
13

Validation, verification and
implementation of timed protocols
using AORTA

S. Bradley, W.D. Henderson, D. Kendall and A.P. Robson
University of Northumbria at Newcastle
Department of Computing, University of Northumbria at Newcastle,
Ellison Place, Newcastle upon Tyne, NE1 8ST, UK. Telephone: +44 191
227 4662. Fax: +44 191 232 8561. Email: steven.bradley@unn.ac.uk

Abstract
AORTA is an implementable timed process algebra which has been proposed as a design
language for hard real-time systems. In this paper we show how AORTA can be used
to design and model timed protocols, illustrated by the alternating bit protocol. We
also describe tools which have been developed for simulation, verification and automatic
implementation of AORTA systems, and outline a relationship between the formal models
which are verified and the code which is generated.

Keywords
AORTA, real-time, verification, communication, protocol

1 INTRODUCTION

Communication protocols and embedded hard real-time systems share many important
features - timing, concurrency and communication are central issues to the designers of
both. Because of this close relationship, many embedded system design techniques can
be applied to communication protocols and vice-versa, and in this paper we show how
AORTA (Bradley, Henderson, Kendall and Robson 1994a) can be applied to timed com­
munication protocols. The main distinction between AORTA and other timed process
algebras such as ET-LOTOS (Leduc and Leonard 1993), TCSP (Schneider, Davies, Jack­
son, Reed, Reed and Roscoe 1991) and TCCS (Moller and Tofts 1989) is that AORTA
is aimed specifically at design, whereas other algebras are meant as wide-spectrum lan­
guages, useful for specification, design, and modelling. Because of its focus, AORTA is
in some ways more restrictive and in some ways more expressive than these languages,
to guarantee that designs can be implemented directly. Rather than using timed bisim­
ulations or preorders, which relate systems at different levels of abstraction in the same
language, we have chosen to use timed model-checking (Alur, Courcoubetis and Dill1990)
to verify that an AORTA system satisfies its specification which we express using a tern-

P. Dembiński et al. (eds.), Protocol Specification, Testing and Verification XV
© IFIP International Federation for Information Processing 1996

206 Part Five Validation and Testing

porallogic. To demonstrate the practicality of AORTA, a set of tools has been developed,
which allow systems to be simulated, verified and automatically implemented.

The structure of the paper is as follows. After introducing the syntax of AORTA in
section 2, a description of the alternating bit protocol in AORTA is given in section 3; this
example is used throughout the paper to illustrate the techniques described. Validation
and testing of AORTA systems by simulation is described in section 4, and verification by
model-checking is explained in section 5, including a translation from AORTA to timed
graphs. These timed graphs are used not only in verification, but also in implementation,
providing assurance that verification theorems apply directly to the implementation. We
also show in sections 4 and 5 how AORTA can be used to model different assumptions
about the behaviour of a communication line, ranging from bounds on the time taken
to transmit, to the loss of messages. The use of code generation techniques, and their
relationship to timed graphs, are then outlined in section 6, before the concluding section 7.

2 AORTA SYNTAX

AORTA is a timed process algebra, and draws on untimed process algebras, in partic­
ular CCS (Milner 1989), for its syntax. Each AORTA system is statically defined as a
parallel composition of sequential processes, which may intercommunicate. Each indi­
vidual process may wait for communication (all communication is synchronised and so
blocks progress), perform computation, branch between different behaviours, recurse, or
do nothing. The simplest process which can be defined is

A = a.A

which waits for communication on gate a, before behaving like process A. In other words
the process is always ready to offer a actions. A simple buffer process can be defined by
adding computation and recursion, so that

A=a. [5.0,15.0]b.A

·describes a process which communicates on gate a (possibly accepting some data), per­
forms some computation, which takes between 5.0 and 15.0 time units to complete, before
communicating on gate b (possibly offering some data) and returning to the start again.
There are two important points to note here, firstly that data is not handled explicitly
in AORTA (although there are extensions which do (Bradley, Henderson, Kendall and
Robson 1995a)), so computation is represented only by the amount of time it takes, and
secondly that computation delays can be represented as bounds on execution times rather
than exact figures. The use of bounds for computation delays (as well as for communi­
cation delays and time-outs) makes it much easier to provide verifiable implementation
techniques. Implementation, however, will be considered in more detail in section 6.

