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Abstract 
AORTA is an implementable timed process algebra which has been proposed as a design 
language for hard real-time systems. In this paper we show how AORTA can be used 
to design and model timed protocols, illustrated by the alternating bit protocol. We 
also describe tools which have been developed for simulation, verification and automatic 
implementation of AORTA systems, and outline a relationship between the formal models 
which are verified and the code which is generated. 
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1 INTRODUCTION 

Communication protocols and embedded hard real-time systems share many important 
features - timing, concurrency and communication are central issues to the designers of 
both. Because of this close relationship, many embedded system design techniques can 
be applied to communication protocols and vice-versa, and in this paper we show how 
AORTA (Bradley, Henderson, Kendall and Robson 1994a) can be applied to timed com­
munication protocols. The main distinction between AORTA and other timed process 
algebras such as ET-LOTOS (Leduc and Leonard 1993), TCSP (Schneider, Davies, Jack­
son, Reed, Reed and Roscoe 1991) and TCCS (Moller and Tofts 1989) is that AORTA 
is aimed specifically at design, whereas other algebras are meant as wide-spectrum lan­
guages, useful for specification, design, and modelling. Because of its focus, AORTA is 
in some ways more restrictive and in some ways more expressive than these languages, 
to guarantee that designs can be implemented directly. Rather than using timed bisim­
ulations or preorders, which relate systems at different levels of abstraction in the same 
language, we have chosen to use timed model-checking (Alur, Courcoubetis and Dill1990) 
to verify that an AORTA system satisfies its specification which we express using a tern-
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porallogic. To demonstrate the practicality of AORTA, a set of tools has been developed, 
which allow systems to be simulated, verified and automatically implemented. 

The structure of the paper is as follows. After introducing the syntax of AORTA in 
section 2, a description of the alternating bit protocol in AORTA is given in section 3; this 
example is used throughout the paper to illustrate the techniques described. Validation 
and testing of AORTA systems by simulation is described in section 4, and verification by 
model-checking is explained in section 5, including a translation from AORTA to timed 
graphs. These timed graphs are used not only in verification, but also in implementation, 
providing assurance that verification theorems apply directly to the implementation. We 
also show in sections 4 and 5 how AORTA can be used to model different assumptions 
about the behaviour of a communication line, ranging from bounds on the time taken 
to transmit, to the loss of messages. The use of code generation techniques, and their 
relationship to timed graphs, are then outlined in section 6, before the concluding section 7. 

2 AORTA SYNTAX 

AORTA is a timed process algebra, and draws on untimed process algebras, in partic­
ular CCS (Milner 1989), for its syntax. Each AORTA system is statically defined as a 
parallel composition of sequential processes, which may intercommunicate. Each indi­
vidual process may wait for communication (all communication is synchronised and so 
blocks progress), perform computation, branch between different behaviours, recurse, or 
do nothing. The simplest process which can be defined is 

A = a.A 

which waits for communication on gate a, before behaving like process A. In other words 
the process is always ready to offer a actions. A simple buffer process can be defined by 
adding computation and recursion, so that 

A=a. [5.0,15.0]b.A 

·describes a process which communicates on gate a (possibly accepting some data), per­
forms some computation, which takes between 5.0 and 15.0 time units to complete, before 
communicating on gate b (possibly offering some data) and returning to the start again. 
There are two important points to note here, firstly that data is not handled explicitly 
in AORTA (although there are extensions which do (Bradley, Henderson, Kendall and 
Robson 1995a)), so computation is represented only by the amount of time it takes, and 
secondly that computation delays can be represented as bounds on execution times rather 
than exact figures. The use of bounds for computation delays (as well as for communi­
cation delays and time-outs) makes it much easier to provide verifiable implementation 
techniques. Implementation, however, will be considered in more detail in section 6. 

