
2

Specifying Real-Time Requirements for SDL
Specifications -A Temporal Logic-Based Approach*
Stefan Leue

Department of Electrical and Computer Engineering, University of Waterloo, Waterloo,
Ontario N2L 3Gl, Canada,
Email: sleuelsven.uvaterloo.ca, WWW: http://sven.uvaterloo.ca/·sleue

Abstract
The expressiveness of many state-transition based formal description techniques, e.g.

the ITU-TS standardised Specification and Description Language (SDL), does not capture
hard real-time requirements. In telecommunications systems engineering, hard real-time
requirements, however, are an important class of properties. They occur in the descrip­
tion of progress properties in telecommunications protocols as well as in the specification
of real-time related of Quality of Service (QoS) requirements. We suggest integrating
functional system properties, given as SDL specifications, with real-time requirements ex­
pressed in terms of real-time temporal logic formulas. We call the resulting specifications
'complementary specifications'. First, we show the inexpressiveness of SDL with respect
to hard real-time requirements. Next, we define a common model theoretic foundation
which allows SDL specifications to be used jointly with temporal logic specifications.
Then we give examples of commonly used real-time related QoS requirements, namely
delay bound, delay jitter, and isochronicity. We also discuss the specification of various
QoS mechanisms, like QoS negotiation, QoS monitoring and jitter compensation. Finally,
we point at related formal verification problems.

Keywords
Specification, Specification and Description Language (SDL), Real-Time Requirements,

Metric Temporal Logic, Model Theoretic Semantics, Quality of Service.

1. INTRODUCTION

Standard state machine model based formal description techniques like SDL or Estelle
[24] enjoy wide acceptance in the field of telecommunications systems engineering. These
languages are targeted to the specification of functional system properties, in particular,
safety and liveness properties of the sets of sequences of observable behaviour. These
techniques are relatively good at expressing safety properties but express only trivial
liveness and progress properties. However, in telecommunications systems engineering an
important class of properties is related to system progress as well as timely behaviour.

In this paper we will address the question of how real-time related system properties can
suitably be expressed for SDL specifications. In Section 2 we investigate the SDL timer

*The work was partly supported by the Swiss National Science Foundation and the Swiss Federal Office
for Education and Scientific Research (while the author was with the University of Berne, Switzerland),
and by the National Science and Engineering Research Council of Canada.

P. Dembiński et al. (eds.), Protocol Specification, Testing and Verification XV
© IFIP International Federation for Information Processing 1996

20 Part One Specification and Verification: Time-dependent Analysis

mechanism and observe the limitations in its expressiveness. As a consequence we rec­

ommend the use of complementary real-time extended temporal logic (Metric Temporal
Logic, MTL) [5] formulas complementing the SDL specifications to remedy this short­

coming. This requires providing a model for SDL specifications based on which temporal

logic formulas can also be interpreted. We define this model in Section 3. In Section 4,

we show how temporal logics can be used in conjunction with SDL specifications when

interpreted on this state transition model. The underlying idea is that both the SDL

specification as well as the temporal logic specification constrain the allowable behaviour

of the system. We require that both specifications are satisfied by a system. In Section
5, we specify a range of different real-time constraint based progress and QoS require­

ments complementing SDL specification examples. These include: message transmission

delay bounds, delay jitter bounds, isochronicity related requirements, and requirements
on transmission rates. In Section 6, we exemplify how some QoS related mechanisms

can be specified using our approach, like QoS negotiation and reaction to QoS guarantee

violation. Although capturing requirements is our main concern in this paper we will

briefly point at formal verification problems in Section 7. We conclude in Section 8.

2. A CRITIQUE OF THE SDL REAL-TIME MECHANISM

SDL has a built-in real-time mechanism, relying on an asynchronous timer mechanism.
We will argue here that this mechanism is inexpressive with respect to the most important
class of real-time requirements, namely hard real-time or bounded response constraints

(see for example [13] [5]). We will briefly explain why this class of constraints is impor­

tant for requirements specifications of real-time systems, and we will then address the

unsuitability of the SDL mechanism.
Real-Time Requirements. Liveness properties are properties of a system which state

that "something good will eventually happen" [2]. This class of theoretically interesting
properties has proved to be of limited practical use. By asserting that one can rely on

the fact that when one has requested a service, the request is eventually going to be

served does not exclude the possibility that one may need to wait a finite but apparently
limitless period of time for the servicing of the request [21]. It is theoretically possible

to specify situations which are perfectly "legal" from a liveness point of view but which
could result in the user having to wait for an impractically long period of time before the

request is serviced (e.g. exceeding human life expectancy). To overcome this problem,

real-time models enforcing progress by relying on the urgence of certain timed events

have been introduced. In the context of SDL this means that notion of time needs to
be introduced into the purely untimed basic state and event sequence model. A suitable

timed execution model for our purposes is the model of timed traces [5], where steps in
system traces are labeled with monotonically increasing timestamps. For example, the

requirement that a request be serviced within t time units of the current moment in time
is expressed in the timed trace execution model as: the request will be serviced in a state
S;, i 2:: j, so that the timestamp ts(S;) differs from the current time stamp ts(Sj) by not
more than t time units. We call such a requirement a bounded response requirement [14].

Bounded response requirements are crucial in many control system specifications, e.g. in

communication protocols and safety-critical systems [13].

