ zij(Z~) 1\ IBi(Va) 1\ R;;(X, E, V;j)II•;(x)

F00 represents transitions starting from and ending to states of the PELTS. F11(ij)
represents transitions starting from and ending to states belonging to the representation
of expression Bij, while F01 (ij) represents transitions starting from states of the PELTS
and ending in states belonging to the representation of expression Bij.

The case of expressions Bij taking one of the forms (3) or (4), with Pr referencing a
process definition of class C, is now considered. In this case, the BDD representation of
Ql is known, because, owing to the assumptions made, it necessarily represents a process
definition of another class, while the behavior of Pr is represented by one of the initial
states of the PELTS of C. Let us now consider explicitly the case of enabling operators.
Transitions from states of Pr to states of Pr are already represented by the F00 component
of Rc. Transitions from states of Ql to states of Ql instead can be represented by means
of F11 (ij) V F01 (ij) 1\ •li(E), if we indicate by< V;;, Jii, E, Rij >the BDD representation
of Ql (successful termination events are excluded since they correspond to enabling).
Finally, transitions corresponding to enabling events must be represented by means of an
additional component F10(ij). If Bij = Ql;; >> Pr;;, we have:

F10(ij) = zO(Z~) 1\ IPr;;(V~) 1\ i(E) 1\ 5(ij) where

5(ij) = (zij(Zc) 1\ (:JX[Rii(V;;, f, X)lo(r)])) V (zO(Zc) 1\ (:JX[Rii(Y, f, X)lo(r)AN(Y)])

F10(ij) represents transitions ending in the initial state of Pr;; (zO(Zb) 1\ JPr;;(V~)),
labelled with the internal event i (i(E)), and starting from any state of Ql;; where a 5
event is possible(5(ij)).

The disabling operator is treated similarly.

5 SOME CONSIDERATIONS ON THE APPLICABILITY OF THE
METHOD

The BDD representations resulting from the proposed method are such that the number
of boolean event variables they need grows logarithmically in the number of possible
events, and the number of boolean state variables grows linearly in the number of parallel
components. In the worst case, the number of vertices in a BDD graph is exponential in
the number of variables, but in the average it is polynomial (Bryant, 1986, Burch et al.,
1994). This means, for example, that specifications that make extensive use of interleaving,

Building symbolic representations of LOTOS specifications 345

and are characterized by a number of states and transitions growing exponentially in the
number of parallel components, are likely to have BDD representations that grow only
polynomially in the number of parallel components.

Another important point is that the BDD representations that are built by the proposed
method can be used efficiently for activities such as model checking and hardware synthesis
from formal specifications. As regards model checking, techniques are available to verify
properties expressed as temporal logic formulas on transition systems represented by
means of BDD's (Burch et al., 1994). These techniques follow the classical model checking
approach, i.e. they start from the assumptions that the system to be verified is defined
by an unlabelled transition relation and by a set of atomic propositions, each of which is
true in some states. The temporal logic formulas are built up from atomic propositions.

This classical approach can be adapted to process algebraic specifications, if the current
state of a process is defined as a pair < s, e >, where s is the process state, as defined in
the operational semantics of process algebras, whereas e is the last event that has occurred
in the process. With this new state definition, the behavior of a process is defined by an
unlabelled transition relation R*, such that R*(< s, e >, < s', e' >) holds if and only
if R(s, e', s') holds. R* should be represented as a function R*(E, V, E', V'), which takes
value 1 iff a transition from the state represented by the assignments of (E, V) to the state
represented by the assignments of (E', V') is possible. Since this function does not depend
on E, in practice it is equal to the BDD representation of the corresponding labelled
transition relation R(V, E', V'). For each possible event x, an atomic proposition P., can
be defined. P., is true if the last event that has taken place is x, i.e. it is true in states
< s, e > having the event component e = x.

