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Abstract 
The expressiveness of many state-transition based formal description techniques, e.g. 

the ITU-TS standardised Specification and Description Language (SDL ), does not capture 
hard real-time requirements. In telecommunications systems engineering, hard real-time 
requirements, however, are an important class of properties. They occur in the descrip­
tion of progress properties in telecommunications protocols as well as in the specification 
of real-time related of Quality of Service (QoS) requirements. We suggest integrating 
functional system properties, given as SDL specifications, with real-time requirements ex­
pressed in terms of real-time temporal logic formulas. We call the resulting specifications 
'complementary specifications'. First, we show the inexpressiveness of SDL with respect 
to hard real-time requirements. Next, we define a common model theoretic foundation 
which allows SDL specifications to be used jointly with temporal logic specifications. 
Then we give examples of commonly used real-time related QoS requirements, namely 
delay bound, delay jitter, and isochronicity. We also discuss the specification of various 
QoS mechanisms, like QoS negotiation, QoS monitoring and jitter compensation. Finally, 
we point at related formal verification problems. 
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1. INTRODUCTION 

Standard state machine model based formal description techniques like SDL or Estelle 
[24] enjoy wide acceptance in the field of telecommunications systems engineering. These 
languages are targeted to the specification of functional system properties, in particular, 
safety and liveness properties of the sets of sequences of observable behaviour. These 
techniques are relatively good at expressing safety properties but express only trivial 
liveness and progress properties. However, in telecommunications systems engineering an 
important class of properties is related to system progress as well as timely behaviour. 

In this paper we will address the question of how real-time related system properties can 
suitably be expressed for SDL specifications. In Section 2 we investigate the SDL timer 
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mechanism and observe the limitations in its expressiveness. As a consequence we rec­

ommend the use of complementary real-time extended temporal logic (Metric Temporal 
Logic, MTL) [5] formulas complementing the SDL specifications to remedy this short­

coming. This requires providing a model for SDL specifications based on which temporal 

logic formulas can also be interpreted. We define this model in Section 3. In Section 4, 

we show how temporal logics can be used in conjunction with SDL specifications when 

interpreted on this state transition model. The underlying idea is that both the SDL 

specification as well as the temporal logic specification constrain the allowable behaviour 

of the system. We require that both specifications are satisfied by a system. In Section 
5, we specify a range of different real-time constraint based progress and QoS require­

ments complementing SDL specification examples. These include: message transmission 

delay bounds, delay jitter bounds, isochronicity related requirements, and requirements 
on transmission rates. In Section 6, we exemplify how some QoS related mechanisms 

can be specified using our approach, like QoS negotiation and reaction to QoS guarantee 

violation. Although capturing requirements is our main concern in this paper we will 

briefly point at formal verification problems in Section 7. We conclude in Section 8. 

2. A CRITIQUE OF THE SDL REAL-TIME MECHANISM 

SDL has a built-in real-time mechanism, relying on an asynchronous timer mechanism. 
We will argue here that this mechanism is inexpressive with respect to the most important 
class of real-time requirements, namely hard real-time or bounded response constraints 

(see for example [13] [5]). We will briefly explain why this class of constraints is impor­

tant for requirements specifications of real-time systems, and we will then address the 

unsuitability of the SDL mechanism. 
Real-Time Requirements. Liveness properties are properties of a system which state 

that "something good will eventually happen" [2]. This class of theoretically interesting 
properties has proved to be of limited practical use. By asserting that one can rely on 

the fact that when one has requested a service, the request is eventually going to be 

served does not exclude the possibility that one may need to wait a finite but apparently 
limitless period of time for the servicing of the request [21]. It is theoretically possible 

to specify situations which are perfectly "legal" from a liveness point of view but which 
could result in the user having to wait for an impractically long period of time before the 

request is serviced (e.g. exceeding human life expectancy). To overcome this problem, 

real-time models enforcing progress by relying on the urgence of certain timed events 

have been introduced. In the context of SDL this means that notion of time needs to 
be introduced into the purely untimed basic state and event sequence model. A suitable 

timed execution model for our purposes is the model of timed traces [5], where steps in 
system traces are labeled with monotonically increasing timestamps. For example, the 

requirement that a request be serviced within t time units of the current moment in time 
is expressed in the timed trace execution model as: the request will be serviced in a state 
S;, i 2:: j, so that the timestamp ts( S;) differs from the current time stamp ts( Sj) by not 
more than t time units. We call such a requirement a bounded response requirement [14]. 

Bounded response requirements are crucial in many control system specifications, e.g. in 

communication protocols and safety-critical systems [13]. 
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Figure 1. SDL specification of the INRES connection establishment 

The SDL Real-Time Mechanism. Real-time is introduced into SDL by an asyn­
chronous timer mechanism [8]. An SDL specification can access the value of a global clock 
by reference to a variable called NOW which always refers to the current moment in time. 
The SDL command set (nov+t, T) sets the value of a timer called T to a point of time 
which is t time units greater than the current moment of time. We shall call a process 
which sets a timer, the timed process. The set timer is managed by an independent timer 
process. Each time a timed process sets a timer an instance of the timer process is gener­
ated. The timer process continuously compares the value to which the timer is set with 
the current global time. When the value to which the timer is set is reached or exceeded, 
the timer process communicates the expiry to the timed process by placing a timer signal 
at the end of the input queue of the timed process. Similar to any other signal, the timed 
process may consume the timer signal from its input queue whenever it has reached the 
head of the queue, and react accordingly. Timers may also be reset by the timed process 
in which case the timer process deactivates the respective timer and removes the timer 
signal from the timed processes input queue in case the timer expired before the reset. 