Behaviour branching which is dependent on communication is represented by the +
operator. Two or more communications are offered at once, and the subsequent behaviour
depends on which is taken up first. This operator can be used to implement a channel
which accepts and delivers two kinds of messages:

Channel

Validation, verification and implementation of timed protocols

communication
communication choice
bounded delay
bounded time-out
non-deterministic choice
recursion

a.S
a1.S1 + + an.Sn

[t1,t2]S
(a1.S1 + ... + an.Sn)[t1,t2>S

51 ++ ... ++ Sn
equational definition

Table 1 Summary of AORTA sequential process syntax

in1. out 1. Channel
+
in2.out2.Channel

207

Here once another process sends a message via in1, the channel is not available until the
message is received at the far end (gate out1). As well as using choice, communication
can be extended with time-out, which allows another behaviour branch to be followed if
no communication occurs within a certain time. This could be used to force a limit on
how long the channel would wait for a message to be accepted:

Channel in1.out1.Channel[5.0,5.1>Channel
+
in2.out2.Channel[5.0,5.1>Channel

Notice that a time-out is associated with the nearest preceding communication- out1
and out2 respectively, in this example - and that time bounds can be used in specifying
the time-out value.

There are other forms of branching behaviour which do not depend on communication,
such as data dependent branching and faulty behaviour. These are both represented by
the non-deterministic choice operator ++ in AORTA, which we shall describe in a little
more detail in section 4. As usual, repetitive behaviour is expressed using recursion which
is introduced by equational definition. We require that all recursion is guarded by a
communication when reformulated as a fixed point. Table 1 summarises the syntax of
sequential processes.

Having defined the processes that make up a system, they must be placed in parallel and
have their gates connected for either internal or external communication. Communication
delays (again, expressed with bounds) are also given at the system level, to represent
the amount of time taken for the system to notice and effect any communication. All
of this information is given in the connection set, which lists pairs of gates for internal
connection (each gate may only be connected once) and externally connected gates, and
the corresponding delay bounds. These connection sets can be realised graphically, and
together with the processes correspond to Milner's flow graphs (Milner 1989). An example
of a connection set is given in the next section, where we describe the alternating bit
protocol in AORTA.

208 Part Five Validation and Testing

3 ALTERNATING BIT PROTOCOL IN AORTA

The alternating bit protocol is a widely discussed example, probably because it is one
of the simplest examples of a protocol which can do something 'useful'- it guarantees
integrity of communication in a situation where messages may be duplicated or lost. Our
description is based on Milner's CCS description in (Milner 1989). We are concerned with
constructing Send and Reply processes which can be connected by possibly noisy channels
Trans and Ack. The way the alternating bit protocol works is that messages and acknowl­
edgements are tagged with a bit (0 or 1), with successive messages and acknowledgements
being tagged with alternating bits. Having sent a 0-tagged message, the sender waits for
a 0-tagged acknowledgement; if one does not arrive within a certain amount of time, the
message is sent again. Once an acknowledgement does arrive, the next message can be sent,
this time tagged with a 1. The replier, meanwhile, waits for a 0-tagged message, delivers
the data, and sends a 0-tagged acknowledgement. If it receives another 0-tagged message
it simply sends another 0-tagged acknowledgement, but a 1-tagged message causes it to
deliver the message and return a 1-tagged acknowledgement and so on.

The Reply process is the simpler of the two, and is defined in AORTA as follows

Reply~ transO.DeliverO
DeliverO ~ deliver.ReplyO
ReplyO ~ replyO.(trans1.Deliver1+transO.ReplyO)
Deliver1 ~ deliver.Reply1
Reply1 ~ reply1.(transO.DeliverO+trans1.Reply1)

A time-out is added to the Send process to resend messages if acknowledgements are not
sent within a certain amount of time.

Send~ accept.SendO
SendO ~ sendO.SendingO
SendingO ~ (ackO.Accept1 + ack1.Sending0)[100.0,101.0>Send0
Accept1 ~ accept.Send1
Send1 ~ send1.Sending1
Sending1 ~ (ack1.Accept0 + ackO.Sending1)[100.0,101.0>Send1
AcceptO ~ accept.SendO

The channel processes Trans and Ack can also be modelled in AORTA. A simple model
of these processes has them accepting transmissions or replies, and passing them on after
a certain delay, but without loss or replication. In AORTA, this is written

Ack ~ reply1.([25.0,75.0]ack1.Ack)

Trans

+
reply0.([25.0,75.0]ackO.Ack)

send0.([25.0,75.0]transO.Trans)
+
send1.([25.0,75.0]trans1.Trans)

Validation, verification and implementation of timed protocols 209

Notice here that if the minimum delay of 25 time units is taken by both buffers then the
acknowledgement will reach the Send process before the 100 unit time-out expires, but if
the maximum delay of 75 is incurred, then the sending process will retransmit its data.
These processes are connected up with the Send and Reply processes, by defining the
parallel composition and connection set

