
1

Simple On-the-fly Automatic Verification of
Linear Temporal Logic

R.Gerth
Technical University Eindhoven
Den Dolech 2, Eindhoven, The Netherlands

D. Peled
AT&T Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974, USA

M. Y. Vardi
Rice University
Department of Computer Science, Houston TX 77251, USA

P. Wolper1

Universite de Liege
lnstitut Monte.fiore, B28, 4000 Liege, Belgium

Abstract
We present a tableau-based algorithm for obtaining an automaton from a temporal logic formula.
The algorithm is geared towards being used in model checking in an "on-the-fly" fashion, that
is the automaton can be constructed simultaneously with, and guided by, the generation of the
model. In particular, it is possible to detect that a property does not hold by only constructing
part of the model and of the automaton. The algorithm can also be used to check the validity
of a temporal logic assertion. Although the general problem is PSPACE-complete, experiments
show that our algorithm performs quite well on the temporal formulas typically encountered in
verification. While basing linear-time temporal logic model-checking upon a transformation to
automata is not new, the details of how to do this efficiently, and in "on-the-fly" fashion have
never been given.

Keywords
Automatic Verification, Linear Temporal Logic, Biichi Automata, Concurrency, Specification.

1 Introduction

Checking automatically that a protocol, especially a concurrent one with many parallel activ­
ities, satisfies its specification has gained a lot ~~attention during the last 15 years. The main

1 The work of this author was supported by the Esprit BRA action REACT and by the Belgian Incentive Program
"Information Technology"- Computer Science of the future, initiated by the Belgian State- Prime Minister's Office
-Science Policy Office. The scientific responsibility is assumed by its authors.

P. Dembiński et al. (eds.), Protocol Specification, Testing and Verification XV
© IFIP International Federation for Information Processing 1996

4 Part One Specification and Verification: Time-dependent Analysis

dichotomy between approaches to automated protocol verification can be characterized as logic­
based versus state-space based methods. The former type of methods proceed by translating both
the protocol and its specification into formulas in some formal logic and by showing logical im­
plication of the specification by the protocol formula. In contrast, state-space based methods
proceed by analyzing the possible configurations the protocol can be in, i.e. its state space, a.TJ.d
how the protocol evolves from one configuration to another. None of these methods offer a uni­
form advantage; both have strengths and weaknesses when compared to the other.

This paper concentrates on a class of state-space based methods, often called "model check­
ing". The idea of model checking is to view verification as checking whether the graph repre­
senting the state space of the protocol satisfies (is a model of) the property to be checked. Specif­
ically, we focus on model checking for linear-time temporal logic formulas [9]. In this context,
what one actually checks is that all infinite execution sequences that can be extracted from the
state-space graph satisfy (are models of) the temporal logic formula, or equivalently, that none
of these sequences falsifies the formula.

A classical approach to solving this problem [12] is to proceed as follows. One first con­
structs the state spaces for both the protocol to be verified and for the negation of the property,
the latter state space thus comprises all execution sequences (models) on which the property is
violated. The two state spaces are then analyzed for the existence of a common execution se­
quence; finding one means that the property can be violated by the protocol. Given that one
is interested in the infinite sequences that can be generated by the two state spaces, these can
be interpreted as automata over infinite words, i.e., as w-automata [11]. The analysis to be done
thus amounts to the standard problem of checking if the language accepted by the (synchronous)
product of the automata is empty or not. A general approach for solving this problem proceeds
by checking for strongly connected components as is done in [8], but one can also reduce the
problem to a simpler cycle detection for which simpler algorithms can be used [6, 4].

The model-checking problem as well as the validity problem for linear temporal logic are
PSPACE-complete [10]. In practice, applications of model-checking methods face two com­
plexity related limits:

1. The size of the automata, both for the protocol and for the property, since the execution
time is proportional to the product of the number of nodes in the automata;

2. The size of that part of the product automaton that has to be kept in memory in order to
check for emptiness, since available memory sets a firm bound on the size of the problems
that can be treated.

As to the latter problem, the cycle detection approach of [6, 4] uses a simple depth-first­
search (DFS) strategy and, in contrast with [8], only needs a small part of the product automaton
to be in main memory at any one time: the part corresponding to the computation that the depth­
first-search is currently exploring. It implies that the protocol automaton may be constructed
on-the-fly, i.e. as is needed, while checking for its emptiness. This means that, if the property
does not hold, the algorithm can detect so after constructing and visiting only a small part of the
state space

The automaton corresponding to the property can have as many as 2°(n) nodes where n is the
number of subformulas in the property formula [13]. Thus, the size of the product automaton,

AutomLitive verification of linear temporal logic 5

which determines the overall complexity of the method is proportional toN· 2°(n), where N is
the number of (reachable) protocol states. It is clearly desirable to keep property automata small
and to avoid the exponential blowup that can occur in their construction whenever possible.