Example and Critique. In Figure 1 we present an SDL specification of the INRES 
connection establishment protocol, using the SDL timer mechanism [8]. The Initiator 
process sets he timer T to time NOW plus the time distance value t when it sends a CR PDU. 
When the initiator is in state wait, it will either receive a response from the Responder 
process, which is considered to be the normal case of operation, or a timer signal T. This 
mechanism is generally assumed to ensure progress of the system by forcing the timed 
process Initiator to react within a bounded time frame after sending the DR signal. We 
will now show that this assumption is false: 

• Processes receive timer signals asynchronously through their input queue. The 
expiry therefore occurs asynchronously from the timed process, we may therefore 
only infer that the system reacts some time after the timer expires. Assume that 
at time Tnow, a process sets a timer T to a time value Tnow +Tv. When the timer 
process expires, a timer signal is generp+Ad and placed in the timed processes' input 
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queue some T1 2: 0 time units after the expiry at Tnow +Tv. 

• Furthermore, no estimation can be made of the time it takes to consume all events 
in the queue which may (potentially) have arrived earlier than the timer signal and 
which have not yet been consumed by the timed process. The timer signal will be 
consumed some T2 2: 0 time units after arriving at the input queue by the timed 
process2 • 

• The interaction between the input queue and the process is asynchronous. Even if 
a timer signal has arrived when the input queue of the timed process was empty 
it cannot be guaranteed how long it will take for the timed process to actually 
consume the timer signal and react accordingly. Formally, the earliest reaction to 
the timer expiry will happen T3 2: 0 time units after the consumption of the time 
expiry signal. 

This means that the delay 5, between the point of time when the timer expires, and 
the moment at which the SDL specification reacts to the expiry, can be estimated as 
0 ~ 5 ~ T1 + T2 + T3 • None of the values T1, T2 and T3 is bounded, and hence 5 is 
unbounded. We conclude that as there is no upper bound for the value of 5 it is not 
possible to specify a bounded response requirement using the described timer mechanism. 

Remedies. For SDL as a state transition model based language, approaches based on 
real-time extended automata and temporal logics seem to be most suitable in order to 
capture complementary real-time requirements. The description of real-time constraints 
based on state transition systems by so-called timed automata has been suggested in [22] 
and [4]. Transitions of timed automata are attributed by time constraints and real-time is 
introduced by clock variables. We consider the attribution of automaton transitions (po­
tentially corresponding to SDL process transitions) as too inflexible a means for specifying 
real-time constraints and target at a more flexible solution. A similar criticism applies 
to [7] which in addition lacks a formal foundation. [6] suggests a method to upgrade a 
programming language by introduction of clock variables and a so-called guarded wait 
statement. Applying this suggestion to SDL is certainly a very appealing idea, but were­
frain from changes to SDL itself for the time being. Finally, the use of real-time extended 
temporal logics has been put forward by many authors to specify and reason about real­
time constraints for reactive, state-transition based systems [14, 5] [1] [16]. This approach 
enjoys a high degree of flexibility in the specification of real-time constraints, and we will 
therefore pursue the idea in the following Sections. 

3. A STATE-TRANSITION MODEL FOR SDL SPECIFICATIONS 

In this Section we define a rudimentary computational model for SDL specifications, a 
so-called Global State Transition System (GSTS), which will serve as a common formal 
model for the interpretation of SDL specifications and temporal logic formulas. 

2 Note that a finite but unbounded number of messages can be in the input queue of the timed processes 
ahead of the timer signal. Note also, that depending on the structure of the specification, the timed 
process may run into some state from which it will never neither reach a reset instruction nor a timer 
signal input statement, which implies that the system may never read to the timer expiry at all. 
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The main components of the GSTS model are as follows: I. Process control and data 
manipulation of an SDL process when executing a transition. II. Communication: SDL 
processes communicate via potentially unbounded queues, and each SDL process has 
exactly one input queue handling all incoming messages from any other process. Commu­
nication statements INPUT and OUTPUT will change the state of these queues3 • The local 
state of an SDL process hence consists of the combination of current values for the data 
variables, the point of local process control, and the state of the input queue. III. Global 
System States and State Transitions: The global system state (GSS) is the product of all 
local states of all processes of an SDL specification. SDL processes run concurrently and 
we choose an interleaving approach to represent this concurrency. We assume a nonde­
terministic choice when more than one process has an enabled transition in a given GSS. 
Note that the resulting GSTS model for SDL specifications is not finite. 

For a given SDL specification, the unwinding of the corresponding GSTS model will 
describe all admissible sequences of states of an SDL specification, called its compu­
tations. In describing sequences of states, the model also describes sequences of state 
transitions, which are in turn triggered by events (e.g. input and output) in the system. 
The computations will later serve as models for what we call complementary temporal 
logic specifications, only those specifications which satisfy both the properties expressed 
by the SDL specification as well as the properties expressed by the temporal logic spec­
ifications are considered to satisfy the composed specification. It should be emphasized 
that the goal here is not to define yet another formal semantics for SDL in addition to the 
ones defined in different documents (e.g. [10]), but to provide for an adequate capture of 
real-time requirements in the context of SDL specifications for which none of the existing 
formalisation& is suitable. 

Related work. Our definitions here are close to the Basic Transition Systems of 
[20]. Our pSTS models can be seen as a logic based formulation of Eztended Finite State 
Machines (EFSM) [19]. The modeling of SDL processes as EFSMs has been suggested 
in [8] and [23]. However, as we will see later, the mapping of SDL process transitions as 
informally described in these approaches is too coarse in order to adequately represent 
the structure of an SDL transition. Alternative formalizations of EFSMs can be found 
in [15] (where the state space is finite by limitation of the range of data variables and 
variables representing the state of communication channels to finite domains), and in [11] 
and [17] (from where we take part of our formalization). [9] describes and formalizes the 
use of queues to model the collective behaviour of concurrent FSM which communicate 
asynchronously via queues (there called protocols) and we use part of their formalization 
for our work. 