(Send I Reply I Ack I Trans)
<(Send.sendO,Trans.sendO: 0.5,1.0),

(Send.send1,Trans.send1 ~ 0.5,1.0),
(Send.ackO,Ack.ackO : 0.5,1.0),
(Send.ack1,Ack.ack1 : 0.5,1.0),
(Reply.replyO,Ack.replyO : 0.5,1.0),
(Reply.reply1,Ack.reply1 : 0.5,1.0),
(Reply.transO,Trans.transO: 0.5,1.0),
(Reply.trans1,Trans.trans1: 0.5,1.0),
(Send.accept,EXTERNAL : 0.5,1.0),
(Reply.deliver,EXTERNAL : 0.5,1.0)>

Connections are listed inside angle brackets, and each connection has an associated com­
munication delay which specifies the bounds on the time interval from the inception to
the completion of a communication via this connection for both partners.

4 SIMULATION AND VALIDATION

AORTA has a formal semantics, given in terms of a timed transition system defined by
operational rules (Bradley et al. 1994a). If an AORTA expression S1 becomes S2 after t
units of time, this is written

S (t) s
1--+ 2

and if a communication a takes place, this is written

where a can be a gate name (for external communication) or the distinguished action
T (for internal communication). This behaviour can be observed by using the AORTA
simulator, which takes an AORTA description of a system (such as the one described in
section 3) and allows the behaviour to be stepped through using a simple menu-driven
system. This much is similar to other simulators, such as can be found in the concurrency
workbench (Cleaveland, Parrow and Steffen 1993) or other tools, but there is also a facility
for showing graphically which communications are available.

After each transition (time or action), a menu of possible further transitions is offered,
with any possible action transitions displayed on the system layout diagram. If an action
transition is chosen then the corresponding connection is flashed on the diagram. If a time
transition is chosen then a further prompt asks for a time value, or one of the commands
NEXTCRUCIAL and NEXTCOMM. The two commands progress time up to the next crucial

210 Part Five Validlltion and Testing

point (the end of a delay or time-out) and the next possible internal communication
respectively. If a time value is given the system will be aged by that amount, provided it
does not go through a possible internal communication. All internal communications must
take place as soon as they become available (the maximum progress principle, enforced
in the semantics), and the communication delay follows the occurrence of the r action in
the semantics.

The non-determinism expressed in time bounds and non-deterministic choice, has to
be resolved by the simulator somehow. There is a variety of tactics available, which are
prompted for when the simulator is started up. Resolution of time bounds can be done
by always choosing the minimum value, always choosing the maximum value, choosing a
random value, or always prompting the user for a value. Resolution of non-deterministic
choice is always achieved by prompting the user.

Using the simulator, a system can be tested (although still using the formal semantics)
before an attempt is made to formally verify it via model-checking (see section 5), or to
implement it via code generation (see section 6). This approach can save a lot of time and
frustration spent trying to verify properties that are not true.

The alternating bit protocol system can helpfully be exercised with this simulator. By
choosing time bounds to be resolved to the minimum value, the protocol is never required
to retransmit data, so the normal behaviour can be examined. If maximum values for times
are chosen the sending process always has to time-out, so that part of the behaviour is
exercised. Different assumptions about buffer behaviour can be built into the system by
altering the Trans and Ack processes and simulating the behaviour of the new system. For
example, to include the possibility of the transmit buffer losing one of the messages we
can use non-deterministic choice to represent failure. Non-deterministic choice is written
with the ++ operator, which chooses between the branches non-deterministically, so we
can have one branch as normal behaviour and another as faulty behaviour. A version of
the Trans process which allows for the possibility of messages being lost, but which has
no delays involved except internal communication delays, is given by

Trans= sendO.((transO.Trans) ++Trans)
+
send1.((trans1.Trans) ++Trans)

but this process allows arbitrarily many messages to be lost. This is the general case for
such a channel, but no bounded response theorems can be proved of a system which may
have to repeat a message arbitrarily many times. To describe a channel which may lose
at most one copy of each message, this must be changed to

Trans= sendO.((transO.Trans) ++ (sendO.transO.Trans))
+
send1.((trans1.Trans) ++ (send1.trans1.Trans))

Such use of the ++ operator to represent failures is a powerful tool in modelling assump­
tions that can be made about a system, and can be used to evaluate to what extent a
system may be perturbed before losing functionality. When this second process is used in
the system, the simulator asks the user to choose between the two cases, corresponding to
whether a message is to be transmitted at the first attempt, or whether a retransmission

Validation, verification and implementation of timed protocols 211

will be necessary. In either case, the simulator validates that the protocol successfully
delivers the message and acknowledges the transmission. The formal verification of this
fact can be automatically achieved by model-checking, as described in the next section.
The duplication of messages can be handled in a very similar way.