The standard automaton construction for a temporal logic property [13] (see also [16, 8]) is
a global one and starts by generating a node for each (maximally consistent) set of subformulas
of the property. While this is a simple way to describe the construction, it is clearly not a reason­
able way to implement it, since it immediately realizes the worst case exponential complexity.
A subsequent construction, proposed as a basis for an implementation [7], starts with a two state
automaton that is repeatedly 'refined' until all models of the property are realized. Although the
worst case remains exponential, this construction often achieves a substantial reduction in the
number of generated nodes. On the other hand, the algorithm cannot be used on-the-fly during
a depth-first search, as it repeatedly inspects the whole graph and "corrects" it by removing and
adding edges and nodes. Moreover, the emptiness check proceeds by determining and inspect­
ing the strongly connected components of the automaton and is thus less easily applicable to
verifying whether a protocol satisfies a property. It should be said that the authors of [7] were
not so much interested in protocol verification as in checking validity of a formula that include
past operators.

In this paper we present, and describe experiments with, a pragmatic algorithm for construct­
ing an automaton from a temporal logic formula. Though having its roots in the construction
of [13], our algorithm is designed to yield small automata whenever possible and to be simple
to implement. Furthermore, it proceeds on-the-fly in the sense that the automaton is only gener­
ated as needed during the verification process. Technically, the algorithm translates a proposi­
tionallinear temporal logic formula into a Generalized Biichi automaton [4] using a very simple
depth-first search. The interesting point is that, even though the algorithm produces a Gener­
alized Biichi automaton, a simple transformation of this automaton yields a classical Biichi au­
tomaton for which the emptiness check can be done using a simple cycle detection scheme as
in [4]. The result is that we obtain a protocol verification algorithm in which both the protocol
and the property automata (and, hence, the product automaton) are constructed on-the-fly during
a depth-first search that checks for emptiness.

The rest of the paper starts with some preliminaries defining temporal logic and its interpre­
tations. Section 3 presents the basic algorithm, discusses optimizations and its application to
model checking. The correctness proof occupies Section 4. In Section 5 we make some more
detailed comparisons with existing constructions. The paper finishes with some experimental
results and conclusions in Sections 6.

2 Preliminaries
The set of well-formed linear temporal logic (LTL) are constructed from a set of atomic propo­
sitions, the standard Boolean operators, and the temporal operators X and U. Precisely, given a
finite set of propositions 'P, formulas are defined inductively as follows:

• every member of 'P is a formula,

• if IP and 'lj! are formulas, then so are •IP, IP A¢, IP V ¢, XIP and IP U ~'·

6 Part One Specification and Verification: Time-dependent Analysis

An interpretatiOn for a linear-time temporal logic formula is an infinite WOrd e = XoX1 · · ·

over the alphabet 2P, i.e. a mapping from the naturals to 2P. As made precise below, the ele­
ments of2P are interpreted as assigning truth values to the elements ofP: elements in the set are
assigned true, elements not in the set are assigned false. We write ei for the suffix of e starting
at Xi. The semantics of LTL is then the following .

• e F q iff q E Xo, for q E P,

• e F= -.<p iff note F= 'P,

• e F= 'P 11 1P iff e F= 'P and e F= 7/J,

• e F= 'P v 7/J iff e F= 'P ore F= 7/J,

• e F= X'P iff 6 F= 'P,

• e F= 'P u 'lj; iff there is an i 2: o such that ei F= 7/J and ej F= 'P for all o :<:; j < i.

We introduce T as an abbreviation for p V -.p, and F as an abbreviation for -.T. We also introduce
additional temporal operators as abbreviations: F'P = T U 'P, G<p = -.F-.<p. Finally, we also use
the temporal operator V which is defined as the dual of U: <pV?j; = -.(-.<p U -.?j;).

3 A Tableau Construction

Our goal is to build an automaton (transition system) that generates all infinite sequences satis­
fying a given temporal logic formula 'P. The automata we build are generalized Biichi automata,
namely Biichi automata with multiple sets of accepting states, as opposed to simple Biichi au­
tomata that have only one set of accepting states [11].

A generalized Biichi automaton [4] is a quadruple A = (Q, I, --+, :F), where Q is a finite
set of states, I ~ Q is the set of initial states, --+C Q x Q is the transition relation, and :F ~ 22Q

is a set of sets of accepting states :F = { F1 , F2 , ... Fn}. Notice that :F can be empty.

An execution of A is an infinite sequence a = q0 q1 q2 ... such that q0 E I and, for each
i 2: 0, qi --+ qi+l· An accepting execution a is an execution such that, for each acceptance set
Fi E :F, there exists at least one state q E Fi that appears infinitely often in a.

The automata we have defined so far have no input, and hence do not define any sequences.
We thus need to add labels to our automata. The most common approach is to add labels to
transitions. Here, we proceed slightly differently and add labels to states. A labeled generalized
Btichi automaton, or LGBA for short, is a triple (A, V, £), where A is a generalized Biichi
automaton, V is some finite domain, and£ : Q -> 2v is a labeling function from the states of
A to subsets of the domain V (a state has a set of labels from V). An LGBA accepts a word
e = Xo Xl x2 ... from V'" iff there exists an accepting execution a = qo ql q2 ... of A such that
for each i 2: 0, x; E £(q;). We also say that the execution a accepts (

The central part ofthe automaton construction algorithm is a tableau-like procedure related to
the ones described in [14, 15]. The tableau procedure builds a graph, which will define the states
and transitions of the automaton. The nodes of the graph are labeled by sets of formulas and are

Automative verification of linear temporal logic 7

obtained by decomposing formulas according to their Boolean structure, and by expanding the
temporal operators in order to separate what has to be true immediately from what has to be true
from the next state on. The fundamental identity used to this is p. U 1/J = 1/J V (p. 1\ X(p. U 1/J)).
Before describing the graph construction algorithm, we introduce the data structured used to
represent the graph nodes.