Specifying real-time requirements for SDL specifications 21

Figure 1. SDL specification of the INRES connection establishment

The SDL Real-Time Mechanism. Real-time is introduced into SDL by an asyn­
chronous timer mechanism [8]. An SDL specification can access the value of a global clock
by reference to a variable called NOW which always refers to the current moment in time.
The SDL command set (nov+t, T) sets the value of a timer called T to a point of time
which is t time units greater than the current moment of time. We shall call a process
which sets a timer, the timed process. The set timer is managed by an independent timer
process. Each time a timed process sets a timer an instance of the timer process is gener­
ated. The timer process continuously compares the value to which the timer is set with
the current global time. When the value to which the timer is set is reached or exceeded,
the timer process communicates the expiry to the timed process by placing a timer signal
at the end of the input queue of the timed process. Similar to any other signal, the timed
process may consume the timer signal from its input queue whenever it has reached the
head of the queue, and react accordingly. Timers may also be reset by the timed process
in which case the timer process deactivates the respective timer and removes the timer
signal from the timed processes input queue in case the timer expired before the reset.

Example and Critique. In Figure 1 we present an SDL specification of the INRES
connection establishment protocol, using the SDL timer mechanism [8]. The Initiator
process sets he timer T to time NOW plus the time distance value t when it sends a CR PDU.
When the initiator is in state wait, it will either receive a response from the Responder
process, which is considered to be the normal case of operation, or a timer signal T. This
mechanism is generally assumed to ensure progress of the system by forcing the timed
process Initiator to react within a bounded time frame after sending the DR signal. We
will now show that this assumption is false:

• Processes receive timer signals asynchronously through their input queue. The
expiry therefore occurs asynchronously from the timed process, we may therefore
only infer that the system reacts some time after the timer expires. Assume that
at time Tnow, a process sets a timer T to a time value Tnow +Tv. When the timer
process expires, a timer signal is generp+Ad and placed in the timed processes' input

22 Part One Specification and Verification: Time-dependent Analysis

queue some T1 2: 0 time units after the expiry at Tnow +Tv.

• Furthermore, no estimation can be made of the time it takes to consume all events
in the queue which may (potentially) have arrived earlier than the timer signal and
which have not yet been consumed by the timed process. The timer signal will be
consumed some T2 2: 0 time units after arriving at the input queue by the timed
process2 •

• The interaction between the input queue and the process is asynchronous. Even if
a timer signal has arrived when the input queue of the timed process was empty
it cannot be guaranteed how long it will take for the timed process to actually
consume the timer signal and react accordingly. Formally, the earliest reaction to
the timer expiry will happen T3 2: 0 time units after the consumption of the time
expiry signal.

This means that the delay 5, between the point of time when the timer expires, and
the moment at which the SDL specification reacts to the expiry, can be estimated as
0 ~ 5 ~ T1 + T2 + T3 • None of the values T1, T2 and T3 is bounded, and hence 5 is
unbounded. We conclude that as there is no upper bound for the value of 5 it is not
possible to specify a bounded response requirement using the described timer mechanism.

Remedies. For SDL as a state transition model based language, approaches based on
real-time extended automata and temporal logics seem to be most suitable in order to
capture complementary real-time requirements. The description of real-time constraints
based on state transition systems by so-called timed automata has been suggested in [22]
and [4]. Transitions of timed automata are attributed by time constraints and real-time is
introduced by clock variables. We consider the attribution of automaton transitions (po­
tentially corresponding to SDL process transitions) as too inflexible a means for specifying
real-time constraints and target at a more flexible solution. A similar criticism applies
to [7] which in addition lacks a formal foundation. [6] suggests a method to upgrade a
programming language by introduction of clock variables and a so-called guarded wait
statement. Applying this suggestion to SDL is certainly a very appealing idea, but were­
frain from changes to SDL itself for the time being. Finally, the use of real-time extended
temporal logics has been put forward by many authors to specify and reason about real­
time constraints for reactive, state-transition based systems [14, 5] [1] [16]. This approach
enjoys a high degree of flexibility in the specification of real-time constraints, and we will
therefore pursue the idea in the following Sections.

3. A STATE-TRANSITION MODEL FOR SDL SPECIFICATIONS

In this Section we define a rudimentary computational model for SDL specifications, a
so-called Global State Transition System (GSTS), which will serve as a common formal
model for the interpretation of SDL specifications and temporal logic formulas.

2 Note that a finite but unbounded number of messages can be in the input queue of the timed processes
ahead of the timer signal. Note also, that depending on the structure of the specification, the timed
process may run into some state from which it will never neither reach a reset instruction nor a timer
signal input statement, which implies that the system may never read to the timer expiry at all.

Specifying real-time requirements for SDL specifications 23

The main components of the GSTS model are as follows: I. Process control and data
manipulation of an SDL process when executing a transition. II. Communication: SDL
processes communicate via potentially unbounded queues, and each SDL process has
exactly one input queue handling all incoming messages from any other process. Commu­
nication statements INPUT and OUTPUT will change the state of these queues3 • The local
state of an SDL process hence consists of the combination of current values for the data
variables, the point of local process control, and the state of the input queue. III. Global
System States and State Transitions: The global system state (GSS) is the product of all
local states of all processes of an SDL specification. SDL processes run concurrently and
we choose an interleaving approach to represent this concurrency. We assume a nonde­
terministic choice when more than one process has an enabled transition in a given GSS.
Note that the resulting GSTS model for SDL specifications is not finite.

For a given SDL specification, the unwinding of the corresponding GSTS model will
describe all admissible sequences of states of an SDL specification, called its compu­
tations. In describing sequences of states, the model also describes sequences of state
transitions, which are in turn triggered by events (e.g. input and output) in the system.
The computations will later serve as models for what we call complementary temporal
logic specifications, only those specifications which satisfy both the properties expressed
by the SDL specification as well as the properties expressed by the temporal logic spec­
ifications are considered to satisfy the composed specification. It should be emphasized
that the goal here is not to define yet another formal semantics for SDL in addition to the
ones defined in different documents (e.g. [10]), but to provide for an adequate capture of
real-time requirements in the context of SDL specifications for which none of the existing
formalisation& is suitable.