Behaviour branching which is dependent on communication is represented by the + 
operator. Two or more communications are offered at once, and the subsequent behaviour 
depends on which is taken up first. This operator can be used to implement a channel 
which accepts and delivers two kinds of messages: 



Channel 
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communication 
communication choice 
bounded delay 
bounded time-out 
non-deterministic choice 
recursion 

a.S 
a1.S1 + + an.Sn 

[t1,t2]S 
(a1.S1 + ... + an.Sn)[t1,t2>S 

51 ++ ... ++ Sn 
equational definition 

Table 1 Summary of AORTA sequential process syntax 

in1. out 1. Channel 
+ 
in2.out2.Channel 
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Here once another process sends a message via in1, the channel is not available until the 
message is received at the far end (gate out1). As well as using choice, communication 
can be extended with time-out, which allows another behaviour branch to be followed if 
no communication occurs within a certain time. This could be used to force a limit on 
how long the channel would wait for a message to be accepted: 

Channel in1.out1.Channel[5.0,5.1>Channel 
+ 
in2.out2.Channel[5.0,5.1>Channel 

Notice that a time-out is associated with the nearest preceding communication- out1 
and out2 respectively, in this example - and that time bounds can be used in specifying 
the time-out value. 

There are other forms of branching behaviour which do not depend on communication, 
such as data dependent branching and faulty behaviour. These are both represented by 
the non-deterministic choice operator ++ in AORTA, which we shall describe in a little 
more detail in section 4. As usual, repetitive behaviour is expressed using recursion which 
is introduced by equational definition. We require that all recursion is guarded by a 
communication when reformulated as a fixed point. Table 1 summarises the syntax of 
sequential processes. 

Having defined the processes that make up a system, they must be placed in parallel and 
have their gates connected for either internal or external communication. Communication 
delays (again, expressed with bounds) are also given at the system level, to represent 
the amount of time taken for the system to notice and effect any communication. All 
of this information is given in the connection set, which lists pairs of gates for internal 
connection (each gate may only be connected once) and externally connected gates, and 
the corresponding delay bounds. These connection sets can be realised graphically, and 
together with the processes correspond to Milner's flow graphs (Milner 1989). An example 
of a connection set is given in the next section, where we describe the alternating bit 
protocol in AORTA. 
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3 ALTERNATING BIT PROTOCOL IN AORTA 

The alternating bit protocol is a widely discussed example, probably because it is one 
of the simplest examples of a protocol which can do something 'useful'- it guarantees 
integrity of communication in a situation where messages may be duplicated or lost. Our 
description is based on Milner's CCS description in (Milner 1989). We are concerned with 
constructing Send and Reply processes which can be connected by possibly noisy channels 
Trans and Ack. The way the alternating bit protocol works is that messages and acknowl­
edgements are tagged with a bit (0 or 1), with successive messages and acknowledgements 
being tagged with alternating bits. Having sent a 0-tagged message, the sender waits for 
a 0-tagged acknowledgement; if one does not arrive within a certain amount of time, the 
message is sent again. Once an acknowledgement does arrive, the next message can be sent, 
this time tagged with a 1. The replier, meanwhile, waits for a 0-tagged message, delivers 
the data, and sends a 0-tagged acknowledgement. If it receives another 0-tagged message 
it simply sends another 0-tagged acknowledgement, but a 1-tagged message causes it to 
deliver the message and return a 1-tagged acknowledgement and so on. 

The Reply process is the simpler of the two, and is defined in AORTA as follows 

Reply~ transO.DeliverO 
DeliverO ~ deliver.ReplyO 
ReplyO ~ replyO.(trans1.Deliver1+transO.ReplyO) 
Deliver1 ~ deliver.Reply1 
Reply1 ~ reply1.(transO.DeliverO+trans1.Reply1) 

A time-out is added to the Send process to resend messages if acknowledgements are not 
sent within a certain amount of time. 