3.1. Process State Transition Systems 
The process state transition systems (pSTS) we define here represent an SDL process 

by a set of symbolic states, a set of program variables (consisting of control and data 
variables), and by its interactions with the environment (input and output of signals). 
The 'logic' of an SDL process is encoded in its state transition relation. 

3 For reasons of conciseness we do not address inter-process communication mechanisms like viewing or 
remote procedure call, but a treatment of these communication mechanisms within our framework is 
straightforward. Furthermore, we only consider so-called non-delay channels in the SDL specifications. 
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Formal Definition Process State Transition System (pSTS). A Process State 
Transition System P is defined as a tuple ( S, D, V, 0, I, Q, T, C) where S is a finite set of 
symbolic states, D is an n-dimensionallinear space where each Dn is an interpretation do­
main, Vis a finite set of program variables, V = {'rr, Vt, ... , vn} where 1r is a control variable 
ranging over elements of S and v1 , .•. , Vn are data variables so that v = ( Vt, ... , vn) E D, 
0 is a finite set of output signal types, I is a finite set of input signal types, Q is a linear 
sequence qh ... , qm (in the standard mathematical sense) of elements from I x D which 
we call input queue, T is a transition relation, with T : S x 2D x Q --> S x 2D x Q, and 
Cis an initial condition on S X 2D x Q. A states, is a function s : V x Q --> 25 x 2D 
assigning a value to every variable in V and to Q. By s[x] we denote the value of variable 
x in state s. We denote the set of all variables by V. Apparently, V can be infinite. 

Transition Relation, Admissible Sequences, and Reachable States. We asso­
ciate a set TT = { r1 , .•• , rm} of transitions with the transition relation T of an pSTS. 
With each transition Tj we associate a pair of state propositions Pj and Qj and we call Pj 
a precondition and Q j a postcondition of transition Tj. We assume the existence of a satis­
faction relation ~P which relates assertions about the system state to system states for a 
given pSTS P 4 • In particular, we write s ~ p iff state s satisfies state-proposition p5 • Now, 
in order to relate states sand s1 we say that (s,s1) E Tiff (3rj E TT)(s ~ Pj 1\ s1 ~ Qj)· 
Let u = s0 , • •• , Sk denote a finite sequence of states. We call this sequence admissible iff 
(VO :s; j < k)((sj,Sj+1 ) E T). This definition extends to infinite sequences in the obvious 
way. A state Sk is a reachable state iff the sequence u = s0 , ••• , Sk is admissible and 
s0 ~ C, i.e. s0 is the initial state. In state formulas, when referring to states s and s1 

with (s, s1) E T we sometimes denote s[v] by v and s1[v] by v1. In order to express that a 
transitions Tk is enabled in a state s we write s ~ en( rk) iff s ~ Pk. For a pair of states 
(s,s 1) we say the transition rz has been taken iff s ~ en(rz) and s1 ~ Qz. We denote 
this by ta(s,s1,rz) Let the variables X andY range over the queues of a pSTS, i.e. over 
sequences of signal types, and A over signal types. The concatenation of a sequence and a 
singleton element is expressed by juxtaposition. For a signal queue X and a signal type A 
the term XA describes a sequence where A is the last element. Conversely, AY describes 
a sequence where A is the first element. 

3.2. Interpreting SOL-Processes as pSTS 
We now explain the mapping of an SDL process to the components of a pSTS. So­

called transitions in an SDL specification describe the change of processes control from 
one symbolic state to a symbolic successor state. In the example in Table 1 the two 
symbolic states are Sl and S2, hence for the corresponding pSTS S = { Sl, S2}. The 
body of a transition consists of different sorts of statements, like assignments, decisions, 
communication statements, etc. In order to describe the state of the system before and 
after the execution of a transition we assign pre- and postconditions to every transition. 
In a few cases, when the transition body has a trivial structure, the deterlnination of pre­
and post-conditions is straightforward. However, as we shall see later, we also need to 
treat more complex transition structures differently. 

4We omit the reference to P when this is dear from the context. 
5We will not define all details of the relation I= formally and refer the reader to [20). 



STATE S1 
IRPUT(A) 
TASK x : y + 1; 
lfEITSTATE S2; 

Table 1 
SDL Transition I 
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P; Q; 
7r=S1AQ=AX 7r1 =S2AQ'=XAz1 =y+l 