3.1 The Data Structure

The data structure we use for representing graph nodes contains sufficient information for the
graph construction algorithm to be able to operate in a DFS order. A graph node contains the
following fields:

Name A string that is the name of the node.

Incoming The incoming edges represented by the names of the nodes with an outgoing edge
leading to the current node. A special name, in it is used to mark initial nodes. in it is not
the name of any node, hence does not represent a real edge.

New A set of temporal properties (formulas) that must hold at the current state and have not
yet been processed.

Old The properties that must hold in the node and have already been processed. Eventually,
New will become empty, leaving all the obligations in Old.

Next Temporal properties that must hold in all states that are immediate successors of states
satisfying the properties in Old.

Father During the construction, nodes will be split. This field will contain the name of the
node from which the current one has been split. This field is used for reasoning about the
correctness of the algorithm only, and is not important for the construction.

We keep a list of nodes Nodes_Set whose construction was completed, each having the same
fields as above. We denote the field New of the node q by New (q), etc ..

3.2 The algorithm

To simplify the representation of the algorithm, we assume first that the given formula 'P for
which the automaton should be built does not contain the Nextime operator 'X'. We will show
later how to lift this restriction. Without loss of generality, we may further assume that the
formula does not contain the operators 'F' and 'G', and that all the negations are pushed inside
until they only precede propositional variables. That is, the formula is first transformed to
contain only the operators U and V. In fact, the operator V, which is the dual of the operator
'U', was specifically introduced in order to allow pushing the negations without causing an
exponential blowup in the size of the translated formula.

8 Part One Specification and Verification: Time-dependent Analysis

The line numbers in the following description refer to the algorithm that appears in Figure I.
The algorithm for translating the formula r.p starts with a single node (lines 34-35). This node
has a single (dummy) incoming edge, labeled init, to mark the fact that it is an initial node.
Thus, by the end of the construction, a node will be initial iff it contains this label in its list of
incoming nodes. It has initially one new obligation in New, namely,'{), and the sets Old and Next
are initially empty. For example, the upper node in Figure 2 is the one with which the algorithm
starts for constructing the automaton for p U q.

With the current node N, the algorithm checks if there are unprocessed obligations left in
New (line 4). If not, the current node is fully processed and ready to be added to Nodes_8et. If
there already is a node in Nodes_8et with the same obligations in both its Old and Next fields
(line 5), the copy that already exists needs only to be updated w.r.t. its set of incoming edges;
the set of edges incoming to the new copy are added to the ones of the old copy in Nodes_8et
(line 6).

If no such node exists in Nodes_8et, then the current node is added to this list, and a new
current node is formed for its successor as follows (lines 8-10):

• There is initially one edge from N to the new current node.

• The set New is set initially to the Next field of N.

• The sets Old and Next of the new current node are initially empty.

When processing the current node, a formula Tf in New is removed from this list. In the
case that Tf is a proposition or the negation of a proposition (a literal), then, if -,Tf is in Old (we
identify -,-,Tf with Tf), the current node is discarded, as it contains a contradiction (lines 16-17).
Otherwise, Tf is added to Old (if it is not already there).

When Tf is not a literal, the current node can be split into two (lines 21-26) or not split
(lines 29-31), and new formulas can be added to the fields New and Next (lines 22-23,25-
26,30-31). The exact actions depend on the form of Tf and are the following:

Tf = p. 1\ '1/J Then, both p. and '1/J are added to New as the truth of both formula is needed to make
Tf hold.

Tf = p. V '1/J Then, the node is split, adding p. to New of one copy, and '1/J to the other. These
nodes correspond to the two ways in which Tf can be made to hold.

Tf = p. U '1/J Again, the node is split: for the first copy, p. is added to New and p. U '1/J to Next. For
the other copy, '1/J is added to New. This splitting is explained by observing that p. U '1/J is
equivalent to '1/J V (p. 1\ X(p. U '1/J)). This is depicted in Figure 2.

1f = p.V'I/J Then, the node is split: '1/J is added to New of both copies, p. is added to New of one
copy, and p.V'I/J is added to Next of the other. This splitting is explained by observing that
p.V'I/J is equivalent to '1/J 1\ (p. V X(p.V'I/J)).

Autonwtive verification of linear temporal logic 9

The copies are processed in DFS order, i.e., when expansion of the current node and its
successors are finished, the expansion of the second copy and its successors is started.