Related work. Our definitions here are close to the Basic Transition Systems of
[20]. Our pSTS models can be seen as a logic based formulation of Eztended Finite State
Machines (EFSM) [19]. The modeling of SDL processes as EFSMs has been suggested
in [8] and [23]. However, as we will see later, the mapping of SDL process transitions as
informally described in these approaches is too coarse in order to adequately represent
the structure of an SDL transition. Alternative formalizations of EFSMs can be found
in [15] (where the state space is finite by limitation of the range of data variables and
variables representing the state of communication channels to finite domains), and in [11]
and [17] (from where we take part of our formalization). [9] describes and formalizes the
use of queues to model the collective behaviour of concurrent FSM which communicate
asynchronously via queues (there called protocols) and we use part of their formalization
for our work.

3.1. Process State Transition Systems
The process state transition systems (pSTS) we define here represent an SDL process

by a set of symbolic states, a set of program variables (consisting of control and data
variables), and by its interactions with the environment (input and output of signals).
The 'logic' of an SDL process is encoded in its state transition relation.

3 For reasons of conciseness we do not address inter-process communication mechanisms like viewing or
remote procedure call, but a treatment of these communication mechanisms within our framework is
straightforward. Furthermore, we only consider so-called non-delay channels in the SDL specifications.

24 Part One Specification and Verification: Time-dependent Analysis

Formal Definition Process State Transition System (pSTS). A Process State
Transition System P is defined as a tuple (S, D, V, 0, I, Q, T, C) where S is a finite set of
symbolic states, D is an n-dimensionallinear space where each Dn is an interpretation do­
main, Vis a finite set of program variables, V = {'rr, Vt, ... , vn} where 1r is a control variable
ranging over elements of S and v1 , .•. , Vn are data variables so that v = (Vt, ... , vn) E D,
0 is a finite set of output signal types, I is a finite set of input signal types, Q is a linear
sequence qh ... , qm (in the standard mathematical sense) of elements from I x D which
we call input queue, T is a transition relation, with T : S x 2D x Q --> S x 2D x Q, and
Cis an initial condition on S X 2D x Q. A states, is a function s : V x Q --> 25 x 2D
assigning a value to every variable in V and to Q. By s[x] we denote the value of variable
x in state s. We denote the set of all variables by V. Apparently, V can be infinite.

Transition Relation, Admissible Sequences, and Reachable States. We asso­
ciate a set TT = { r1 , .•• , rm} of transitions with the transition relation T of an pSTS.
With each transition Tj we associate a pair of state propositions Pj and Qj and we call Pj
a precondition and Q j a postcondition of transition Tj. We assume the existence of a satis­
faction relation ~P which relates assertions about the system state to system states for a
given pSTS P 4 • In particular, we write s ~ p iff state s satisfies state-proposition p5 • Now,
in order to relate states sand s1 we say that (s,s1) E Tiff (3rj E TT)(s ~ Pj 1\ s1 ~ Qj)·
Let u = s0 , • •• , Sk denote a finite sequence of states. We call this sequence admissible iff
(VO :s; j < k)((sj,Sj+1) E T). This definition extends to infinite sequences in the obvious
way. A state Sk is a reachable state iff the sequence u = s0 , ••• , Sk is admissible and
s0 ~ C, i.e. s0 is the initial state. In state formulas, when referring to states s and s1

with (s, s1) E T we sometimes denote s[v] by v and s1[v] by v1. In order to express that a
transitions Tk is enabled in a state s we write s ~ en(rk) iff s ~ Pk. For a pair of states
(s,s 1) we say the transition rz has been taken iff s ~ en(rz) and s1 ~ Qz. We denote
this by ta(s,s1,rz) Let the variables X andY range over the queues of a pSTS, i.e. over
sequences of signal types, and A over signal types. The concatenation of a sequence and a
singleton element is expressed by juxtaposition. For a signal queue X and a signal type A
the term XA describes a sequence where A is the last element. Conversely, AY describes
a sequence where A is the first element.

3.2. Interpreting SOL-Processes as pSTS
We now explain the mapping of an SDL process to the components of a pSTS. So­

called transitions in an SDL specification describe the change of processes control from
one symbolic state to a symbolic successor state. In the example in Table 1 the two
symbolic states are Sl and S2, hence for the corresponding pSTS S = { Sl, S2}. The
body of a transition consists of different sorts of statements, like assignments, decisions,
communication statements, etc. In order to describe the state of the system before and
after the execution of a transition we assign pre- and postconditions to every transition.
In a few cases, when the transition body has a trivial structure, the deterlnination of pre­
and post-conditions is straightforward. However, as we shall see later, we also need to
treat more complex transition structures differently.

4We omit the reference to P when this is dear from the context.
5We will not define all details of the relation I= formally and refer the reader to [20).