Send~ accept.SendO 
SendO ~ sendO.SendingO 
SendingO ~ (ackO.Accept1 + ack1.Sending0)[100.0,101.0>Send0 
Accept1 ~ accept.Send1 
Send1 ~ send1.Sending1 
Sending1 ~ (ack1.Accept0 + ackO.Sending1)[100.0,101.0>Send1 
AcceptO ~ accept.SendO 

The channel processes Trans and Ack can also be modelled in AORTA. A simple model 
of these processes has them accepting transmissions or replies, and passing them on after 
a certain delay, but without loss or replication. In AORTA, this is written 

Ack ~ reply1.([25.0,75.0]ack1.Ack) 

Trans 

+ 
reply0.([25.0,75.0]ackO.Ack) 

send0.([25.0,75.0]transO.Trans) 
+ 
send1.([25.0,75.0]trans1.Trans) 
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Notice here that if the minimum delay of 25 time units is taken by both buffers then the 
acknowledgement will reach the Send process before the 100 unit time-out expires, but if 
the maximum delay of 75 is incurred, then the sending process will retransmit its data. 
These processes are connected up with the Send and Reply processes, by defining the 
parallel composition and connection set 

( Send I Reply I Ack I Trans ) 
<(Send.sendO,Trans.sendO: 0.5,1.0), 

(Send.send1,Trans.send1 ~ 0.5,1.0), 
(Send.ackO,Ack.ackO : 0.5,1.0), 
(Send.ack1,Ack.ack1 : 0.5,1.0), 
(Reply.replyO,Ack.replyO : 0.5,1.0), 
(Reply.reply1,Ack.reply1 : 0.5,1.0), 
(Reply.transO,Trans.transO: 0.5,1.0), 
(Reply.trans1,Trans.trans1: 0.5,1.0), 
(Send.accept,EXTERNAL : 0.5,1.0), 
(Reply.deliver,EXTERNAL : 0.5,1.0)> 

Connections are listed inside angle brackets, and each connection has an associated com­
munication delay which specifies the bounds on the time interval from the inception to 
the completion of a communication via this connection for both partners. 

4 SIMULATION AND VALIDATION 

AORTA has a formal semantics, given in terms of a timed transition system defined by 
operational rules (Bradley et al. 1994a). If an AORTA expression S1 becomes S2 after t 
units of time, this is written 

S (t) s 
1--+ 2 

and if a communication a takes place, this is written 

where a can be a gate name (for external communication) or the distinguished action 
T (for internal communication). This behaviour can be observed by using the AORTA 
simulator, which takes an AORTA description of a system (such as the one described in 
section 3) and allows the behaviour to be stepped through using a simple menu-driven 
system. This much is similar to other simulators, such as can be found in the concurrency 
workbench (Cleaveland, Parrow and Steffen 1993) or other tools, but there is also a facility 
for showing graphically which communications are available. 

After each transition (time or action), a menu of possible further transitions is offered, 
with any possible action transitions displayed on the system layout diagram. If an action 
transition is chosen then the corresponding connection is flashed on the diagram. If a time 
transition is chosen then a further prompt asks for a time value, or one of the commands 
NEXTCRUCIAL and NEXTCOMM. The two commands progress time up to the next crucial 
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point (the end of a delay or time-out) and the next possible internal communication 
respectively. If a time value is given the system will be aged by that amount, provided it 
does not go through a possible internal communication. All internal communications must 
take place as soon as they become available (the maximum progress principle, enforced 
in the semantics), and the communication delay follows the occurrence of the r action in 
the semantics. 

The non-determinism expressed in time bounds and non-deterministic choice, has to 
be resolved by the simulator somehow. There is a variety of tactics available, which are 
prompted for when the simulator is started up. Resolution of time bounds can be done 
by always choosing the minimum value, always choosing the maximum value, choosing a 
random value, or always prompting the user for a value. Resolution of non-deterministic 
choice is always achieved by prompting the user. 

Using the simulator, a system can be tested (although still using the formal semantics) 
before an attempt is made to formally verify it via model-checking (see section 5), or to 
implement it via code generation (see section 6). This approach can save a lot of time and 
frustration spent trying to verify properties that are not true. 