The algorithm is listed in Figure 1 in a pseudo-code language. The function new _name()
generates a new string for each successive call. The function Neg, is defined as follows:

The functions

3.3 Using the Automaton for Automatic Protocol Verification

The graph constructed by the algorithm in Section 3.2 can now be used to define an LGBA
accepting the infinite words satisfying the formula. The set of states Q will be the nodes
returned by the algorithm. Notice that only nodes for which New is empty are placed in this
set. In other words, only fully expanded nodes are returned. The initial states I are those
nodes q such that in it E Incoming(q). The transitions p ~ q are exactly those satisfying that
p E Incoming(q).

The domain Vis 21> and the label of anode q is all sets in 21> that are compatible with Old(q).
Indeed, a node of the graph does not necessarily assign truth values to all atomic propositions,
and the label of a node can be any element of 21> that agrees with the literals that appear in Old (q).
Precisely, let Pos(q) be Old(q) n P and Neg(q) be {77 I '77 E Old(q) A 77 E P}, i.e., Pos(q) and
Neg(q) are the positive and negative occurrences of the propositions in q, respectively. Then,
£(q) ={XIX ~PAX;:;:! Pos(q) A X n Neg(q) = 0}.

Finally, we have to impose accepting conditions. Indeed, observe that not every maximal
path u = q0 q1 • • • in the graph determines models of the formula: the construction allows some
node to contain p U 1/J while none of the successor nodes contain 1/J. This is solved by imposing
the generalized Biichi acceptance conditions. For each subformula of'() of the type p U 1/J, there
will be a set F E :F which includes the nodes q E Q such that either p U 1/J rt Old(q), or
1/J E Old(q).

Let us show that, with these acceptance conditions, one can no longer accept a sequence in
which p U 1/J appears from some node q; onwards without 1/J occurring later. First, notice that
from the construction, if p U 1/J E Old(q;) and 1/J 't Old(qi+ 1), then p U 1/J E q; and 1/J 't qi+ 1,

then p U 1/J E Old(qi+ 1). Thus, in the above scenario, p U 1/J propagates from q; onwards, since
1/J never occurs. Let F E :F be the accepting subset that is associated with p U 1/J. Then, none of
the states with index greater or equal to i can be in F. But then the sequence u does not contain
infinitely many occurrences of any state from F, and is not accepting.

As explained in the introduction, a protocol is verified w.r.t. a property by constructing
an automaton for the negation of the property, and by exploring the synchronous product of
the protocol and the property automaton for emptiness. Since the automaton representing the

generates a new string for each successive call. The function Neg, is defined as follows:
generates a new string for each successive call. The function Neg, is

each successive call. The function Neg, is

each successive call. The function Neg,
each successive call. The function Neg,
each successive call. The function Neg,

10 Part One Specification and Verification: Time-dependent Analysis

record graph__node = [Name: string, Father: string, Incoming: set of string,

2 New:set of formula, Old:set of formula, Next: set of formula];

3 function expand (Node, Nodes ...Set)
4 if New(Node)=0 then

5 iEJND ENodes...Set with Old(ND)=Old(Node) andNext(ND)=Next(Node)

6 then Incoming(ND) = Incoming(ND)Uincoming(Node);
7 retum(Nodes...Set);
8 else retum(expand([Name<=Father <:new_name(),

9 Incoming<= {Name(Node)}, New<=Next(Node),
10 Old<= 0, Next<= 0], {Node}UNodes...Set))
11 else
12 let 17 ENew;
13 New(Node) :=New(Node)\{17};
14 case 17 of
15 17 = Pn, or -,pn or 17 =Tor 17 =F=>

16 if 17 =For Neg(17) EOld(Node) (*Current node contains a contradiction*)

17 then retum(Nodes...Set) (*Discard current node*)

18 else Old(Node):=Old(Node)U{17};
19 retum(expand(Node, Nodes...Set));
20 17 = !L U 1/J, or p.V'I/J, or !LV 1/J =>

21 Nodel:=[Name<=new_name(), Father<= Name(Node), Incoming<=lncoming(Node),

22 New<=New(Node)U({Newl(17)} \Old(Node)),
23 Old<:Old(Node)U{ 17 }, Next=Next(Node)U{Nextl(17)}];
24 Node2:=[Name<=new _name(), Father<:Name(Node), Incoming<=Incoming(Node),

25 New<=New(Node)U({New2(17)} \Old(Node)),
26 Old<:Old(Node)U{ 17 }, Next<=Next(Node)];
27 retum(expand(Node2, expand(Nodel, Nodes--Set)));

28 17 = 1L A 1/J =>
29 retum(expand([Name<= Name(Node), Father<=Father(Node),
30 Incoming<=Incoming(Node), New<=New(Node)U({JL, 1/J}\Old(Node)),
31 Old<:Old(Node)U{ 17 }, Next=Next(Node)], Nodes--Set))
32 end expand;

33 function create_graph (cp)
34 return(expand([Name<=Father<=new _name(), Incoming<={ in it},

35 New<= {cp}, Old<= 0, Next<= 0], 0))
36 end create_graph;

Figure 1: The algorithm

2

Automative verification of linear temporal logic

Name: Node2

Name: Nodel
Father: Nodel
Incoming: init
CurrenLNew: {p, U '¢}
Current..Old: 0
Next:0

split ······ ...