7r- 81 A Q- CX A C f-A 71"1 -SlAQ'-X 

Table 2 
pSTS predicates for Transition I 

Formal Treatment of INPUT Statements, Control Flow, and Variable Assign­
ments. For the time being we only consider local systems, we do not yet interpret effects 
of communication and only define a meaning of INPUT statements. Surprisingly, INPUT 
statements have a purely local semantics, namely to remove the signal at the head of the 
input queue and assign its value to a local variable. Table 2 shows the mapping of an 
SDL transition to transitions Tj of a corresponding pSTS. More precisely, when executing 
a transition associated with an INPUT(X) statement, the process first checks whether the 
signal at the head of its input queue is of type X. If this is true the process consumes 
the signal by removing it from the head of the queue and assigning its value to a local 
variable with the name X. However, if the signal at the head of the queue does not have 
the expected type, then the message is removed from the head of the queue, discarded, 
and the same INPUT statement is re-enabled. We therefore need to split the treatment of 
INPUT statements into two logical cases, the first being the one where the expected signal 
type is not at the head of the queue, and the second where the expected signal is at the 
head. We treat transitions with INPUT statements as two transitions which are mutually 
exclusive ( see transitions r1 and r 2 in Table 2). The logical exclusion is encoded by the 
test Q = AX which is true in case the head of the input queue contains the message of 
expected type A, and the test Q = C X 1\ C ;f: A which evaluates to true iff this is not 
the case. Attention has also to be paid to the control flow in a transition. If we consider 
a transition which brings a process from symbolic state S1 into symbolic state S2, then 
this can be interpreted as though control lies in code location S1 before execution of the 
transition, and in location S2 afterwards. We defined a particular variable 7r to range 
over code locations, called symbolic states, and we use this variable to formulate pre­
and postcondition& characterising the control flow inside an SDL process (see the use of 
variable 7r in Table 2). Variable assignments are treated in a very standard way, as for 
example, described in [20]. Let :z: and y denote variables in a state s, let riJ1 and y' denote 
these variables in the successor state s', and let the system transit from s to s' through 
the execution of a statement y: = x + 1. We describe this transition by the postcondition 
y' = riJ + 1 which is required to hold in state s' (see Tables 1 and 2 for the postcondition 
describing the the update of variable z ). 

Formal Treatment of DECISION Statements. We decompose a DECISION P(x) 

statement into two, again mutually exclusive transition alternatives. The first is that the 
decision predicate holds, namely P( z) is true, the second is that P( z) is not true. As an 
example see the treatment of the decision in Table 3 in Table 4. 

Handling Iterative Transitions. So far we assumed that the symbolic states in the 
set S are identical to the symbolic states used in the SDL specification. However, SDL 
transitions may have iterative structure, achieved by a goto and labeling mechanism (the 

25 
25 
25 

25 
25 
25 
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STATE 51; 
IRPUT(A); 
DECISIOR D(A); 

(true): 
REXTSTATE 52; 

(false): 
REXTSTATE 53; 

ERDDECISIOR; 

Table 3 
SDL Transition II 

P; Q; 
Tt ,. - 511\ Q - AX 1\ D(A) 11"1 -521\Q'-X I 
T2 ,. = 511\ Q =AX 1\ --.D(A) 11"1 =531\Q'=X I 
Ta ,. = 511\ Q = ex 1\ e -1 A 11"1 =511\Q'=X I 

Table 4 
pSTS predicates for Transition II 

goto statement is called JOIN in SDL, see Table 6). Therefore we need to abandon the 
idea that a transition in an SDL process leads from one symbolic state to a symbolic 
successor state, as for example suggested in (8]. We need to allow cyclic control flow 
structures and suggest introducing auxiliary symbolic states which correspond to the 
target locations in the control flow to which a process jumps back or forth when executing 
JOIN statements. In the example in Table 6 we introduced an additional symbolic state 
51-1, corresponding to the point of control which is reached when jumping to label 11 

(we introduced a comment I• S1-1 •I in the SDL code at the location corresponding to 
auxiliary state SJ-1). The transitions r 4 and Ts represent cases in which control lies in 
the auxiliary symbolic state S1-1. 

STATE 51; 
IRPUT(A); 
I• s1-1 •I 
11: 
DECISIOR D(A); 

(true): 
REXTSTATE 52; 

(false): 
OUTPUT(B); 
TASK A:=A-1; 
JOIR 11; 

EIIDDECISIOR; 

Table 5 
SDL Transition III. 

P; Q; 
Tt ,. - 511\ Q- ex 1\ e -1 A ,-' = 51 1\ Q' = X 
7"2 ,. - 511\ Q- AX 1\ D(A) ,-' - 52 1\ Q' - X 
Ta ,. - 511\ Q =AX 1\ --.D(A) ,-' = 51 - 1/\ Q' = X 1\ A' = A- 1 
T4 ,. -51- 1/\ D(A) ,.. -52 
11; ,. -51- 1/\ --.D(A) ,-' - 51 - 1 1\ A' = A - 1 

Table 6 
pSTS for Transition III 

pSTS and Extended Finite State Machines. The derivation of an EFSM from a 
pSTS is straightforward. For the example in Figures 5 and 6 the resulting EFSM would 
have 3 states (Sl, Sl- 1 and S2), and 5 transitions, corresponding to r 1 to r 5 • 

3.3. State Propositions INPUT and OUTPUT 
The state predicates we defined so far allow us to specify formulas referring to the 

current point of control (e.g. 1r = Sl) or on the state of data variables (e.g. Q = AX 1\ A = 
DR). However, sometimes one would much rather specify properties of events to happen, 
in particular referring to communication events and environment interactions, i.e. input 

Tt 

Tt 
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or output of signals that are about to take place or that have just been executed. We 
therefore introduce state predicates which indicate which transition has been taken as a 
last step in a computation, and whether this transition entailed any communication events. 
Technically, we introduce two relations, inlabel and outlabel, which label the transitions 
of the pSTS with the INPUT or OUTPUT statements which are executed during the course 
of a transition. We omit the straightforward technical construction of this labeling here. 
In the example in Tables 5 and 6, we see that for example inlabel(r3 ) = {INPUT(A)} 
and outlabel(r3 ) = {OUTPUT(B)}. Lets= s1,s2, ••• be an admissible state sequence for 
a given pSTS, and let TT denote the set of transitions for this pSTS. We say that Si f= 
INPUT(A) iff (3r E TT)(ta(si-t,s,r) A (INPUT(A) E inlabel(r))), and Si f= OUTPUT(A) 
iff (3r E TT)(ta(si_1 ,s,r) A (OUTPUT(A) E outlabel(r))) which augments these labels to 
state pro~ositions. 