The alternating bit protocol system can helpfully be exercised with this simulator. By 
choosing time bounds to be resolved to the minimum value, the protocol is never required 
to retransmit data, so the normal behaviour can be examined. If maximum values for times 
are chosen the sending process always has to time-out, so that part of the behaviour is 
exercised. Different assumptions about buffer behaviour can be built into the system by 
altering the Trans and Ack processes and simulating the behaviour of the new system. For 
example, to include the possibility of the transmit buffer losing one of the messages we 
can use non-deterministic choice to represent failure. Non-deterministic choice is written 
with the ++ operator, which chooses between the branches non-deterministically, so we 
can have one branch as normal behaviour and another as faulty behaviour. A version of 
the Trans process which allows for the possibility of messages being lost, but which has 
no delays involved except internal communication delays, is given by 

Trans= sendO.((transO.Trans) ++Trans) 
+ 
send1.((trans1.Trans) ++Trans) 

but this process allows arbitrarily many messages to be lost. This is the general case for 
such a channel, but no bounded response theorems can be proved of a system which may 
have to repeat a message arbitrarily many times. To describe a channel which may lose 
at most one copy of each message, this must be changed to 

Trans= sendO.((transO.Trans) ++ (sendO.transO.Trans)) 
+ 
send1.((trans1.Trans) ++ (send1.trans1.Trans)) 

Such use of the ++ operator to represent failures is a powerful tool in modelling assump­
tions that can be made about a system, and can be used to evaluate to what extent a 
system may be perturbed before losing functionality. When this second process is used in 
the system, the simulator asks the user to choose between the two cases, corresponding to 
whether a message is to be transmitted at the first attempt, or whether a retransmission 
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will be necessary. In either case, the simulator validates that the protocol successfully 
delivers the message and acknowledges the transmission. The formal verification of this 
fact can be automatically achieved by model-checking, as described in the next section. 
The duplication of messages can be handled in a very similar way. 

5 TIMED GRAPHS AND VERIFICATION 

Approaches to the automatic verification of finite-state concurrent systems have been 
known for more than a decade (Emerson and Clarke 1982, Clarke, Emerson and Sistla 
1986). Such techniques are based upon checking that the state graph of a concurrent 
system is a model for the temporal logic formulae which are used to specify desired system 
properties. Such an approach is of great practical interest because it allows the developer 
to verify a system without constructing a proof and because, when the verification fails, 
it is possible to provide automatically a trace of the unsatisfactory behaviour; this can 
be very useful in debugging. Recent work has shown how systems with a large number of 
states can be checked by using a symbolic representation of the state graph (Burch, Clarke, 
McMillan, Dill and Hwang 1992, McMillan 1993) and how this approach can be adapted 
to the verification of real-time systems (Alur, Courcoubetis and Dill 1993, Henzinger, 
Nicollin, Sifakis and Yovine 1994). 

5.1 Timed graphs 

Timed graphs (Alur et al. 1990) have been shown to be appropriate models for real-time 
systems and have been adopted in the construction of model-checking tools (Nicollin, 
Sifakis and Yovine 1992, Yovine 1993). Our present approach to verification depends 
upon translating AORTA expressions to timed graphs in order to make use of such tools. 
In this section, we describe in detail the basis of this translation which follows closely 
that of (Nicollin et al. 1992) but differs in a number of interesting respects. The syntactic 
restrictions on AORTA allow a simpler translation and lead to graphs which inevitably 
possess a number of desirable properties including bounded variability (only a bounded 
number of transitions are possible in a finite time) and non-zenoness (time is always 
able to progress eventually). A translator has been implemented in Standard ML and 
incorporated into the AORTA tool set. We adapt the variant of timed graphs described 
in (Nicollin et al. 1992) and present the relevant definitions here for completeness. 

A timed graph is an automaton which is extended with a finite set of clocks where a 
clock is a real-valued variable which records elapsed time. Clocks advance uniformly with 
time or can be reset to zero. We assume throughout that the time domain is the non­
negative reals although our results hold for other domains such as the natural or rational 
numbers. 

For a finite set of clocks C and rationals Q, the set of clock formulae :F(C) is 

:F(C) = {c ~ricE C,r E Q} 

A clock valuation v E R0 is a function which assigns to each clock c E C a value 
v(c) E R. We write v + t for the valuation v' such that v'(c) = v(c) + i for all c E C, 
and for C' ~ C we write v[C' := 0] for the valuation v' such that v'(c) = 0 for c E C' 
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and v'( c) == v( c) otherwise. The evaluation of clock formula f given clock valuation v is 
written f(v) and we say v satisfies a clock formula c ~ r if v(c) ~ r. 