Name: Node3
Father: Nodel
Incoming: init
Current.New: {p,}
Current..Old: {p, U '¢}
Next:{p, U '¢}

Father: Nodel
Incoming: init
Current.New: {'¢}
Current..Old: {p, U '¢}
Next:0

Figure 2: Splitting a node

11

protocol has an empty acceptance condition (F = 0), the product automaton simply inherits the
accepting sets of the property automaton.

Checking for emptiness can be done on-the-fly, i.e., during the generation of the product. For
a simple Btichi automaton (one for which F is a singleton), one only needs to find a reachable
accepting state that is also reachable from itself. An algorithm for doing this is described in [4].
Furthermore, that paper also shows how generalized Btichi conditions can also be handled. The
idea is to transform a generalized Btichi automaton into a simple one. This is done by using a
counter: each state becomes a pair (q, i) where i is a counter. The counter is initialized to 0 and
counts modulo n, where n = IFf. It is updated from i to i + 1 whenever one reaches an element
of the ith set F; E F. One then only needs one set of accepting states, for instance Fa x {0}.

3.4 Improvements to the Basic Algorithm

Adding Nextime Formulas All that is needed to be able to handle formulas involving the
Nextime operator (X) is to add an extra case to the algorithm.

'Tf=Xp,=>
retum(expand([Name<c=Name(Node), Father<c=Father(Node),

Incoming<c=lncoming(Node), New<c=New(Node), Old<c=Old(Node)U{ 77 },
Next<c=Next(Node)U{p,}], Nodes_Set))

Pure "On-the-fly" Construction. The algorithm presented here generates an LGBA that can
be used for model-checking or checking the validity of a temporal formula. However, one does

12 Part One Specification and Verification: Time-dependent Analysis

not have to complete the construction of this automaton in order to do the model-checking.
Construction of nodes can be done "on-demand", while intersecting them with the protocol
automaton. Then, when the successors of a node in the property automaton are constructed,
one does not immediately continue to construct their own successors, and so forth. Instead,
one chooses the successors that can match the current state of the protocol. Thus, it is possible
that a violation of the checked property will be discovered before generating the entire property
automaton.

Improving the Efficiency. The algorithm as presented here was written in such a way that its
proof of correctness will be simplified. Therefore, it contains some redundancies. The following
improvements can be made:

• The field Father is not needed, except for the proof of correctness.

• When splitting a node (lines 21-26), there is no need to generate two new nodes; instead
one can update one of them with additional information, and after generating all its
descendents, create the other one. This is also true when adding the conjuncts to a node
(lines 28-30).

• An eventuality of the form .,u T does not generate a set F E F. Indeed, such a formula is
equivalent toT.

• Inconsistencies are only detected at the level of atomic propositions so that nodes that are
semantically inconsistent may still appear in the automaton. Certain inconsistencies can
be detected earlier using syntactic means. For instance, before adding a formula J.l to a
node one can 'compute' 'J.i (by pushing the negation inside) and check whether it already
occurs. If it occurs, the current node is abandoned.

• Every processed formula is currently stored in the Old field. This is not always necessary.
For instance, after a conjunction J.IJ 1\ J.12 has been analyzed, it need not be added to the
Old field because both J.IJ and J.12 will be added, and the presence of these formula tells
us that the conjunction will also be true in this node. Note however that, if J.IJ 1\ J.12 is the
righthand argument of an Until subformula., U '1/J, it must still be stored, since it is used
to define the acceptance conditions. Similar observations apply to disjunctions, U and V
formulas, but care must be also taken to retain the information needed for identifying the
acceptance conditions, i.e. the righthand arguments of U formulas. As a consequence,
the generated automata may become smaller, since nodes that differed previously might
become identical.

• In the case of treating at line 20 a subformula of the type J.l U '1/J, if '1/J already appears in
New(q) U Old(q), then there is no need to split the node q into two. It is then sufficient
to move the subformula J.l U '1/J from New(q) to Old(q). The same holds when treating a
formula of the type 1.N'I/J, and both '1/J and J.l are in New(q) U Old(q).

Automative verification of linear temporal logic 13

4 Proof of Correctness

In this section, the proof of correctness will be sketched. The main theorem is the following:

Theorem 4.1 The automaton A constructed for a property cp accepts exactly the sequences
over (tP)"' that satisfy C().

Proof. The two directions are proved in Lemma 4.8 and Lemma 4.9 below. 1

Let Li(q) denote the value of Old(q) at the point where the construction of the node q is
finished, i.e. when it is added to Nodes ...Set, at line 10 of the algorithm., Let 1\::: denote the
conjunction of a set of formulas:::, the conjunction of the empty set being taken equal toT.

Let e = :Z:Q:Z:J:Z:2 ••• be a propositional sequence, i.e., a sequence over (2")"'. and let (1' =
q0q1 ~ ••. be a sequence of states of A such that for each i ~ 0, q; ----t qi+l· Recall that (1

denotes the SUffix of the sequence C, i.e., a:;a:i+ 1 :Z:i+2 ••••

Lemma 4.1 Let tr be an execution of A, and let p. U77 E Li(qo). Then one of the following holds:

1. Vi~ 0: p., p. U71 E Li(q;) and71 rt Li(q;).

2. 3j ~ OViO «; i < j: p., p. U 71 E L1(q1) and71 E Li(q;).