3.4. Global State 'Transition Systems 
SDL specifications consist of collections of concurrent SDL processes. We say that the 

Global State Transition System (GSTS) Gp corresponding to an SDL specification Pis a 
tuple Gp = (P0 , ••• , P") where each pi for i = 1, ... , n is a pSTS. P0 (which represents 
the environment behaviour) is not a full pSTS, it only consists of an input and an output 
alphabet and an input queue. P0 has no state and we rely on the facilitating assumption 
that P0 will provide any of the other processes with input signals whenever they wish to 
consume any such signal, and that P0 instantly consumes any signal it receives from any 
process of the SDL system. To model the SDL communication mechanism there is one 
input queue per SDL process. We interpret the sending of a signal A from a process P 1 to a 
process P 2 , indicated by an OUTPUT(A) statement, such that a signal of type A is appended 
to P 2 's input queue, Q2 • We slightly simplify the SDL mechanism of mapping of an output 
signal to a receiving process by assuming that a signal A is sent from a process pi to a 
process pi iff A E Ji. Furthermore, we require (Vi = 1, ... , n )(Va E Oi)(3j # i)( a E Ji) 
and (Vi = 1, ... , n )( Oi n Ji = 0). As we saw in Section 3.2, the execution of an INPUT (A) 
statement (the signal-consumption) represents an action purely local to an SDL process. 

'Transition Predicates for OUTPUT statements. The execution of an OUTPUT 
statement involves a non-local action. The execution of the statement involves a local 
event, the sending itself, and a remote event, the receiving of the message by adding it 
to the receiving process' input queue. Therefore, one can not formalize the respective 
transitions by state propositions that solely refer to state variables of only one process. 
Table 8 presents a simple example of a two-process SDL specification P = (P0 , Pt, P 2) 

where transition rf describes both the state change in P 1 and the appending of the signal 
B to the input queue of P 2 • Although strictly speaking this transition also changes the 
state of process P 2 , we consider transition rf to be a transition belonging to process P 1 • 

Global System States, 'Transitions, Global State Sequences, and the Satis­
faction Relation. Let Gp = (P0 , ••• , P") denote the GSTS for an SDL specification 
P. We say that the vectors= (sl, ... ,s") is a global system state (GSS) of the SDL 
specification P iff i is a state of pSTS pi for all i = 1, ... , n. In the course of each 
change of the GSS exactly one pSTS changes its local system state, hence we assume an 
interleaving of local system state changes to model the concurrency in an SDL specifi­
cation. This means that in a given GSS s, a demon decides nondeterministically which 
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PROCESS P1; 
STATE 51; 
IllPUT(.I.); 
OUTPUT(B) 
llEXTSTATE 52; 

Table 7 

PROCESS P2; 
STATE 53; 
IllPUT(B); 
llEXTSTATE 53; 

SDL specification 
Table 8 
Predicates describing SDL specification 

out of all enabled transitions in all pSTS of an SDL specification is going to be executed 
next, which defines the successor GSS s'. Let u = s0 , ••• , s,. denote a finite sequence 
of GSS. We call this sequence admissible iff (VO ~ j < k)(3rl}((s~,s~+l) E T 1)). This 
definition extends to infinite sequences in the obvious way. Also, the interpretation of the 
state propositions en, ta, INPUT and OUTPUT extend in the obvious way from pSTS 
states to GSS. Based on the above definitions we may now define a satisfaction relation 
f=snL for SDL specifications. Let P an SDL specification and let ~P the set of all infinite 
sequences of GSS of P. For a u E ~P we write u f=snL P iff u is an admissible sequence 
with respect to P. 

4. USING TEMPORAL LOGIC FOR SDL SPECIFICATIONS 

The characterisation of properties by the use of temporal logic is accomplished by 
interpreting the temporal logic specification such that the models satisfying all formulas 
determine the set of admissible state sequences of the system. Now, as we have seen in 
Section 3, SDL specifications also specify admissible sequences of states. Temporal logic 
formulas can be thought of as filters on the admissible sequences specified by the SDL 
specification and therefore can be used to specify those real-time and liveness properties 
inexpressible in SDL. A crucial point is the selection of a suitable temporal logic language. 
We will use a temporal logic similar to the logic described in (20], called Propositional 
Temporal Logic (PTL) and a real-time extensions based on PTL, called Metric Temporal 
Logic (MTL), see (14] and (16]. However, other temporal logics can be linked to SDL 
specifications in very much the same way. 

A State Proposition Language. We assume that the state propositions we use in 
complementary temporal logic formulas all refer to observable components of the system 
state, and we use, in particular, the following state propositions for an SDL specification 
P: 1. Actual State: let s = SL ... , s~ denote the symbolic states for a given process 
P' of P, then aLS~ denotes the state proposition that the i-th component of the global 
system state is in symbolic state S~, i.e. 71'1 = S~. 2. Input and output: we use the state 
propositions INPUT and OUTPUT as defined above to denote that we are in a state where 
an input or an output of a signal has just occurred in the last GSS transition. 3. Data: 
we allow the reference to visible data variables and allow standard comparison operators 
on the variables. We allow state formulas to be constructed by using boolean operators 
between state propositions and we call composed state formulas state predicates. 