Definition 1 A timed graph is a tuple, ( N, n°, C, E, tcp), where 

• N is a finite set of nodes 
e n° is the initial node 
• C is a finite set of clocks 
• E ~ N x Label X :F( C) X 2c X N is a finite set of edges representing transitions. 

Each transition (n, l, f, C', n') E E consists of a source location n and a target location 
n' E N, a label!, a clock formula f and a set of clocks C' ~ C. 

• tcp: N-+ Rc-+ R-+ Bool is a predicate which determines for each location n, clock 
valuation v and time value t whether the system can remain at location n while time is 
allowed to progress by an amount t. 

A timed graph gives rise to a labelled timed transition system, (S, s0 ,----+) where 

• S == N x Rc is the set of states 
• s0 == (n°, v[C :== 0]) is the initial state, and 
• the transition relation ----+ is given by the rules 

I . I (n,a,f,C',n') E E 1\ f(v) 
ActiOn (n,v)~(n',v[C' :== 0]) 

~ tcp(n)(v)(t) 
~ (t) 

(n, v)----+(n, v + t) 

5.2 Translation method 

We first give an abstract syntax for AORTA expressions. For a finite indexing set I, 
i,j E J, a finite set of gate names Act, a; E Act, and a set of process names Proc, 
X E Proc, the set of sequential expressions Seq with S, S; E Seq, is given by 

which correspond to summation, time-out, non-deterministic choice and recursion, re­
spectively. As usual, we write a sum over an empty indexing set as 0, the process which 
can not perform any action. Computation delay and deterministic versions of the timed 
operators then have natural abbreviations as follows: 

[t1, t2]S 

[t]S 
S1 t>tS2 

def 

def 

def 

0 t>i~ s 
o t> 1S 

s1 t>:s2 

Non-deterministic computation delay 

Deterministic computation delay 

Deterministic time-out 

Although computation delays have equivalent formulations as time-outs at this level of 
abstraction, the notation for them is introduced not simply for convenience but because 
they require a different treatment in implementation as will become apparent in section 6. 
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The set of system expressions Sys, 1/J E Sys, being the parallel composition of a finite 
number of sequential expressions, is given by 

1/J ::= IlS; < K > 
iEI 

where K is a finite set of internal connections, each connection being represented by an 
unordered pair of gate names; we require that each gate is connected either to exactly one 
other gate or to its environment via a single external connection and assume the latter 
in the case of any gate name occurring in a system expression but not in its associated 
connection set. 

We first give the translation for sequential process expressions. The translation depends 
on the fact that every sequential process can be implemented using a single clock (we write 
c. for the clock associated with process S and abbreviate the singleton {c.} to c. when 
the context is clear). The clock associated with a sequential process is reset on every 
transition and so simply records the time since the process last made a transition. For a 
sequential process S and its associated clock c., we define a compositional translation to 
a timed graph based on the structure of S. 

In order to do this we introduce a new distinguished action f fl. Act, which is used to 
label time-out transitions and transitions arising from the resolution of non-deterministic 
choice. The set of labels is then Label= Act U { T, f}. 

The translation is given by a function 9[-] which takes an AORTA expression to its 
equivalent timed graph. Figure 1 shows the graph constructed for the Send process in the 
alternating bit protocol. It exhibits a pleasing symmetry which reflects that found in the 
process description. 

Summation In general, a sum has the form Lie! a;.S;. The translation for this expression 
covers the cases of the 0 process and also action prefixing, in addition to deterministic 
choice. 

For a gate a, let the lower and upper bounds of the possible communication delay 
of a be written la and ua, respectively. Then, if for i E I the graphs of [/a,, ua.JS; are 
(N;, n?, c., E;, tcp;), then 

9[Ea;.S;] = (N U {n°},n°,c.,E, tcp) 
iEI 

E = U E; U {(n°, a;, tt, c., n?)li E I} 
iEI 

and tcp(n;) = tcp;(n;) for all locations n; EN; and tcp(n°)(v)(t) = tt for any clock 
valuation v and time value t. 

Time-out Let Q[S;] = (N;, n?, c., E;, tcp;) for i E {1, 2}. Then 
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where 

and tcp(n;) = tcp;(n;) for all locations n; E N; except that tcp(n~)( v )(t) is tcp1 (n~)( v )(t)/\ 
v(c,) + t :S t2. 