STATE S1
IRPUT(A)
TASK x : y + 1;
lfEITSTATE S2;

Table 1
SDL Transition I

Specifying real-time requirements for SDL specifications 25

P; Q;
7r=S1AQ=AX 7r1 =S2AQ'=XAz1 =y+l

7r- 81 A Q- CX A C f-A 71"1 -SlAQ'-X

Table 2
pSTS predicates for Transition I

Formal Treatment of INPUT Statements, Control Flow, and Variable Assign­
ments. For the time being we only consider local systems, we do not yet interpret effects
of communication and only define a meaning of INPUT statements. Surprisingly, INPUT
statements have a purely local semantics, namely to remove the signal at the head of the
input queue and assign its value to a local variable. Table 2 shows the mapping of an
SDL transition to transitions Tj of a corresponding pSTS. More precisely, when executing
a transition associated with an INPUT(X) statement, the process first checks whether the
signal at the head of its input queue is of type X. If this is true the process consumes
the signal by removing it from the head of the queue and assigning its value to a local
variable with the name X. However, if the signal at the head of the queue does not have
the expected type, then the message is removed from the head of the queue, discarded,
and the same INPUT statement is re-enabled. We therefore need to split the treatment of
INPUT statements into two logical cases, the first being the one where the expected signal
type is not at the head of the queue, and the second where the expected signal is at the
head. We treat transitions with INPUT statements as two transitions which are mutually
exclusive (see transitions r1 and r 2 in Table 2). The logical exclusion is encoded by the
test Q = AX which is true in case the head of the input queue contains the message of
expected type A, and the test Q = C X 1\ C ;f: A which evaluates to true iff this is not
the case. Attention has also to be paid to the control flow in a transition. If we consider
a transition which brings a process from symbolic state S1 into symbolic state S2, then
this can be interpreted as though control lies in code location S1 before execution of the
transition, and in location S2 afterwards. We defined a particular variable 7r to range
over code locations, called symbolic states, and we use this variable to formulate pre­
and postcondition& characterising the control flow inside an SDL process (see the use of
variable 7r in Table 2). Variable assignments are treated in a very standard way, as for
example, described in [20]. Let :z: and y denote variables in a state s, let riJ1 and y' denote
these variables in the successor state s', and let the system transit from s to s' through
the execution of a statement y: = x + 1. We describe this transition by the postcondition
y' = riJ + 1 which is required to hold in state s' (see Tables 1 and 2 for the postcondition
describing the the update of variable z).

Formal Treatment of DECISION Statements. We decompose a DECISION P(x)

statement into two, again mutually exclusive transition alternatives. The first is that the
decision predicate holds, namely P(z) is true, the second is that P(z) is not true. As an
example see the treatment of the decision in Table 3 in Table 4.

Handling Iterative Transitions. So far we assumed that the symbolic states in the
set S are identical to the symbolic states used in the SDL specification. However, SDL
transitions may have iterative structure, achieved by a goto and labeling mechanism (the

25
25
25

25
25
25

26 Part One Specification and Verification: Time-dependent Analysis

STATE 51;
IRPUT(A);
DECISIOR D(A);

(true):
REXTSTATE 52;

(false):
REXTSTATE 53;

ERDDECISIOR;

Table 3
SDL Transition II

P; Q;
Tt ,. - 511\ Q - AX 1\ D(A) 11"1 -521\Q'-X I
T2 ,. = 511\ Q =AX 1\ --.D(A) 11"1 =531\Q'=X I
Ta ,. = 511\ Q = ex 1\ e -1 A 11"1 =511\Q'=X I

Table 4
pSTS predicates for Transition II

goto statement is called JOIN in SDL, see Table 6). Therefore we need to abandon the
idea that a transition in an SDL process leads from one symbolic state to a symbolic
successor state, as for example suggested in (8]. We need to allow cyclic control flow
structures and suggest introducing auxiliary symbolic states which correspond to the
target locations in the control flow to which a process jumps back or forth when executing
JOIN statements. In the example in Table 6 we introduced an additional symbolic state
51-1, corresponding to the point of control which is reached when jumping to label 11

(we introduced a comment I• S1-1 •I in the SDL code at the location corresponding to
auxiliary state SJ-1). The transitions r 4 and Ts represent cases in which control lies in
the auxiliary symbolic state S1-1.

STATE 51;
IRPUT(A);
I• s1-1 •I
11:
DECISIOR D(A);

(true):
REXTSTATE 52;

(false):
OUTPUT(B);
TASK A:=A-1;
JOIR 11;

EIIDDECISIOR;

Table 5
SDL Transition III.

P; Q;
Tt ,. - 511\ Q- ex 1\ e -1 A ,-' = 51 1\ Q' = X
7"2 ,. - 511\ Q- AX 1\ D(A) ,-' - 52 1\ Q' - X
Ta ,. - 511\ Q =AX 1\ --.D(A) ,-' = 51 - 1/\ Q' = X 1\ A' = A- 1
T4 ,. -51- 1/\ D(A) ,.. -52
11; ,. -51- 1/\ --.D(A) ,-' - 51 - 1 1\ A' = A - 1

Table 6
pSTS for Transition III

pSTS and Extended Finite State Machines. The derivation of an EFSM from a
pSTS is straightforward. For the example in Figures 5 and 6 the resulting EFSM would
have 3 states (Sl, Sl- 1 and S2), and 5 transitions, corresponding to r 1 to r 5 •

3.3. State Propositions INPUT and OUTPUT
The state predicates we defined so far allow us to specify formulas referring to the

current point of control (e.g. 1r = Sl) or on the state of data variables (e.g. Q = AX 1\ A =
DR). However, sometimes one would much rather specify properties of events to happen,
in particular referring to communication events and environment interactions, i.e. input

Tt

Tt

Specifying real-time requirements for SDL specifications 27

or output of signals that are about to take place or that have just been executed. We
therefore introduce state predicates which indicate which transition has been taken as a
last step in a computation, and whether this transition entailed any communication events.
Technically, we introduce two relations, inlabel and outlabel, which label the transitions
of the pSTS with the INPUT or OUTPUT statements which are executed during the course
of a transition. We omit the straightforward technical construction of this labeling here.
In the example in Tables 5 and 6, we see that for example inlabel(r3) = {INPUT(A)}
and outlabel(r3) = {OUTPUT(B)}. Lets= s1,s2, ••• be an admissible state sequence for
a given pSTS, and let TT denote the set of transitions for this pSTS. We say that Si f=
INPUT(A) iff (3r E TT)(ta(si-t,s,r) A (INPUT(A) E inlabel(r))), and Si f= OUTPUT(A)
iff (3r E TT)(ta(si_1 ,s,r) A (OUTPUT(A) E outlabel(r))) which augments these labels to
state pro~ositions.