Temporal Logic. The Propositional Temporal Logic (PTL) we use here is a linear 
time temporal logic taken from (20] to which we refer the reader for a complete syntax 
and semantics definition. In addition to the standard operators of PTL as defined in 
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[20] we define a strong eventuality operator 0 so that 0p holds in some future state s, 
formally s; f= 0p iff (3j > i)(s; f= p). The formal semantics of PTL define a satisfaction 
relation FPTL· An execution sequence u = so, ... of states s; satisfies a formula 1/J iff 
tP holds in so, and we write u FPTL 1/J. We say that a system satisfies a formula 1/J iff 
all its execution sequences satisfy 1/J. We use an extension of PTL for the specification 
of real-time requirements, called metrical temporal logic (MTL). For a complete formal 
definition of the syntax and semantics of MTL we refer the reader to [5] and [14, Section 
3.4]. The models over which we interpret MTL formulas are timed observation sequences 
o = o1, ... (see [5]) where each o; corresponds to a pair s;, l; in which s; denotes a state 
and l; denotes a numeric value, called a time stamp. We only consider instantaneous 
state changes. We assume l; sequences to be monotonic, as well as a finite precision of 
our clocks, i.e. we assume that every state change coincides with a click of the clock from 
which we derive the timed observation. Therefore the set of natural numbers, N suffices 
as a domain for the interval expressions [5]. When selecting a time model we have to find 
one which is suited to comply with the SDL interleaving semantics approach. In other 
words, for GSS s1, s2 and sa of a given SDL specification, assume that both s1, s2, sa, ... 
and s~o sa, s 2 , ••• are admissible sequences in the untimed model. If we now want to 
express that both s2 and sa may occur at the same time (which means that they have the 
same time stamp) in any order, we have to consider both the timed observation sequences 
(s1,l1)-+ (s2,l2)-+ (sa,la)-+ ... aswellasthesequence(s~oll)-+ (sa,l2)-+ (s2,la)-+ ... 
to be admissible and to allow that l2 = la. Hence, for our time model we assume the 
sequence l; to be weakly-monotonic [5]. 

Informally, MTL contains formulas of the form Ort/J which assert that one of the follow­
ing states within the time-interval described by expression I is a state which satisfies 1/J. 
Formulas of the form Dri/J assert that all states in the time-interval described by I satisfy 
1/J. The expression I describes an either open or closed interval over the time domain 
and we sometimes use semi-algebraic expressions to refer to these intervals. We write 
o FMTL p iff the sequence o satisfies the MTL formula p. 

Complementary Specifications. Assume we have an SDL specification P and a set 
of formulas Min MTL. Now, P and M are complementary specifications if we require 
from the specified system that for all its timed observation sequences o = ( s0 , t0 ), ••• the 
following condition holds: s FSDL P 1\ o FMTL M. 

5. SPECIFYING DELAYS 

In this Section we will exemplify the application of complementary specifications to 
delay related real-time requirements. 

Liveness and Progress in the INRES example. Let us consider the INRES con­
nection establishment example in Figure 1 again and use a complementary specification 
in order to guarantee progress of the system. First, we will look at a liveness require­
ment that when a request for a connection establishment has been issued by sending a CR 
message, then the process Initiator will eventually receive either a CC or a DR signal, 
or it will eventually issue a IDISind signal to the service user. As pointed out earlier, 
apart from trivial liveness properties SDL does not have the expressiveness to capture 
more complex liveness properties like the one stated above. However, complementing the 



30 Part One Specification and Verification: Time-dependent Analysis 

SDL specification of the INRES example with the following MTL formula will express the 
desired liveness property: 

D(OUTPUT(CR) :::l O(INPUT(CC) V INPUT(DR) V OUTPUT(IDISind))). 

Now, as we argued in Section 2, it is important to assert that any of these responses to 
the sending of the CR signal happens within a reasonable period of time, say within t time 
units. In the SDL specification, the timer T has been used to require this, but we have 
argued above why the usage of the timer in this context cannot guarantee this condition 
to hold. Therefore we specify a real-time bounded response requirement using MTL in 
the following way: 

D(OUTPUT(CR) :::l 09(INPUT(CC) V INPUT(DR) V OUTPUT(IDISind))). 

PROCESSS 
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Figure 2. SDL Specification of SRS example. 

Maximal and Minimal Service Response Time. Consider the simple Sender/ Re­
cei-ver Service (SRS) specified in Figure 2. A user of the service requests the transmission 
of some data by sending a UDreq signal to the sender process S which in turn requests the 
transmission of the data from an (unspecified) medium service M by sending a MDreq. The 
medium service is unreliable. However, in case the transmission is successful the medium 
service will deliver the data to the receiver process R by means of an MDind message, and 
the receiver delivers the data to its user process. We assume that the medium service is 
capable of reliably indicating to the sender process by means of an MDcon signal whether 
the data has been delivered successfully to the receiver process, or by an MDrej that this 
is not the case. Successful delivery will be indicated to the service user of process S by an 
UDcon signal, and unsuccessful delivery by an UDrej signal. Now, we may like to require 
that if the service process S has received a UDreq, it will issue within at most t 1 time 
units either an UDcon or a UDrej signal to the service user in order to indicate successful 
or unsuccessful delivery of data. We describe this requirement by 

D( OUTPUT( UDreq) :::l 09, (INPUT( UDcon V UDrej))). 

In some situations it may also be interesting to state that between two events there is a 
minimal time that will always pass. The following formula states that if after the request 
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the data will eventually be successfully delivered by the medium service by issuing a MDind 
signal, then this will happen at least t 2 time units after the request has been issued. 