5 TIMED GRAPHS AND VERIFICATION

Approaches to the automatic verification of finite-state concurrent systems have been
known for more than a decade (Emerson and Clarke 1982, Clarke, Emerson and Sistla
1986). Such techniques are based upon checking that the state graph of a concurrent
system is a model for the temporal logic formulae which are used to specify desired system
properties. Such an approach is of great practical interest because it allows the developer
to verify a system without constructing a proof and because, when the verification fails,
it is possible to provide automatically a trace of the unsatisfactory behaviour; this can
be very useful in debugging. Recent work has shown how systems with a large number of
states can be checked by using a symbolic representation of the state graph (Burch, Clarke,
McMillan, Dill and Hwang 1992, McMillan 1993) and how this approach can be adapted
to the verification of real-time systems (Alur, Courcoubetis and Dill 1993, Henzinger,
Nicollin, Sifakis and Yovine 1994).

5.1 Timed graphs

Timed graphs (Alur et al. 1990) have been shown to be appropriate models for real-time
systems and have been adopted in the construction of model-checking tools (Nicollin,
Sifakis and Yovine 1992, Yovine 1993). Our present approach to verification depends
upon translating AORTA expressions to timed graphs in order to make use of such tools.
In this section, we describe in detail the basis of this translation which follows closely
that of (Nicollin et al. 1992) but differs in a number of interesting respects. The syntactic
restrictions on AORTA allow a simpler translation and lead to graphs which inevitably
possess a number of desirable properties including bounded variability (only a bounded
number of transitions are possible in a finite time) and non-zenoness (time is always
able to progress eventually). A translator has been implemented in Standard ML and
incorporated into the AORTA tool set. We adapt the variant of timed graphs described
in (Nicollin et al. 1992) and present the relevant definitions here for completeness.

A timed graph is an automaton which is extended with a finite set of clocks where a
clock is a real-valued variable which records elapsed time. Clocks advance uniformly with
time or can be reset to zero. We assume throughout that the time domain is the non­
negative reals although our results hold for other domains such as the natural or rational
numbers.

For a finite set of clocks C and rationals Q, the set of clock formulae :F(C) is

:F(C) = {c ~ricE C,r E Q}

A clock valuation v E R0 is a function which assigns to each clock c E C a value
v(c) E R. We write v + t for the valuation v' such that v'(c) = v(c) + i for all c E C,
and for C' ~ C we write v[C' := 0] for the valuation v' such that v'(c) = 0 for c E C'

212 Part Five Validntion and Testing

and v'(c) == v(c) otherwise. The evaluation of clock formula f given clock valuation v is
written f(v) and we say v satisfies a clock formula c ~ r if v(c) ~ r.

Definition 1 A timed graph is a tuple, (N, n°, C, E, tcp), where

• N is a finite set of nodes
e n° is the initial node
• C is a finite set of clocks
• E ~ N x Label X :F(C) X 2c X N is a finite set of edges representing transitions.

Each transition (n, l, f, C', n') E E consists of a source location n and a target location
n' E N, a label!, a clock formula f and a set of clocks C' ~ C.

• tcp: N-+ Rc-+ R-+ Bool is a predicate which determines for each location n, clock
valuation v and time value t whether the system can remain at location n while time is
allowed to progress by an amount t.

A timed graph gives rise to a labelled timed transition system, (S, s0 ,----+) where

• S == N x Rc is the set of states
• s0 == (n°, v[C :== 0]) is the initial state, and
• the transition relation ----+ is given by the rules

I . I (n,a,f,C',n') E E 1\ f(v)
ActiOn (n,v)~(n',v[C' :== 0])

~ tcp(n)(v)(t)
~ (t)

(n, v)----+(n, v + t)

5.2 Translation method

We first give an abstract syntax for AORTA expressions. For a finite indexing set I,
i,j E J, a finite set of gate names Act, a; E Act, and a set of process names Proc,
X E Proc, the set of sequential expressions Seq with S, S; E Seq, is given by

which correspond to summation, time-out, non-deterministic choice and recursion, re­
spectively. As usual, we write a sum over an empty indexing set as 0, the process which
can not perform any action. Computation delay and deterministic versions of the timed
operators then have natural abbreviations as follows:

[t1, t2]S

[t]S
S1 t>tS2

def

def

def

0 t>i~ s
o t> 1S

s1 t>:s2

Non-deterministic computation delay

Deterministic computation delay

Deterministic time-out

Although computation delays have equivalent formulations as time-outs at this level of
abstraction, the notation for them is introduced not simply for convenience but because
they require a different treatment in implementation as will become apparent in section 6.