The case of non-deterministic time-out presented here subsumes deterministic time-out 
and computation delay in an obvious way. 

Non-deterministic choice ForiE I let Q[S;] = (N;, n?, c., E;, tcp;). Then 

9[ffiS;] = (NU {n°},n°,c.,E,tcp) 
iEl 

where N = U;eJ N;, n° ~ N, 

E = U E; U { ( n°, E, tt, c., n?) li E I} 
iEI 

and tcp(n;) = tcp;(n;) for all locations n; E N; and tcp(n°)(v)(t) = ff for any clock 
valuation v and time value t. In other words the choice must be resolved before time can 
progress. 

Recursion The syntactic restrictions on the use of recursion allow its translation to pro­
ceed in a very straightforward manner. When a process name X is encountered in the 
translation of a sequential expression, its translation is simply the graph associated with 
X; such an association will exist if X has been encountered before but not otherwise. In 
the latter case, we associate 9[0] with X and add X to a list of names whose graphs are 
yet to be constructed. Following the first pass of our translation, we construct the graph 
for each name in this list, by translating the right-hand side of the defining equation for 
the name. The initial node of each graph constructed in this way is identified with the 
initial node of the graph previously associated with the name. We continue in this way 
until we have constructed the graphs for all names encountered. 

Parallel composition In giving the translation for parallel composition we adopt the 
following notational abbreviations: 

N for N1 x N2 x ... x N111 
ii for (n1,n2, ... ,n111) 
ii;j for (nt, n2, ... n;, ... nj, ... n111) 
iii'j' for (nt,n2, ... n;, ... nj, ... niii) 

where we assume some indexing set I, {i,j} ~I, i "1- j. 
The translation for an AORTA system expression is given by 

9[llS; < K >] = (N,n°,{cs,li E I},E,tcp) 
iEI 
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The set of transitions is E = IC U EC U TO, where 

IC 

EC 

{ ( rljj, T, tt, { cs,, cs,}' n;•j•) I 
(n;,a,tt,cs,,n;) E E;,(nj,b,tt,cs,,nj) E Ej,(a,b) E I<} 
{ (n;, a, tt, { csJ, n;• )I 
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(1) 

(n;,a,tt,c5,,n;) E E;,(a,_) ~ I<,(n;,_,_,_,_) ~ JC} (2) 

TO= {(n;,f,¢,{c5J,n;•)l(n;,a,¢,c5,,n;)EE;} (3) 
For any location n E N, clock valuation v and time value t, tcp(n)( v )(t) is 1\iei tcp;(n;)( v )(t) 
except that for any location n such that ( n, _, _, _, _) E JC we require that tcp( n)( v )( t) is 
false; in other words, time can progress only when all processes allow it but even then, 
not at any location which has the capacity for internal communication, so enforcing the 
maximal progress principle. 

The sets (1) - (3) give the transitions for internal communication, external commu­
nication and time-outs / nondeterministic choice, respectively. Notice that an external 
communication is allowed only in a state where no internal communication is possible. 
This simple priority mechanism ensures the desirable implementation property that a 
component cannot become swamped by communication with its environment. 

The labelled transition system induced by the timed graph constructed for an AORTA 
expression is equivalent to that given directly by the AORTA semantics (Bradley et al. 
1994a). We omit the proof and the semantics for reasons of space. 

We observe that the graphs constructed by this approach have a rather simple struc­
ture in that the only edges which are constrained by a clock condition are those arising 
from time-outs and computation delays and then only by a simple constraint on a single 
clock. We intend to explore whether this simplicity of structure can be exploited in the 
construction of a more efficient model checker. 

5.3 Using KRONOS to verify timing requirements 

KRONOS (Nicollin et al. 1992, Yovine 1993, Olivero and Yovine 1993) is a symbolic model 
checker which implements the approach described by Henzinger et al. (Henzinger et al. 
1994). It allows timed graphs to be checked for properties expressed in the real-time logic 
TCTL (Alur et al. 1990). 