D((INPUT(MDreq) 1\ OOUTPUT(MDind)) :::> D<t• -.fNPUT(MDind)) 

Delay Jitter. Successive data units routed through a complex packet switched network 
may be subject to varying delays over time. The ATM service is, as one example, prone to 
this sort of delay variation [18], caused by changing network load or by routing successive 
cells on different routes. However, in particular multimedia applications which need to 
reconstruct continuous signals require data to be delivered within a time interval of around 
the mean value of the transmission delay, depending on the coding scheme used. The 
delay variance is called delay jitter and is formally defined as follows: let dmin denote 
the minimal and let d,..,.., denote the maximal delay between sending and receiving of a 
sequence of transmitted data units, then J = d,..,..,- dmin denotes the delay jitter. We use 
again the SRS example specified in SDL (see Figure 2), but this time we assume that the 
underlying medium service is reliable. We assume that dmin and d,..,.., are known constant 
values. The requirement bounding the delay jitter for the user interface service can then 
be specified by the formula 

D(INPUT(UDreq) :::> (D5c~,.;, --.OUTPUT(UDind)) 1\ (05d,.. •• OUTPUT(UDind))). 

Isochronous sending and receiving. lsochronicity is a characteristic feature of many 
multimedia applications. The isochronicity we refer to means that events, for example 
sending and receiving of data units, occur periodically at equally distanced points of 
time. Again, we refer to the SRS example. Isochronous sending is a characteristic of a 
traffic source, in particular of the coding scheme and algorithm used there. In SRS, the 
characterization of isochronous sending of the application served by process S reads 

D(INPUT(UDreq) :::> (-.<i><tlNPUT(UDreq) 1\ O=tlNPUT(UDreq))). 

The receiver may have to rely on having successive data units available at isochronous 
moments in time. This may be expressed in a way very similar to the isochronous send 
characterization, namely as 

D(OUTPUT(UDind) :::> (-.<i><tOUTPUT(UDind) 1\ O=tOUTPUT(UDind))). 

6. SPECIFYING QOS-MECHANISMS 

QoS Negotiation. Assume the SRS example to be embedded in a mechanism which 
allows the negotiation of certain QoS guarantees with the (unspecified) underlying medium 
service. We are not interested in the mechanism itself, but in specifying the effect that 
a successful renegotiation has. Assume that the process S is capable of requesting an 
increase in the medium service delay QoS parameter and that when the increase request 
is granted by the medium service (indicated by an INPUT(MINCcon) inside S), the 
delivery bound for successfully delivered packets is limited to t4. Hence, we require that 
whenever INPUT(MINCcon) has been executed, the delivery delay is henceforth limited 
to t4: 

D(OUTPUT(MINCcon) :::> 
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D((INPUT(MDreq) 1\ OOUTPUT(MDind)) ::J 09• OUTPUT(MDind))). 

Reaction to QoS Violation. It may be useful to specify a desired reaction on the 
violation of QoS requirement without implying that the violation invalidates the respective 
system behaviour. Let us assume that we monitor the response time behaviour of the 
medium service in SRS and that we require that if the medium service does not respond 
by either MDind or MDrej within t1 time units after the MDreq has been issued, an ALARM 
signal is to be issued after at most t 8 time units, with t 8 > t1. We specify this as 

D(..,(OUTPUT(MDreq) ::J 097 (INPUT(MDind) V INPUT(MDrej))) ::J 

(D97 ..,0UTPUT(ALARM) 1\ 09• OUTPUT(ALARM))). 

Delay Jitter Compensation. Guaranteeing a bound on the delay jitter does not 
yet guarantee isochronous delivery of messages to a user, even if the source is sending 
data isochronously. In order to compensate the residual delay jitter and to guarantee 
an isochronous delivery of data units to a user it is often suggested to use a jitter com­
pensation buffer between the network service and the user (e.g. the ATM playout buffer 
[18]). Assume that the process R in SRS has the functionality of a playout buffer. Then, 
R accepts the possibly non-isochronous but jitter-bounded data stream from the Medium 
service by MDind signals. Every signal will be delayed for a minimum time span of dt 
time units. This means that the first data units in a stream will fill the buffer up to a 
certain threshold number. Then, at latest t 2 > t 1 time units after the arrival at the buffer 
the data units will be delivered to the user by means of a UDind signal. The delivery 
of successive MDind signals then occurs isochronously with an inter-signal delivery time 
of p, which ideally should correspond to the inter-send event time at the sender in order 
to ensure an isochronous traffic with identical inter-send times on the sender as on the 
receiver side. The jitter compensation requirement for the process R reads 

D(INPUT(MDind) ::J ((o9 , ..,OUTPUT( UDind) 1\ 0 9 , OUTPUT( UDind))) 

AD( OUTPUT( UDind) ::J 0=pOUTPUT( UDind)). 

7. QOS VERIFICATION 

So far requirements capture has been our main interest. However, we will now point at 
verification questions arising from the use of complementary specifications in the described 
manner. Let us consider the SRS example again and let us assume that SRS has been 
translated into a logic specification S. Furthermore, assume the system performance to 
be described by the following minimal response time formula: 

'P: D((INPUT(MDreq) 1\ OOUTPUT(MDind)) ::J D<t• ..,OUTPUT(MDind)). 

Let a QoS requirement be described by the following formula: 

Q : D( OUTPUT( UDreq) ::J 0 9 , (INPUT( UDcon) V INPUT( UDreJ))). 

This gives rise to a verification problem, namely the question, whether based on S and 
'P the QoS requirement Q can at all be satisfied, hence whether the assertion 'P 1\ S ::::) Q 
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holds. Intuitively, the answer depends amongst others on the choice of values for t 1 and 
ts. To formally establish this conjecture it is necessary employ adequate formal verifica­
tion methods or model checking algorithms (see for example [1] for a formal verification 
approach, and [3] for a real-time model checking algorithm). 