Validation, verification and implementation of timed protocols 213

The set of system expressions Sys, 1/J E Sys, being the parallel composition of a finite
number of sequential expressions, is given by

1/J ::= IlS; < K >
iEI

where K is a finite set of internal connections, each connection being represented by an
unordered pair of gate names; we require that each gate is connected either to exactly one
other gate or to its environment via a single external connection and assume the latter
in the case of any gate name occurring in a system expression but not in its associated
connection set.

We first give the translation for sequential process expressions. The translation depends
on the fact that every sequential process can be implemented using a single clock (we write
c. for the clock associated with process S and abbreviate the singleton {c.} to c. when
the context is clear). The clock associated with a sequential process is reset on every
transition and so simply records the time since the process last made a transition. For a
sequential process S and its associated clock c., we define a compositional translation to
a timed graph based on the structure of S.

In order to do this we introduce a new distinguished action f fl. Act, which is used to
label time-out transitions and transitions arising from the resolution of non-deterministic
choice. The set of labels is then Label= Act U { T, f}.

The translation is given by a function 9[-] which takes an AORTA expression to its
equivalent timed graph. Figure 1 shows the graph constructed for the Send process in the
alternating bit protocol. It exhibits a pleasing symmetry which reflects that found in the
process description.

Summation In general, a sum has the form Lie! a;.S;. The translation for this expression
covers the cases of the 0 process and also action prefixing, in addition to deterministic
choice.

For a gate a, let the lower and upper bounds of the possible communication delay
of a be written la and ua, respectively. Then, if for i E I the graphs of [/a,, ua.JS; are
(N;, n?, c., E;, tcp;), then

9[Ea;.S;] = (N U {n°},n°,c.,E, tcp)
iEI

E = U E; U {(n°, a;, tt, c., n?)li E I}
iEI

and tcp(n;) = tcp;(n;) for all locations n; EN; and tcp(n°)(v)(t) = tt for any clock
valuation v and time value t.

Time-out Let Q[S;] = (N;, n?, c., E;, tcp;) for i E {1, 2}. Then

214 Part Five Validation and Testing

where

and tcp(n;) = tcp;(n;) for all locations n; E N; except that tcp(n~)(v)(t) is tcp1 (n~)(v)(t)/\
v(c,) + t :S t2.

The case of non-deterministic time-out presented here subsumes deterministic time-out
and computation delay in an obvious way.

Non-deterministic choice ForiE I let Q[S;] = (N;, n?, c., E;, tcp;). Then

9[ffiS;] = (NU {n°},n°,c.,E,tcp)
iEl

where N = U;eJ N;, n° ~ N,

E = U E; U { (n°, E, tt, c., n?) li E I}
iEI

and tcp(n;) = tcp;(n;) for all locations n; E N; and tcp(n°)(v)(t) = ff for any clock
valuation v and time value t. In other words the choice must be resolved before time can
progress.

Recursion The syntactic restrictions on the use of recursion allow its translation to pro­
ceed in a very straightforward manner. When a process name X is encountered in the
translation of a sequential expression, its translation is simply the graph associated with
X; such an association will exist if X has been encountered before but not otherwise. In
the latter case, we associate 9[0] with X and add X to a list of names whose graphs are
yet to be constructed. Following the first pass of our translation, we construct the graph
for each name in this list, by translating the right-hand side of the defining equation for
the name. The initial node of each graph constructed in this way is identified with the
initial node of the graph previously associated with the name. We continue in this way
until we have constructed the graphs for all names encountered.

Parallel composition In giving the translation for parallel composition we adopt the
following notational abbreviations:

N for N1 x N2 x ... x N111
ii for (n1,n2, ... ,n111)
ii;j for (nt, n2, ... n;, ... nj, ... n111)
iii'j' for (nt,n2, ... n;, ... nj, ... niii)

where we assume some indexing set I, {i,j} ~I, i "1- j.
The translation for an AORTA system expression is given by

9[llS; < K >] = (N,n°,{cs,li E I},E,tcp)
iEI

Validation, verification and implementation of timed protocols

The set of transitions is E = IC U EC U TO, where

IC

EC

{ (rljj, T, tt, { cs,, cs,}' n;•j•) I
(n;,a,tt,cs,,n;) E E;,(nj,b,tt,cs,,nj) E Ej,(a,b) E I<}
{ (n;, a, tt, { csJ, n;•)I

215

(1)

(n;,a,tt,c5,,n;) E E;,(a,_) ~ I<,(n;,_,_,_,_) ~ JC} (2)

TO= {(n;,f,¢,{c5J,n;•)l(n;,a,¢,c5,,n;)EE;} (3)
For any location n E N, clock valuation v and time value t, tcp(n)(v)(t) is 1\iei tcp;(n;)(v)(t)
except that for any location n such that (n, _, _, _, _) E JC we require that tcp(n)(v)(t) is
false; in other words, time can progress only when all processes allow it but even then,
not at any location which has the capacity for internal communication, so enforcing the
maximal progress principle.