For a finite set of atomic propositions P, the formulae of TCTL are defined as follows: 

where pEP, n is a natural number and #is one of the relational operators <, S, =, ;:::, 
or>. 

TCTL formulae are interpreted over the sequences of states generated by the transition 
system of a timed graph. The details can be found in (Henzinger et al. 1994). Intuitively, 
.pau#n¢2 means that there exists a sequence with a finite prefix such that ¢2 is satis­
fied by the last state at time t where t#n and ¢ 1 is satisfied continuously until then. 
cP1VU#ncP2 means that for every sequence this property holds. A number of abbreviations 
are commonly used: VO#ncP for ttVU#ncP, 30#ncP for tt3U#ncP, 3D#ncP for --NO#n""cP, 
and vo#ncP for -,3()#n ""cP· 
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Figure 1 The timed graph of the Send process 

TCTL is expressive enough to allow us to express most system properties of interest. 
For example, a bounded response property can be easily stated, 

\7'0 ( st imulus==>V'0::;5response) 

which captures the requirement that after any occurrence of a stimulus, a response will 
always happen within 5 time units. Other useful properties such as bounded invariance, 
bounded inevitability, self-stabilization and so on can be expressed just as easily. 

For a timed communication protocol the property of most interest is that, under certain 
assumptions, a message which is accepted for sending will eventually be delivered correctly 
within a certain time; in other words a bounded response property. In the context of our 
description of the alternating bit protocol, such a property can be stated as 

init==}\{0 (after (accept)==>V'<>:52ooenable (deliver)) 

Of course it is possible also to state and check properties concerning the correct oper­
ation of the protocol, namely that the sending of a message strictly alternates with the 
receiving of a message and that whenever a 0-tagged (respectively, 1-tagged) message is 
sent a 0-tagged (respectively, 1-tagged) message is received (Clarke et al. 1986). 

It is of most interest in this case to explore the design of the protocol by checking these 
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properties under varying assumptions about the transmission and acknowledgement chan­
nels, in much the same way as we discussed in section 4 on the use of the simulator. We 
have used KRONOS to check the bounded response property for the protocol assuming 
error-free communication and also assuming that the transmission channel loses at most 
one message between successful deliveries. It can be seen easily how this approach can 
be extended to check this property under more elaborate assumptions about possible 
communication faults including lost, garbled or duplicated transmissions and/or acknowl­
edgements. 

6 IMPLEMENTATION VIA CODE GENERATION 

Having validated and verified the AORTA system, there are semi-automatic techniques 
for implementing the design. These techniques are discussed in some detail in (Bradley, 
Henderson, Kendall and Robson 1994c, Bradley, Henderson, Kendall and Robson 1994b). 
In this section we concentrate on the implementation of the individual processes, and 
its relationship to the construction of timed graphs for model-checking described in sec­
tion 5. Once the individual processes have been constructed they can either be executed 
separately (as would be the case for a distributed implementation of the alternating bit 
protocol), or multitasked on the same processor. Multitasking complicates the issue of 
timing, but this is addressed using a dedicated AORTA kernel (Bradley eta!. 1994c). 

The construction of code to implement an AORTA process can be done for any impera­
tive language which admits timing analysis. Here we use C for entirely pragmatic reasons, 
viz. the availability of cross compilers and timing tools (Park and Shaw 1991, Park 1993); 
in effect we use C as a portable assembler. Although some work has been done on im­
plementing process algebra systems using synchronous languages, our work uses more 
standard techniques, and does not rely on the standard synchronous language assump­
tions about the immediate responsiveness of the computer system. 

Code can be generated for all parts of the program which are related with commu­
nication, choice, time-out and recursion, which accounts for all of the Send and Reply 
processes. The structure of the process is built up in exactly the same way as the timed 
graph for the process, with each state of the timed graph corresponding to a label within 
the generated C program. Thus a transition to a state corresponds to a C goto state­
ment. Communication is handled by a kernel call (Bradley et a!. 1994c), which takes an 
array of gates to be offered in choice, and returns a value corresponding to which gate 
communicates first. For a simple communication with no choice, such as is found in the 
Send process in the equation 