Proof. Follows directly from the construction. I

Lemma 4.2 When a node q is split during the construction in lines 21-26 into two nodes q1

and q2, the following holds:

(/\ Old(q) A 1\ New(q) 1\ XI\ Next(q)) +---+
((/\ Old(q1) A 1\ New(q1) A X 1\ Next(qi)) V (/\Old(~) A 1\ New(q2) A X 1\ Next(~)))

Similarly, when a node q is updated to become a new node q', as in lines 28-31, the following
holds:

(I\ Old(q) A 1\ New(q) A X 1\ Next(q)) +---+ (1\ Old(q') A 1\ New(q') A X 1\ Next(q'))

Proof. Directly from the algorithm and the definition of L1L. I

Using the field Father we can link each node to the one from which it was split. This defines
an ancestor relation R, where (p, q) E Riff Father(q) = Name(p). Let R• be the transitive
closure of R. Nodes q such that Father(q) = Name(q), i.e., (p,p) E Rare called rooted. A
rooted node p can be one of the following two:

1. pis the initial node with which the search started at lines 34-35. Thus, it has New(p) =
{rp}.

2. p is obtained at lines 8-9 from some node q whose construction is finished. Thus, we
have New(p) set to Nezt(q).

Letfirst(q) be the node p such that (p, q) E R•, and (p,p) E R.

14 Part One Specification and Verification: Time-dependent Analysis

Lemma 4.3 Let p be a rooted node, and q~, q2, ... qn be all its same-time descendant nodes,
i.e. the nodes q; such that (p, q;) E R*. Let 2 be the set of formulas that are in New(p), when
it is created. Let Next(q;) be the values of the fields Next for q; at the end of the construction.
Then, the following holds:

f\2 +--+ V (f\A(q;) AXf\Next(q;))
lin

Moreover, ife f= V1<i<n(/\A(q;) A X/\Next(q;)), then there exists some 1 :-::; i :-::; n such that
e f= 1\ A(q;) A X 1\ Next(q;) such that for each p. U"' E A(q;) withe f= "'· "' is also in A(q;).

Proof. By induction on the construction, using Lemma 4.2. I

Lemma 4.4 Let e be a propositional sequence such that e f= 1\ A(q) A X 1\ Next(q). Then,
there exists a transition q ---+ q' in A such that 6 f= 1\ A(q') A X 1\ Next(q'). Moreover, let
r = {"' I p. u"' E A(q) and"' rt A(q) and 6 f= "'}, then in particular there exists a transition
q ---+ q' such that q' satisfies also that r ~ A(q').

Proof. When the construction of node q was finished, a node r with New (r) = Next (q) = 2
was generated. Then, Lemma 4.3 guarantees that a successor as required exists. 1

Lemma 4.5 For every initial state q E I of an automaton A generated from the formula t.p, we
have 'P E A(q).

Proof. Immediately from the construction. I

Lemma 4.6 Let A be an automaton constructed for the LTL property 'P. Then

'P f-'t V (/\ A(q) A X 1\ Next(q)).
qEl

Proof. From Lemma 4.3, since 2 in that Lemma is initially {'P}. I

Lemma 4.7 Let(}" = qoq1q2 ... be a run of A that accepts the propositional sequence e when
qo is taken to be an initial state. Then e f= 1\ A(qo).

Proof. By induction on the size of the formulas. The base case is for formulas of the form
P, ...,p, where P E P. We will show only the case of p. U"' E A(q0). Then, according to
Lemma 4.1 there are two cases:

1. Vi 2': 0: p., p. U"' E A(q;) and"'(/ A(q;).

2. 3j 2':0ViO:-s;i<j: p.,p.U'T/EA(q;)and'T/EA(qi)·

Since rr satisfies the acceptance conditions of A, only case 2 is possible. But then, by the
induction hypothesis, ej f= "' and for each 0 :-::; i < j' ei f= p.. Thus, by the semantic definition
of LTL, e f= p. U "'· The other cases are treated similarly. 1

Lemma 4.8 Let q be an execution of the automaton A, constructed for 'P, that accepts the
propositional sequence e. Then e f= 'P.

Auto111£ltive verification of linear temporal logic 15

Proof. The node q0 is now an initial state, i.e., in I. From Lemma 4.7 it follows that e f= 1\ !!(q0).