The sets (1) - (3) give the transitions for internal communication, external commu­
nication and time-outs / nondeterministic choice, respectively. Notice that an external
communication is allowed only in a state where no internal communication is possible.
This simple priority mechanism ensures the desirable implementation property that a
component cannot become swamped by communication with its environment.

The labelled transition system induced by the timed graph constructed for an AORTA
expression is equivalent to that given directly by the AORTA semantics (Bradley et al.
1994a). We omit the proof and the semantics for reasons of space.

We observe that the graphs constructed by this approach have a rather simple struc­
ture in that the only edges which are constrained by a clock condition are those arising
from time-outs and computation delays and then only by a simple constraint on a single
clock. We intend to explore whether this simplicity of structure can be exploited in the
construction of a more efficient model checker.

5.3 Using KRONOS to verify timing requirements

KRONOS (Nicollin et al. 1992, Yovine 1993, Olivero and Yovine 1993) is a symbolic model
checker which implements the approach described by Henzinger et al. (Henzinger et al.
1994). It allows timed graphs to be checked for properties expressed in the real-time logic
TCTL (Alur et al. 1990).

For a finite set of atomic propositions P, the formulae of TCTL are defined as follows:

where pEP, n is a natural number and #is one of the relational operators <, S, =, ;:::,
or>.

TCTL formulae are interpreted over the sequences of states generated by the transition
system of a timed graph. The details can be found in (Henzinger et al. 1994). Intuitively,
.pau#n¢2 means that there exists a sequence with a finite prefix such that ¢2 is satis­
fied by the last state at time t where t#n and ¢ 1 is satisfied continuously until then.
cP1VU#ncP2 means that for every sequence this property holds. A number of abbreviations
are commonly used: VO#ncP for ttVU#ncP, 30#ncP for tt3U#ncP, 3D#ncP for --NO#n""cP,
and vo#ncP for -,3()#n ""cP·

216 Part Five Validation and Testing

Figure 1 The timed graph of the Send process

TCTL is expressive enough to allow us to express most system properties of interest.
For example, a bounded response property can be easily stated,

\7'0 (st imulus==>V'0::;5response)

which captures the requirement that after any occurrence of a stimulus, a response will
always happen within 5 time units. Other useful properties such as bounded invariance,
bounded inevitability, self-stabilization and so on can be expressed just as easily.

For a timed communication protocol the property of most interest is that, under certain
assumptions, a message which is accepted for sending will eventually be delivered correctly
within a certain time; in other words a bounded response property. In the context of our
description of the alternating bit protocol, such a property can be stated as

init==}\{0 (after (accept)==>V'<>:52ooenable (deliver))

Of course it is possible also to state and check properties concerning the correct oper­
ation of the protocol, namely that the sending of a message strictly alternates with the
receiving of a message and that whenever a 0-tagged (respectively, 1-tagged) message is
sent a 0-tagged (respectively, 1-tagged) message is received (Clarke et al. 1986).

It is of most interest in this case to explore the design of the protocol by checking these

Validation, verification and implementation of timed protocols 217

properties under varying assumptions about the transmission and acknowledgement chan­
nels, in much the same way as we discussed in section 4 on the use of the simulator. We
have used KRONOS to check the bounded response property for the protocol assuming
error-free communication and also assuming that the transmission channel loses at most
one message between successful deliveries. It can be seen easily how this approach can
be extended to check this property under more elaborate assumptions about possible
communication faults including lost, garbled or duplicated transmissions and/or acknowl­
edgements.

6 IMPLEMENTATION VIA CODE GENERATION

Having validated and verified the AORTA system, there are semi-automatic techniques
for implementing the design. These techniques are discussed in some detail in (Bradley,
Henderson, Kendall and Robson 1994c, Bradley, Henderson, Kendall and Robson 1994b).
In this section we concentrate on the implementation of the individual processes, and
its relationship to the construction of timed graphs for model-checking described in sec­
tion 5. Once the individual processes have been constructed they can either be executed
separately (as would be the case for a distributed implementation of the alternating bit
protocol), or multitasked on the same processor. Multitasking complicates the issue of
timing, but this is addressed using a dedicated AORTA kernel (Bradley eta!. 1994c).

The construction of code to implement an AORTA process can be done for any impera­
tive language which admits timing analysis. Here we use C for entirely pragmatic reasons,
viz. the availability of cross compilers and timing tools (Park and Shaw 1991, Park 1993);
in effect we use C as a portable assembler. Although some work has been done on im­
plementing process algebra systems using synchronous languages, our work uses more
standard techniques, and does not rely on the standard synchronous language assump­
tions about the immediate responsiveness of the computer system.