3.4. Global State 'Transition Systems
SDL specifications consist of collections of concurrent SDL processes. We say that the

Global State Transition System (GSTS) Gp corresponding to an SDL specification Pis a
tuple Gp = (P0 , ••• , P") where each pi for i = 1, ... , n is a pSTS. P0 (which represents
the environment behaviour) is not a full pSTS, it only consists of an input and an output
alphabet and an input queue. P0 has no state and we rely on the facilitating assumption
that P0 will provide any of the other processes with input signals whenever they wish to
consume any such signal, and that P0 instantly consumes any signal it receives from any
process of the SDL system. To model the SDL communication mechanism there is one
input queue per SDL process. We interpret the sending of a signal A from a process P 1 to a
process P 2 , indicated by an OUTPUT(A) statement, such that a signal of type A is appended
to P 2 's input queue, Q2 • We slightly simplify the SDL mechanism of mapping of an output
signal to a receiving process by assuming that a signal A is sent from a process pi to a
process pi iff A E Ji. Furthermore, we require (Vi = 1, ... , n)(Va E Oi)(3j # i)(a E Ji)
and (Vi = 1, ... , n)(Oi n Ji = 0). As we saw in Section 3.2, the execution of an INPUT (A)
statement (the signal-consumption) represents an action purely local to an SDL process.

'Transition Predicates for OUTPUT statements. The execution of an OUTPUT
statement involves a non-local action. The execution of the statement involves a local
event, the sending itself, and a remote event, the receiving of the message by adding it
to the receiving process' input queue. Therefore, one can not formalize the respective
transitions by state propositions that solely refer to state variables of only one process.
Table 8 presents a simple example of a two-process SDL specification P = (P0 , Pt, P 2)

where transition rf describes both the state change in P 1 and the appending of the signal
B to the input queue of P 2 • Although strictly speaking this transition also changes the
state of process P 2 , we consider transition rf to be a transition belonging to process P 1 •

Global System States, 'Transitions, Global State Sequences, and the Satis­
faction Relation. Let Gp = (P0 , ••• , P") denote the GSTS for an SDL specification
P. We say that the vectors= (sl, ... ,s") is a global system state (GSS) of the SDL
specification P iff i is a state of pSTS pi for all i = 1, ... , n. In the course of each
change of the GSS exactly one pSTS changes its local system state, hence we assume an
interleaving of local system state changes to model the concurrency in an SDL specifi­
cation. This means that in a given GSS s, a demon decides nondeterministically which

28 Part One Specification and Verification: Time-dependent Analy$is

PROCESS P1;
STATE 51;
IllPUT(.I.);
OUTPUT(B)
llEXTSTATE 52;

Table 7

PROCESS P2;
STATE 53;
IllPUT(B);
llEXTSTATE 53;

SDL specification
Table 8
Predicates describing SDL specification

out of all enabled transitions in all pSTS of an SDL specification is going to be executed
next, which defines the successor GSS s'. Let u = s0 , ••• , s,. denote a finite sequence
of GSS. We call this sequence admissible iff (VO ~ j < k)(3rl}((s~,s~+l) E T 1)). This
definition extends to infinite sequences in the obvious way. Also, the interpretation of the
state propositions en, ta, INPUT and OUTPUT extend in the obvious way from pSTS
states to GSS. Based on the above definitions we may now define a satisfaction relation
f=snL for SDL specifications. Let P an SDL specification and let ~P the set of all infinite
sequences of GSS of P. For a u E ~P we write u f=snL P iff u is an admissible sequence
with respect to P.

4. USING TEMPORAL LOGIC FOR SDL SPECIFICATIONS

The characterisation of properties by the use of temporal logic is accomplished by
interpreting the temporal logic specification such that the models satisfying all formulas
determine the set of admissible state sequences of the system. Now, as we have seen in
Section 3, SDL specifications also specify admissible sequences of states. Temporal logic
formulas can be thought of as filters on the admissible sequences specified by the SDL
specification and therefore can be used to specify those real-time and liveness properties
inexpressible in SDL. A crucial point is the selection of a suitable temporal logic language.
We will use a temporal logic similar to the logic described in (20], called Propositional
Temporal Logic (PTL) and a real-time extensions based on PTL, called Metric Temporal
Logic (MTL), see (14] and (16]. However, other temporal logics can be linked to SDL
specifications in very much the same way.

A State Proposition Language. We assume that the state propositions we use in
complementary temporal logic formulas all refer to observable components of the system
state, and we use, in particular, the following state propositions for an SDL specification
P: 1. Actual State: let s = SL ... , s~ denote the symbolic states for a given process
P' of P, then aLS~ denotes the state proposition that the i-th component of the global
system state is in symbolic state S~, i.e. 71'1 = S~. 2. Input and output: we use the state
propositions INPUT and OUTPUT as defined above to denote that we are in a state where
an input or an output of a signal has just occurred in the last GSS transition. 3. Data:
we allow the reference to visible data variables and allow standard comparison operators
on the variables. We allow state formulas to be constructed by using boolean operators
between state propositions and we call composed state formulas state predicates.