By Lemma 4.5, if qo E I then'{) E !!(qo). Thus, e f= '{). I

Lemma 4.9 Let e f= '{). Then there exists an execution u of A that accepts f

Proof. First, by Lemma 4.6, there exists a node qo E I such that e f= 1\ t!(qo) 1\ X 1\ Next(qo).
Now, one can construct the propositional sequence u by repeatedly using Lemma 4.4. Namely,
if ei f= 1\ !1(q;) 1\ X 1\ Next (q;)' then choose q;+ I to be a successor of q; that satisfies ei+ I f=
1\ !1(qi+1) 1\ X 1\ Next(q;+ 1). Furthermore, Lemma 4.4 also guarantees that we can choose qi+ 1

such that if for an U subformula p. U 'T/ in t!(q;), 'T/ holds in ei+l• then 'T/ E !!(q;+J). We also
know from Lemma 4.1 that p. U 'T/ will propagate to the successors of q; unless 'T/ holds. Since
e; f= p. U 'T/, there must be some minimal j ~ i such that e; f= 'T/. hence by the above, 'T/ E !1(q;).

I

5 Comparison with Previous Work

The first translation from an LTL formula '{) to a Biichi automaton was by Wolper, Vardi and
Sistla [16, 13]. It is based on constructing the intersection of two automata. The first automaton
takes care of the state-to-state consistency of the runs, and is called the local auto111£lton.
The other automaton, called the eventuality auto11Ulton, takes care that the eventualities i.e.,
subformulas of the type p. U '1/;, will be satisfied. The set of formulas cl(rp) are the subsets of'{).

Then, each state A of the local automaton consists of the formulas from cl(rp), either negated,
or non-negated. The transitions of the local automaton reflect consistency conditions. E.g., if
p---+q, i.e., q is a possible successor of p, and XP belongs to node p, then P must belong to node
q. The edges of this automaton are labeled identically to the nodes from which they emanate.
The initial states of the local automaton are the ones that contain the formula rp itself.

The second automaton's states consists of a subset of U subformulas of rp . These are the
set of goals that need to be satisfied along the execution sequence. The edges are labeled as in
the local automaton. Once the righthand subformula of a U formula (i.e., '1/; in '{) U '1/;) appears
on an edge, the U formula is removed from the set of goals (i.e., does not appear in the set of
formulas of the next state). When all the goals are achieved, one starts with a new set of goals
accumulated in the labels of the edge (which will later be linked to the goals accumulated in
the state of the local automaton). The eventuality automaton accepts a word whenever all the
goals are achieved infinitely often. The combination of the two automata is done by taking the
Cartesian product of the node sets, and coordinating the edges. The acceptance condition of the
product is fixed by the eventuality automaton: any node that has (in its second component) an
empty set of goals is accepting.

This construction was meant first of all to show the theoretical connection between LTL and
Biichi automata and establish its correctness. It was also designed to be applicable to temporal
logic extended with operators defined by finite automata [14]. Applied blindly, it systematically
leads to an automaton with a state set of exponential size for the following reasons.

1. Each node in the local automaton of this construction is maximal. Namely, it contains
each subformula either negated or non-negated. Thus the number of nodes is exponential
in the size of the formula (or equivalently in the number of its subformulas, cl(rp)). This

16 Part One Specification and Verification: Time-dependent Analysis

is unnecessary since many of theses nodes are often unreachable. Furthermore, this
approach does not allow nodes that only differ on locally irrelevant members of cl(cp) to
be merged.

2. The eventuality automaton has states that consist of sets of U subformulas. Thus, it is
exponential in the number of U subformulas. This is needed to handle extended temporal
logics, but is not necessary for the logic we consider here. Indeed, since U formulas
propagate unmodified until their righthand side argument is satisfied, one can, as we
did here, directly write the requirement that U subformulas are satisfied as a generalized
Biichi acceptance condition. Furthermore, converting this generalized Biichi acceptance
condition to a simple one can de done with an increase in the size of the automaton that
is linear in the number of U subformulas, rather than exponential in this number as in the
eventuality automaton approach. (A similar observation is independently and implicitly
made in [2].)

3. The nodes are generated in a "global" manner: first, all possible nodes are generated for
both automata. Then, edges are constructed between pairs of nodes if they satisfy some
consistency conditions. Finally, the product automaton is taken. Only at the end it is
possible to check which nodes are really reachable from the initial states. This requires
an additional search.

An improved tableau construction for temporal logic was given in [7]. It constructs a
graph (the goal of that paper was checking satisfiability rather than using the translation for
model-checking), but can similarly create the Biichi automaton that corresponds to a temporal
property. This construction indeed uses the above observations to reduce the number of states
and edges. It is also claimed that it operates "on-the-fly", as it starts with the property that
needs to be translated, creating an initial graph, and then refining this graph until it corresponds
to the appropriate translation. Thus, it constructs nodes and edges only "when needed". This
construction globally checks pairs of adjacent nodes in the graph. If they do not satisfy the
tableau consistency conditions, one of these nodes is refined: it is replaced by a set of nodes that
satisfy the consistency conditions. The algorithm continues to refine nodes until all the edges
satisfy the consistency conditions. This involves replacing old nodes by new ones, and adding
and removing edges accordingly. With this algorithm, the construction of the automaton needs
to be finished before it can be used for model-checking.

Our construction starts with the checked formula cp, constructs a node for it and continue
to generate the graph in a depth-first-search order. The only cases where a node is discarded
are where it is already found in the list of existing nodes, or when it contains a propositional
contradiction. Moreover, it can be used on-the-fly. Thus, avoiding the need to construct the
entire automaton if a violation of the checked property was found during its intersection with
the protocol.