Code can be generated for all parts of the program which are related with commu­
nication, choice, time-out and recursion, which accounts for all of the Send and Reply
processes. The structure of the process is built up in exactly the same way as the timed
graph for the process, with each state of the timed graph corresponding to a label within
the generated C program. Thus a transition to a state corresponds to a C goto state­
ment. Communication is handled by a kernel call (Bradley et a!. 1994c), which takes an
array of gates to be offered in choice, and returns a value corresponding to which gate
communicates first. For a simple communication with no choice, such as is found in the
Send process in the equation

SendO = sendO.SendingO

the generated code looks like this

I* process section SendO. Code for
sendO.SendingO *I

Send0_1:
gatenames [0] GATEsendO;

218 Part Five Validation and Testing

gatenames[1] = 0;

switch (communicate(PROCSend,gatenames,gatevalues)){
case 1: goto Send0_2;
}

where the array gatenames contains the names of the gates, terminated with a 0, and the
array gatevalues is used for passing data in and out during communication (not used
here for simplicity). The label Send0_2 is used to pass control to the process SendingO, via
another goto. It would be possible to use a more sophisticated approach which eliminated
the 'goto a goto', but this will be done by most compilers anyway, so the resulting object
code will have exactly the same structure as the corresponding timed graph.

A more complicated communication, which offers a choice and has a time-out can be
found in the definition

I* process section SendingO. Code for
(ack0.Accept1 + ack1.Sending0)[100.0,101.0>Send0 •I

Sending0_1:
gatenames [0]
gatenames [1]
gatenames [2]

GATEackO;
GATEack1;
0;

switch (communicatet(PROCSend,100000,gatenames,gatevalues)){
case 0: goto Sending0_4;
case 1: goto Sending0_2;
case 2: goto Sending0_3;
}

Here there are two gates in the gatenames array, and the kernel call has an extra argument
which specifies the minimum real-time clock increment required to activate the time-out.
This time the value 0 is returned if the time-out takes place, and the values 1 and 2
correspond to communications on the gates ackO and ack1 respectively.

In the Send process there are no computation delays or non-deterministic choices, but
these are implemented by annotating the design with the relevant piece of hand-written
C code or branch condition, so that they are inserted into the code at the correct point
(corresponding to the relevant node or edge of the timed graph).

Using these small pieces of code, connected by gotos, the whole process is built up,
forming a graph which corresponds to that described in section 5 in topology at least.
The labels on the graph nodes and edges define the timing behaviour of the system.
This timing behaviour is guaranteed by the timing analysis of the kernel, combined with
code timing of any pieces of computation (Bradley et al. 1994c). Having formed a graph
topologically equivalent to the timed graph, and with the timing constraints on nodes and
edges guaranteed by the kernel, we can have confidence that any properties of the system
proved by model-checking will hold of the implemented system. The implementation of
communication is handled entirely by the kernel. Internal connections are managed by
checking through a list of pairs of connected gates, and external communication is achieved

Validation, verification and implementation of timed protocols 219

by supplying an I/0 function in a standard form, which is called if the corresponding gate
is waiting for communication. Because these I/0 functions are in a standard form they
are very easily replaced, so help to make small-scale prototyping very easy.

If only some of the processes are to be implemented in this way, then model-checking can
only prove properties based on assumptions about the way other processes will behave.
In the case of the alternating bit protocol, this means that we have to make assumptions
about the way the Ack and Trans buffers will behave. If they behave in the way they
are modelled (losing at most one copy of any single message, for example) then verified
propertied of the whole system will hold.

7 CONCLUSION

We have described AORTA, an implementable real-time algebra, and shown how it can be
used to model the alternating bit protocol which, although simple, captures many impor­
tant features of communication protocols. We have also shown how AORTA systems can
be validated via simulation, and formally verified through model-checking. Finally, imple­
mentation techniques for AORTA systems have been partly described, and a relationship
established with the timed graph model used in the formal verification. AORTA has been
used to describe more complex systems, such as a car cruise controller (Bradley et al.
1994a) and a submersible control and logging system (Bradley, Henderson, Kendall, Rob­
son and Hawkes 1995b), which has been implemented using the techniques outlined here.
Although translation of process algebras to timed graphs is not new (Nicollin et al. 1992),
and timed graphs have been used for model-checking of timed protocols (Daws, Olivero
and Yovine 1994), the novelty of our work is in providing a tool-supported framework in
which timed systems can be designed, tested, verified and verifiably implemented.

Current and future work on AORTA includes the development of more efficient model­
checking algorithms, the use of more advanced scheduling algorithms for implementation,
and further investigation into the distributed and parallel implementation of systems.