8. CONCLUDING REMARKS 

We described a method for the specification of real-time constraint based QoS require­
ments for SDL specifications. Starting point was an analysis of SDL specifications and 
the insight that the SDL timer mechanism is unsuitable to express the important class 
of bounded response real-time requirements. We mapped SDL specifications to global 
state transition systems and showed how SDL system states and state transitions can be 
described in terms of logic formulas over state propositions. Next we connected stan­
dard real-time temporal logic specifications to SDL specifications and defined so-called 
complementary specifications. We then gave some general example specification for QoS 
requirements for SDL specifications. Examples included delay bounds, delay jitter bounds, 
and isochronicity requirements. We then showed how QoS mechanisms can be specified 
in the framework of our method, in particular QoS negotiation and QoS monitoring, and 
hinted at arising formal verification problems. 

Acknowledgements. The author wishes to thank all those who have commented 
on earlier versions of this paper, in particular Reinhard Gotzhein, Dieter Hogrefe, Peter 
Ladkin and Tony Savor. 

REFERENCES 

1. M. Abadi and L. Lamport. An old-fashioned recipe for real time. In [12}, pages 1-27, 1992. 
2. B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Computing, 

2:117-126, 1987. 
3. R. Alur, C. Courcoubetis, and D. L. Dill. Model checking for real-time systems. In Fifth 

Annual Symposium on Logic in Computer Science, pages 414-425, 1990. 
4. R. Alur and D. Dill. The theory of timed automata. In {12}, pages 45-73, 1992. 
5. R. Alur and T. A. Henzinger. Logics and models of real-time: A survey. In {12}, pages 

45-73, 1992. 
6. R. Alur and T. A. Henzinger. Real-time system = discrete system + clock variables. In 

T. Rus and C. Rattray, editors, Theories and Ezperiences for Real-Time System Develop­
ment, pages 1-30, 1994. To appear. 

7. F. Bause and P. Buchholz. Protocol analysis using a timed version of SDL. In J. Quemada, 
J. Mafias, and E. Vazquez, editors, Formal Description Techniques, III, pages 269-285. 
North-Holland, 1991. 

8. F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Protocol Specification. 
Prentice Hall International, 1991. 

9. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM, 
30(2):323-342, April1983. 

10. CCITT. Recommendation Z.100: CCITT Specification and Description Language (SDL). 
CCITT, Geneva, 1992. 

11. K.-T. Cheng and A. S. Krishnakumar. Automatic functional test generation using the ex­
tended finite state machine model. In Proceedings of the 30th Design Automation Conference 



34 Part One Specification and Verification: Time-dependent Analysis 

DAC-93, pages 86-91, 1993. 
12. J. W. de Bakker, C. Huizing, W.P. de Roever, and G.Rozenberg, editors. Real-Time: Theory 

in Practice, volume 600 of Lecture Notes in Computer Science. Springer-Verlag, 1992. 
13. S. R. Faulk and D. L. Parnas. On synchronisation in hard-real-time systems. Communica­

tions of the ACM, 31(3):274-287, March 1988. 
14. T. A. Henzinger. The Temporal Specification and Verification of Real-Time Systems. Phd 

thesis, Stanford University, Department of Computer Science, August 1991. Also published 
as Report No. STAN-CS-91-1380. 

15. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall International, 

1991. 
16. R. Koymans. Specifying Message Passing and Time-Critical Systems with Temporal Logic. 

PhD thesis, Technical University of Eindhoven, 1989. 
17. A. S. Krishnakumar. Reachability and recurrence in extended finite state machines: Mod­

ular vector addition systems. In C. Courcoubetis, editor, Computer Aided Verification: 
Proceedings of CAV'93, volume 697 of Lecture Notes in Computer Science, pages 111-122. 

Springer Verlag, 1993. 
18. J.-Y. Le Boudec. The asynchronous transfer mode: a tutorial. Computer Network and ISDN 

Systems, 24:279-309, 1992. 
19. M. T. Liu. Protocol engineering. In M. C. Yovitis, editor, Advances in Computers, vol­

ume 29, pages 79-195. Academic Press, Inc., 1989. 
20. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Speci­

fication. Springer-Verlag, 1992. 
21. P. M. Melliar-Srnith. Extending interval logic to real-time systems. In B. Banieqbal, H. Bar­

ringer, and A. Pnueli, editors, Proceedings of the Conference on Temporal Logic in Specifi­
cations, 1987, volume 398 of Lecture Notes in Computer Science, pages 224-242. Springer­

Verlag, 1989. 
22. M. Merritt, F. Modugno, and M. R. Tuttle. Time-constrained automata. In CONCUR 91: 

2nd International Conference on Concurrency Theory, Lecture Notes in Computer Science 
527, 1991. 

23. H. Saito, T. Hasegawa, andY. Kakuda. Protocol verification system for SDL specifications 
based on acyclic expansion algorithm and temporal logic. In K. R. Parker and G. A. Rose, 

editors, Formal Description Techniques, IV, pages 511-526. North-Holland, 1992. 
24. K. J. Turner, editor. Using Formal Description Techniques. John Wiley & Sons, 1993. 

BIOGRAPHY 

The author received his Master's Degree in Computer Science (Diplom-Informatiker) from the 
University of Hamburg, Germany, in 1991, and his Ph.D. degree from the University of Berne, 

Switzerland, in 1995. Currently, he is an Assistant Professor at the Electrical and Computer 
Engineering Department of the University of Waterloo, Canada. His research interests are in 

the area of software engineering for telecommunications and distributed systems, in particular 
in specification, verification, implementation and reliability aspects. 