Temporal Logic. The Propositional Temporal Logic (PTL) we use here is a linear
time temporal logic taken from (20] to which we refer the reader for a complete syntax
and semantics definition. In addition to the standard operators of PTL as defined in

of SDL specification is going to be executed

of SDL specification is going to be executed
of SDL specification is going to be executed

going to be specification
28

Specifying real-time requirements for SDL specifications 29

[20] we define a strong eventuality operator 0 so that 0p holds in some future state s,
formally s; f= 0p iff (3j > i)(s; f= p). The formal semantics of PTL define a satisfaction
relation FPTL· An execution sequence u = so, ... of states s; satisfies a formula 1/J iff
tP holds in so, and we write u FPTL 1/J. We say that a system satisfies a formula 1/J iff
all its execution sequences satisfy 1/J. We use an extension of PTL for the specification
of real-time requirements, called metrical temporal logic (MTL). For a complete formal
definition of the syntax and semantics of MTL we refer the reader to [5] and [14, Section
3.4]. The models over which we interpret MTL formulas are timed observation sequences
o = o1, ... (see [5]) where each o; corresponds to a pair s;, l; in which s; denotes a state
and l; denotes a numeric value, called a time stamp. We only consider instantaneous
state changes. We assume l; sequences to be monotonic, as well as a finite precision of
our clocks, i.e. we assume that every state change coincides with a click of the clock from
which we derive the timed observation. Therefore the set of natural numbers, N suffices
as a domain for the interval expressions [5]. When selecting a time model we have to find
one which is suited to comply with the SDL interleaving semantics approach. In other
words, for GSS s1, s2 and sa of a given SDL specification, assume that both s1, s2, sa, ...
and s~o sa, s 2 , ••• are admissible sequences in the untimed model. If we now want to
express that both s2 and sa may occur at the same time (which means that they have the
same time stamp) in any order, we have to consider both the timed observation sequences
(s1,l1)-+ (s2,l2)-+ (sa,la)-+ ... aswellasthesequence(s~oll)-+ (sa,l2)-+ (s2,la)-+ ...
to be admissible and to allow that l2 = la. Hence, for our time model we assume the
sequence l; to be weakly-monotonic [5].

Informally, MTL contains formulas of the form Ort/J which assert that one of the follow­
ing states within the time-interval described by expression I is a state which satisfies 1/J.
Formulas of the form Dri/J assert that all states in the time-interval described by I satisfy
1/J. The expression I describes an either open or closed interval over the time domain
and we sometimes use semi-algebraic expressions to refer to these intervals. We write
o FMTL p iff the sequence o satisfies the MTL formula p.

Complementary Specifications. Assume we have an SDL specification P and a set
of formulas Min MTL. Now, P and M are complementary specifications if we require
from the specified system that for all its timed observation sequences o = (s0 , t0), ••• the
following condition holds: s FSDL P 1\ o FMTL M.

5. SPECIFYING DELAYS

In this Section we will exemplify the application of complementary specifications to
delay related real-time requirements.

Liveness and Progress in the INRES example. Let us consider the INRES con­
nection establishment example in Figure 1 again and use a complementary specification
in order to guarantee progress of the system. First, we will look at a liveness require­
ment that when a request for a connection establishment has been issued by sending a CR
message, then the process Initiator will eventually receive either a CC or a DR signal,
or it will eventually issue a IDISind signal to the service user. As pointed out earlier,
apart from trivial liveness properties SDL does not have the expressiveness to capture
more complex liveness properties like the one stated above. However, complementing the

30 Part One Specification and Verification: Time-dependent Analysis

SDL specification of the INRES example with the following MTL formula will express the
desired liveness property:

D(OUTPUT(CR) :::l O(INPUT(CC) V INPUT(DR) V OUTPUT(IDISind))).

Now, as we argued in Section 2, it is important to assert that any of these responses to
the sending of the CR signal happens within a reasonable period of time, say within t time
units. In the SDL specification, the timer T has been used to require this, but we have
argued above why the usage of the timer in this context cannot guarantee this condition
to hold. Therefore we specify a real-time bounded response requirement using MTL in
the following way:

D(OUTPUT(CR) :::l 09(INPUT(CC) V INPUT(DR) V OUTPUT(IDISind))).

PROCESSS

I D

2

Gp

ANY)
lko

UDcon

Sl

Figure 2. SDL Specification of SRS example.

Maximal and Minimal Service Response Time. Consider the simple Sender/ Re­
cei-ver Service (SRS) specified in Figure 2. A user of the service requests the transmission
of some data by sending a UDreq signal to the sender process S which in turn requests the
transmission of the data from an (unspecified) medium service M by sending a MDreq. The
medium service is unreliable. However, in case the transmission is successful the medium
service will deliver the data to the receiver process R by means of an MDind message, and
the receiver delivers the data to its user process. We assume that the medium service is
capable of reliably indicating to the sender process by means of an MDcon signal whether
the data has been delivered successfully to the receiver process, or by an MDrej that this
is not the case. Successful delivery will be indicated to the service user of process S by an
UDcon signal, and unsuccessful delivery by an UDrej signal. Now, we may like to require
that if the service process S has received a UDreq, it will issue within at most t 1 time
units either an UDcon or a UDrej signal to the service user in order to indicate successful
or unsuccessful delivery of data. We describe this requirement by

D(OUTPUT(UDreq) :::l 09, (INPUT(UDcon V UDrej))).

In some situations it may also be interesting to state that between two events there is a
minimal time that will always pass. The following formula states that if after the request

Specifying real-time requireme11ts for SDL specifications 31

the data will eventually be successfully delivered by the medium service by issuing a MDind
signal, then this will happen at least t 2 time units after the request has been issued.