Another important application of BDD representations of process algebraic specifi­
cations in the context of protocol engineering is direct hardware implementation from
low-level protocol specifications (Higashino et al., 1994). The mapping from a LOTOS
specification to a BDD is indeed the crucial step towards synthesizing a sequential cir­
cuit that behaves according to the specification. In fact, by applying conventional BDD
synthesis techniques, the sequential circuit can be implemented directly from the BDD
representation.

6 CONCLUSIONS

This paper has presented a systematic method to build a symbolic representation of a
LOTOS specification based on BDD's. This result makes it possible to represent large
specifications, for which the classical state/transition models are intractable, and opens
the possibility of applying the efficient BDD-based symbolic model checking and synthesis
techniques to LOTOS specifications.

In this paper, only the basic LOTOS subset has been considered. However, an extension
of the method to full LOTOS should be possible, and is left for further study.

There are also some other items that should be addressed by further research. One
question regards the ordering of variables in BDD representations, which is known to
influence heavily the size of the BDD graph. Determining an optimal ordering is known to
be NP-complete. Nevertheless, heuristics for obtaining suboptimal results could be found.
Another item for further research is experimenting the method on large specifications, in

346 Part Seven Verification: Model Checking

order to evaluate to what extent the BDD representations are actually advantageous with
respect to traditional representations.

REFERENCES

ISO (1989) IS8807: Information Processing Systems, Open Systems Interconnection, LO­
TOS - A Formal Description Technique Based on the Temporal Ordering of Observa­
tional Behaviour.

Bolognesi T. and Caneve M. (1989) Equivalence verification:theory, algorithms and a tool
in The formal description technique LOTOS , Elsevier Science.

Bryant R.E. (1986) Graph-based Algorithms for Boolean Function Manipulation, IEEE
Trans. on Computers, 35, 677-691.

Burch J.R., Clarke E.M., Long D.E., McMillan K.L., Dill D.L. (1994) Symbolic Model
Checking for Sequential Circuit Verification, IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 13, 401-424.

Cousot P., and Cousot R. (1977) Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints, in Proc.
of 4th ACM Symp. on Principles of Programming Languages, pp. 238-252.

Fernandez J.C., Jard C., Jeron T., and Mounier L. (1992) On the fly verification of finite
transition systems, in Formal Methods in System Design, Kluwer Academic Publishers.

Garavel H., and Najm E. (1989) TILT: from LOTOS to labelled transition systems, in
The formal description technique LOTOS, Elsevier Science.

Higashino Y., Yasumoto K., Kitamichi J., and Taniguchi K. (1994) Hardware Synthesis
from a Restricted Class of LOTOS Expressions, in Protocol Specification, Testing and
Verification XIV, Chapman & Hall.

Holzmann G.J. (1994) An Improvement in Formal Verification, in Proc. of 7th Int. Con­
ference on Formal Description Techniques, Berne, Switzerland.

Nicollin X., Sifakis J., Yovine S. (1992) Compiling Real-Time Specifications into Extended
Automata, IEEE Trans. on Software Engineering, 18, 794-804

Quemada J. (1992) Compressed State Space Representation in LOTOS with the Inter­
leaved Expansion, in Protocol Specification, Testing and Verification XI, Elsevier Sci­
ence.

Valmari A. (1990) A Stubborn Attack on State Explosion, in 2nd Int. Conf. on Computer
Aided Verification, Dimacs Series.

West H.C. (1986) Protocol validation by random state exploration, in Protocol Specifica­
tion, Testing, and Verification VI, Elsevier Science.

Winksel G. (1989) An Introduction to Event Structures, LNCS 354, 364-397, Springer­
Verlag.

7 BIOGRAPHY

Riccardo Sisto received the Dr. Ing. degree in Electronic Engineering and the PhD degree
in Computer Engineering, both from Politecnico di Torino, Italy. Since 1991 he has been
working at Politecnico di Torino in the Computer Science Department, where he acts as
a researcher in the areas of computer networks, and communication protocol engineering.