ACKNOWLEDGEMENTS

The authors would like to thank the University of Northumbria at Newcastle and Northern
IT Research for their financial support, and the anonymous referees for their comments
on an earlier draft of this paper.

REFERENCES

Alur, R., Courcoubetis, C. and Dill, D. (1990) Model-checking for real-time systems, IEEE
Fifth Annual Symposium On Logic In Computer Science, Philadelphia, pp. 414-425.

Alur, R., Courcoubetis, C. and Dill, D. (1993) Model-checking in dense real-time, Infor­
mation and Computation 104, 2 - 34.

Bradley, S., Henderson, W. D., Kendall, D. and Robson, A. P. (1994a) Application­
Oriented Real-Time Algebra, Software Engineering Journal9(5), 201-212.

220 Part Five Validation and Testing

Bradley, S., Henderson, W. D., Kendall, D. and Robson, A. P. (1994b) Designing and im­
plementing correct real-time systems, in H. Langmaack, W.-P. de Roever and J. Vy­
topil (eds), Formal Techniques in Real-Time and Fault-Tolerant Systems FTRTFT
'94, Lubeck, Lecture Notes in Computer Science 863, Springer-Verlag, pp. 228-246.

Bradley, S., Henderson, W. D., Kendall, D. and Robson, A. P. (1995a) Modelling data
in a real-time algebra, Technical Report NPC-TRS-95-1, Department of Computing,
University of Northumbria, UK. Submitted for publication.

Bradley, S., Henderson, W. D., Kendall, D., Robson, A. P. and Hawkes, S. (1995b) A for­
mal design and implementation method for systems with predictable performance,
Technical Report NPC- T RS-95-2, Department of Computing, University of Northum­
bria, UK. Submitted for publication.

Bradley, S., Henderson, W., Kendall, D. and Robson, A. (1994c) A formally based hard
real-time kernel, Microprocessors and Microsystems 18(9), 513-521.

Burch, J., Clarke, E., McMillan, K., Dill, D. and Hwang, L. (1992) Symbolic model check­
ing: 1020 states and beyond, Information and Computation 98(2), 142-170.

Clarke, E., Emerson, E. and Sistla, A. (1986) Automatic verification of finite-state concur­
rent systems using temporal logic specifications, ACM Transactions on Programming
Languages and Systems 8(2), 244-263.

Cleaveland, R., Parrow, J. and Steffen, B. (1993) The concurrency workbench: A
semantics-based tool for the verification of concurrent systems, ACM Transactions
on Programming Languages and Systems 15(1), 36-72.

Daws, C., Olivero, A. and Yovine, S. (1994) Verifying et-lotos programs with kronos.
Emerson, E. and Clarke, E. (1982) Using branching-time temporal logic to synthesize

synchronization skeletons, Science of Computer Programming 2(3), 241-266.
Henzinger, T., Nicollin, X., Sifakis, J. and Yovine, S. (1994) Symbolic model checking for

real-time systems, Information and Computation 111(2), 193-244.
Leduc, G. and Leonard, L. (1993) A timed lotos supporting dense time domain and

including new timed operators, Formal Description Techniques V, 87-182.
McMillan, K. (1993) Symbolic Model Checking: An approach to the State Explosion Prob­

lem, Kluwer.
Milner, R. (1989) Communication and Concurrency, Prentice Hall, New York.
Moller, F. and Tofts, C. (1989) A temporal calculus of communicating systems, Technical

Report ECS-LFCS-89-104, Edinburgh University.
Nicollin, X., Sifakis, J. and Yovine, S. (1992) Compiling real-time specifications into ex­

tended automata, IEEE Transactions of Software Engineering 18(9), 794 - 804.
Olivero, A. and Yovine, S. (1993) Kronos: A tool for verifying real-time systems- Users'

guide and reference manual- draft 0.0.
Park, C. Y. (1993) Predicting program execution times by analyzing static and dynamic

program paths, Real-Time Systems 5(1), 31-62.
Park, C. Y. and Shaw, A. C. (1991) Experiments with a program timing tool based on

source-level timing schema, IEEE Computer 24(5), 48-57.
Schneider, S., Davies, J., Jackson, D. M., Reed, G. M., Reed, J. N. and Roscoe, A. W.

(1991) Timed CSP: Theory and practice, in J. W. de Bakker, C. Huizing, W. P.
de Roever and G. Rozenberg (eds), Real-Time: Theory in Practice (REX workshop),
Mook, Lecture Notes in Computer Science 600, Springer-Verlag, pp. 640-675.

Yovine, S. (1993) Methodes et Outils pour la verification Symbolique de Systemes Tem­
porises, PhD thesis, Institut National Polytechnique de Grenoble.