6 Experimental Results and Conclusions

The following table compares the global construction described in [13] and the algorithm
described in Section 3. Both were implemented in Standard ML of New Jersey. Here, Fp
abbreviates T Up and Gp abbreviates -.F-.p.

Automative verification of linear temporal logic 17

Global Construction New Construction
Num. Formula Nodes Transitions Nodes Transitions Accepts

1 PI UP2 8 34 3 4 1
2 PI U (P2 U P3) 26 240 4 6 2
3 •(Pi U (P2 U P3)) 26 240 7 15 0
4 GFp1 ~ GFp2 114 763 9 15 2
5 Fp1 U Gp2 56 337 8 15 2
6 Gp1 U P2 13 63 5 6 1
7 •(FFp1 H Fpi) - - 22 41 2

The rightmost column represents the number of pairs in the acceptance table of the con­
structed automaton. Notice that for the safety property 3, there are no U subformulas satisfy.
Yet, for the automaton to be nonempty, it has to contain a reachable cycle.

The formulas that were used in the experiments are the following.

GFp1 --+ GFp2 This formula can describe a fairness condition: p1 expresses the enabledness
of some element (e.g., a process, a transition), and p2 the execution of that element. Such
a formula can be exploited when one wants to check some property under a fairness
condition which is not already implemented in the model-checker.

PI U (p2 U P3) and •(Pi U (P2 U p3)) The purpose of these examples is to show that the
construction does not impose an exponential blowup when negating a formula.

•(FFp1 H Fpi) This can be used to verify that (FFp1 H Fpi) is a tautology. Unfortunately
there was insufficient memory for the ML program for the global construction to complete.

It is evident from the table that the exponential blowup occurs much faster using the global
construction. This will not only be reflected in the memory and time that it takes to complete
the construction, but also during the emptiness check, which takes time (linearly) proportional
to the size of the constructed automaton.

In model-checking the size of the constructed property automaton is more critical, since one
has to take the product of this automaton with the one representing the state space. Given that
the size of the state space is itself also often a problem, it is all the more important that the
property automaton be as small as possible.

For the same reason, the fact that the algorithm is on-the-fly is important. It means that the
algorithm can often given an answer before the full state space and property automaton have
been constructed.

Thus, we feel that the algorithm in this paper is a promising and potentially practical approach
to both model-checking and validity checking: it is simple, it appears to produce reasonable
sized automata and it operates on-the-fly.

Acknowledgment. The second author likes to thank Elsa Gunter for helping him with debugging
the ML program.

18 Part One Specification and Verification: Time-dependent Analysis

References

[1] Y. Choueka, Theories of automata on w-Tapes: a simplified approach, Journal of Computer
and System Science 8 (1974), 117-141.

[2] G. Bhat, R. Cleaveland, 0. Grumberg, Efficient on-the-fly model checking for CTL *,
Proceedings of the lOth Symposium on Logic in Computer Science, 1995, San Diego, CA,
To appear.

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, J. Hwang, Symbolic model checking:
1020 states and beyond, Information and Computation, 98(1992), 142-170.

[4] C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakakis, Memory-efficient algorithms for the
verification of temporal properties, Formal methods in system design 1 (1992) 275-288.

[5] 0. Coudert, C. Berthet, J.C. Madre, Verification of synchronous sequential machines
based on symbolic execution, Automatic Verification Methods for Finite State Systems,
Grenoble, France, LNCS 407, Springer-Verlag, 1989, 365-373.

[6] G.J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1992.

[7] Y. Kesten, Z. Manna, H. McGuire, A. Pnueli, A decision algorithm for full propositional
temporal logic, CAV'93, Elounda, Greece, LNCS 697, Springer-Verlag, 97-109.

[8] 0. Lichtenstein, A. Pnueli, Checking that finite-state concurrent programs satisfy their
linear specification, 11th ACM POPL, 1984, 97-107.

[9] A. Pnueli, The temporal logic of programs, Proceedings of the 18th IEEE Symposium on
Foundation of Computer Science, 1977, 46-57.

[10] A. P. Sistla, E. M. Clarke, The Complexity of propositional linear temporal logics, Journal
of the ACM, 32(1985), 733-749.

[11] W. Thomas, Automata on infinite objects, Handbook of theoretical computer science,
1990, 165-191.

[12] M.Y. Vardi, P. Wolper, An automata-theoretic approach to automatic program verification,
Proceedings of the 1st Symposium on Logic in Computer Science, 1986, Cambridge,
England, 322-331.

[13] M.Y. Vardi, P. Wolper, Reasoning about infinite computations, Information and Computa­
tion, 115(1994), 1-37.

[14] P. Wolper, Temporal logic can be more expressive, Information and Control, 56(1983),
72-99.

[15] P. Wolper, The tableau method for temporal logic: an overview, Logique et Analyse,
110-111(1985), 119-136.

[16] P. Wolper, M. Y. Vardi, A.P. Sistla, Reasoning about infinite computation paths, Proceedings
of 24th IEEE symposium on foundation of computer science, Tuscan, 1983, 185-194.