D((INPUT(MDreq) 1\ OOUTPUT(MDind)) :::> D<t• -.fNPUT(MDind))

Delay Jitter. Successive data units routed through a complex packet switched network
may be subject to varying delays over time. The ATM service is, as one example, prone to
this sort of delay variation [18], caused by changing network load or by routing successive
cells on different routes. However, in particular multimedia applications which need to
reconstruct continuous signals require data to be delivered within a time interval of around
the mean value of the transmission delay, depending on the coding scheme used. The
delay variance is called delay jitter and is formally defined as follows: let dmin denote
the minimal and let d,..,.., denote the maximal delay between sending and receiving of a
sequence of transmitted data units, then J = d,..,..,- dmin denotes the delay jitter. We use
again the SRS example specified in SDL (see Figure 2), but this time we assume that the
underlying medium service is reliable. We assume that dmin and d,..,.., are known constant
values. The requirement bounding the delay jitter for the user interface service can then
be specified by the formula

D(INPUT(UDreq) :::> (D5c~,.;, --.OUTPUT(UDind)) 1\ (05d,.. •• OUTPUT(UDind))).

Isochronous sending and receiving. lsochronicity is a characteristic feature of many
multimedia applications. The isochronicity we refer to means that events, for example
sending and receiving of data units, occur periodically at equally distanced points of
time. Again, we refer to the SRS example. Isochronous sending is a characteristic of a
traffic source, in particular of the coding scheme and algorithm used there. In SRS, the
characterization of isochronous sending of the application served by process S reads

D(INPUT(UDreq) :::> (-.<i><tlNPUT(UDreq) 1\ O=tlNPUT(UDreq))).

The receiver may have to rely on having successive data units available at isochronous
moments in time. This may be expressed in a way very similar to the isochronous send
characterization, namely as

D(OUTPUT(UDind) :::> (-.<i><tOUTPUT(UDind) 1\ O=tOUTPUT(UDind))).

6. SPECIFYING QOS-MECHANISMS

QoS Negotiation. Assume the SRS example to be embedded in a mechanism which
allows the negotiation of certain QoS guarantees with the (unspecified) underlying medium
service. We are not interested in the mechanism itself, but in specifying the effect that
a successful renegotiation has. Assume that the process S is capable of requesting an
increase in the medium service delay QoS parameter and that when the increase request
is granted by the medium service (indicated by an INPUT(MINCcon) inside S), the
delivery bound for successfully delivered packets is limited to t4. Hence, we require that
whenever INPUT(MINCcon) has been executed, the delivery delay is henceforth limited
to t4:

D(OUTPUT(MINCcon) :::>

32 Part One Specification and Verification: Time-dependent Analysis

D((INPUT(MDreq) 1\ OOUTPUT(MDind)) ::J 09• OUTPUT(MDind))).

Reaction to QoS Violation. It may be useful to specify a desired reaction on the
violation of QoS requirement without implying that the violation invalidates the respective
system behaviour. Let us assume that we monitor the response time behaviour of the
medium service in SRS and that we require that if the medium service does not respond
by either MDind or MDrej within t1 time units after the MDreq has been issued, an ALARM
signal is to be issued after at most t 8 time units, with t 8 > t1. We specify this as

D(..,(OUTPUT(MDreq) ::J 097 (INPUT(MDind) V INPUT(MDrej))) ::J

(D97 ..,0UTPUT(ALARM) 1\ 09• OUTPUT(ALARM))).

Delay Jitter Compensation. Guaranteeing a bound on the delay jitter does not
yet guarantee isochronous delivery of messages to a user, even if the source is sending
data isochronously. In order to compensate the residual delay jitter and to guarantee
an isochronous delivery of data units to a user it is often suggested to use a jitter com­
pensation buffer between the network service and the user (e.g. the ATM playout buffer
[18]). Assume that the process R in SRS has the functionality of a playout buffer. Then,
R accepts the possibly non-isochronous but jitter-bounded data stream from the Medium
service by MDind signals. Every signal will be delayed for a minimum time span of dt
time units. This means that the first data units in a stream will fill the buffer up to a
certain threshold number. Then, at latest t 2 > t 1 time units after the arrival at the buffer
the data units will be delivered to the user by means of a UDind signal. The delivery
of successive MDind signals then occurs isochronously with an inter-signal delivery time
of p, which ideally should correspond to the inter-send event time at the sender in order
to ensure an isochronous traffic with identical inter-send times on the sender as on the
receiver side. The jitter compensation requirement for the process R reads

D(INPUT(MDind) ::J ((o9 , ..,OUTPUT(UDind) 1\ 0 9 , OUTPUT(UDind)))

AD(OUTPUT(UDind) ::J 0=pOUTPUT(UDind)).

7. QOS VERIFICATION

So far requirements capture has been our main interest. However, we will now point at
verification questions arising from the use of complementary specifications in the described
manner. Let us consider the SRS example again and let us assume that SRS has been
translated into a logic specification S. Furthermore, assume the system performance to
be described by the following minimal response time formula:

'P: D((INPUT(MDreq) 1\ OOUTPUT(MDind)) ::J D<t• ..,OUTPUT(MDind)).

Let a QoS requirement be described by the following formula:

Q : D(OUTPUT(UDreq) ::J 0 9 , (INPUT(UDcon) V INPUT(UDreJ))).

This gives rise to a verification problem, namely the question, whether based on S and
'P the QoS requirement Q can at all be satisfied, hence whether the assertion 'P 1\ S ::::) Q

Specifying real-time requirements for SDL specifications 33

holds. Intuitively, the answer depends amongst others on the choice of values for t 1 and
ts. To formally establish this conjecture it is necessary employ adequate formal verifica­
tion methods or model checking algorithms (see for example [1] for a formal verification
approach, and [3] for a real-time model checking algorithm).