SendO = sendO.SendingO 

the generated code looks like this 

I* process section SendO. Code for 
sendO.SendingO *I 

Send0_1: 
gatenames [0] GATEsendO; 
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gatenames[1] = 0; 

switch (communicate(PROCSend,gatenames,gatevalues)){ 
case 1: goto Send0_2; 
} 

where the array gatenames contains the names of the gates, terminated with a 0, and the 
array gatevalues is used for passing data in and out during communication (not used 
here for simplicity). The label Send0_2 is used to pass control to the process SendingO, via 
another goto. It would be possible to use a more sophisticated approach which eliminated 
the 'goto a goto', but this will be done by most compilers anyway, so the resulting object 
code will have exactly the same structure as the corresponding timed graph. 

A more complicated communication, which offers a choice and has a time-out can be 
found in the definition 

I* process section SendingO. Code for 
(ack0.Accept1 + ack1.Sending0)[100.0,101.0>Send0 •I 

Sending0_1: 
gatenames [0] 
gatenames [1] 
gatenames [2] 

GATEackO; 
GATEack1; 
0; 

switch (communicatet(PROCSend,100000,gatenames,gatevalues)){ 
case 0: goto Sending0_4; 
case 1: goto Sending0_2; 
case 2: goto Sending0_3; 
} 

Here there are two gates in the gatenames array, and the kernel call has an extra argument 
which specifies the minimum real-time clock increment required to activate the time-out. 
This time the value 0 is returned if the time-out takes place, and the values 1 and 2 
correspond to communications on the gates ackO and ack1 respectively. 

In the Send process there are no computation delays or non-deterministic choices, but 
these are implemented by annotating the design with the relevant piece of hand-written 
C code or branch condition, so that they are inserted into the code at the correct point 
(corresponding to the relevant node or edge of the timed graph). 

Using these small pieces of code, connected by gotos, the whole process is built up, 
forming a graph which corresponds to that described in section 5 in topology at least. 
The labels on the graph nodes and edges define the timing behaviour of the system. 
This timing behaviour is guaranteed by the timing analysis of the kernel, combined with 
code timing of any pieces of computation (Bradley et al. 1994c). Having formed a graph 
topologically equivalent to the timed graph, and with the timing constraints on nodes and 
edges guaranteed by the kernel, we can have confidence that any properties of the system 
proved by model-checking will hold of the implemented system. The implementation of 
communication is handled entirely by the kernel. Internal connections are managed by 
checking through a list of pairs of connected gates, and external communication is achieved 
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by supplying an I/0 function in a standard form, which is called if the corresponding gate 
is waiting for communication. Because these I/0 functions are in a standard form they 
are very easily replaced, so help to make small-scale prototyping very easy. 

If only some of the processes are to be implemented in this way, then model-checking can 
only prove properties based on assumptions about the way other processes will behave. 
In the case of the alternating bit protocol, this means that we have to make assumptions 
about the way the Ack and Trans buffers will behave. If they behave in the way they 
are modelled (losing at most one copy of any single message, for example) then verified 
propertied of the whole system will hold. 

7 CONCLUSION 

We have described AORTA, an implementable real-time algebra, and shown how it can be 
used to model the alternating bit protocol which, although simple, captures many impor­
tant features of communication protocols. We have also shown how AORTA systems can 
be validated via simulation, and formally verified through model-checking. Finally, imple­
mentation techniques for AORTA systems have been partly described, and a relationship 
established with the timed graph model used in the formal verification. AORTA has been 
used to describe more complex systems, such as a car cruise controller (Bradley et al. 
1994a) and a submersible control and logging system (Bradley, Henderson, Kendall, Rob­
son and Hawkes 1995b), which has been implemented using the techniques outlined here. 
Although translation of process algebras to timed graphs is not new (Nicollin et al. 1992), 
and timed graphs have been used for model-checking of timed protocols (Daws, Olivero 
and Yovine 1994), the novelty of our work is in providing a tool-supported framework in 
which timed systems can be designed, tested, verified and verifiably implemented. 

Current and future work on AORTA includes the development of more efficient model­
checking algorithms, the use of more advanced scheduling algorithms for implementation, 
and further investigation into the distributed and parallel implementation of systems. 
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