8. CONCLUDING REMARKS

We described a method for the specification of real-time constraint based QoS require­
ments for SDL specifications. Starting point was an analysis of SDL specifications and
the insight that the SDL timer mechanism is unsuitable to express the important class
of bounded response real-time requirements. We mapped SDL specifications to global
state transition systems and showed how SDL system states and state transitions can be
described in terms of logic formulas over state propositions. Next we connected stan­
dard real-time temporal logic specifications to SDL specifications and defined so-called
complementary specifications. We then gave some general example specification for QoS
requirements for SDL specifications. Examples included delay bounds, delay jitter bounds,
and isochronicity requirements. We then showed how QoS mechanisms can be specified
in the framework of our method, in particular QoS negotiation and QoS monitoring, and
hinted at arising formal verification problems.

Acknowledgements. The author wishes to thank all those who have commented
on earlier versions of this paper, in particular Reinhard Gotzhein, Dieter Hogrefe, Peter
Ladkin and Tony Savor.

REFERENCES

1. M. Abadi and L. Lamport. An old-fashioned recipe for real time. In [12}, pages 1-27, 1992.
2. B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Computing,

2:117-126, 1987.
3. R. Alur, C. Courcoubetis, and D. L. Dill. Model checking for real-time systems. In Fifth

Annual Symposium on Logic in Computer Science, pages 414-425, 1990.
4. R. Alur and D. Dill. The theory of timed automata. In {12}, pages 45-73, 1992.
5. R. Alur and T. A. Henzinger. Logics and models of real-time: A survey. In {12}, pages

45-73, 1992.
6. R. Alur and T. A. Henzinger. Real-time system = discrete system + clock variables. In

T. Rus and C. Rattray, editors, Theories and Ezperiences for Real-Time System Develop­
ment, pages 1-30, 1994. To appear.

7. F. Bause and P. Buchholz. Protocol analysis using a timed version of SDL. In J. Quemada,
J. Mafias, and E. Vazquez, editors, Formal Description Techniques, III, pages 269-285.
North-Holland, 1991.

8. F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Protocol Specification.
Prentice Hall International, 1991.

9. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM,
30(2):323-342, April1983.

10. CCITT. Recommendation Z.100: CCITT Specification and Description Language (SDL).
CCITT, Geneva, 1992.

11. K.-T. Cheng and A. S. Krishnakumar. Automatic functional test generation using the ex­
tended finite state machine model. In Proceedings of the 30th Design Automation Conference

34 Part One Specification and Verification: Time-dependent Analysis

DAC-93, pages 86-91, 1993.
12. J. W. de Bakker, C. Huizing, W.P. de Roever, and G.Rozenberg, editors. Real-Time: Theory

in Practice, volume 600 of Lecture Notes in Computer Science. Springer-Verlag, 1992.
13. S. R. Faulk and D. L. Parnas. On synchronisation in hard-real-time systems. Communica­

tions of the ACM, 31(3):274-287, March 1988.
14. T. A. Henzinger. The Temporal Specification and Verification of Real-Time Systems. Phd

thesis, Stanford University, Department of Computer Science, August 1991. Also published
as Report No. STAN-CS-91-1380.

15. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall International,

1991.
16. R. Koymans. Specifying Message Passing and Time-Critical Systems with Temporal Logic.

PhD thesis, Technical University of Eindhoven, 1989.
17. A. S. Krishnakumar. Reachability and recurrence in extended finite state machines: Mod­

ular vector addition systems. In C. Courcoubetis, editor, Computer Aided Verification:
Proceedings of CAV'93, volume 697 of Lecture Notes in Computer Science, pages 111-122.

Springer Verlag, 1993.
18. J.-Y. Le Boudec. The asynchronous transfer mode: a tutorial. Computer Network and ISDN

Systems, 24:279-309, 1992.
19. M. T. Liu. Protocol engineering. In M. C. Yovitis, editor, Advances in Computers, vol­

ume 29, pages 79-195. Academic Press, Inc., 1989.
20. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Speci­

fication. Springer-Verlag, 1992.
21. P. M. Melliar-Srnith. Extending interval logic to real-time systems. In B. Banieqbal, H. Bar­

ringer, and A. Pnueli, editors, Proceedings of the Conference on Temporal Logic in Specifi­
cations, 1987, volume 398 of Lecture Notes in Computer Science, pages 224-242. Springer­

Verlag, 1989.
22. M. Merritt, F. Modugno, and M. R. Tuttle. Time-constrained automata. In CONCUR 91:

2nd International Conference on Concurrency Theory, Lecture Notes in Computer Science
527, 1991.

23. H. Saito, T. Hasegawa, andY. Kakuda. Protocol verification system for SDL specifications
based on acyclic expansion algorithm and temporal logic. In K. R. Parker and G. A. Rose,

editors, Formal Description Techniques, IV, pages 511-526. North-Holland, 1992.
24. K. J. Turner, editor. Using Formal Description Techniques. John Wiley & Sons, 1993.

BIOGRAPHY

The author received his Master's Degree in Computer Science (Diplom-Informatiker) from the
University of Hamburg, Germany, in 1991, and his Ph.D. degree from the University of Berne,

Switzerland, in 1995. Currently, he is an Assistant Professor at the Electrical and Computer
Engineering Department of the University of Waterloo, Canada. His research interests are in

the area of software engineering for telecommunications and distributed systems, in particular
in specification, verification, implementation and reliability aspects.

