
39 

MIB View Language (MVL) for SNMP 

Ka.zushige Arai 
2nd Development Department 
Data. Communications Division 

NEC Corporation, 
1131 Hinode, Abiko, Chiba., 270-11, Japan 

Phone: +81-471-85-7650 
a.rai@dcd. trd. tmg.nec.co.jp 

Abstract 

Y a.chia.m Yemini* 
Computer Science Department 

Columbia. University, 
New York, NY, 10027, USA 

Phone: +1-212-939-7123 
yemini@cs.columbia..edu 

This paper introduces "MIB view language (MVL)" for network management systems to pro­
vide capability of restructuring management information models based on SNMP architecture. 
Views concept of database management systems is used for this purpose. Our MVL can provide 
"atomic operation" feature as well as "select" and "join" features to management applications 
without changing SNMP protocol itself. 

Keywords: Network Modeling; Views; SNMP 

1 Introduction 
Network management agents provide a data model of element instrumentation to the network man­
agement system (NMS). For SNMP agents1 , this data model is captured by respective MIBs, defined 
in terms of the structure of managed information (SMI) language [RFC1155]. From a perspective of 
traditional database technology [EN89] a MIB can be viewed as a database of element instrumen­
tation data. The protocol provides a data manipulation language (DML) to query MIBs and the 
SMI provides a data definition language (DDL) to define the MIB schema structures. Management 
applications executing at the NMS can access and manipulate MIB data using the protocol query 
mechanisms. 

A central difficulty in developing management applications is the need to bridge the gap between 
the data models rigidly defined in MIB structures and the data model required by an application. As 
a simple example consider a fault management application which requires data on health measures 
[GY93) associated with a network element. These health measures may be computed by sampling 
MIB variables sufficiently fast. For example, the error-rate associated with an interface can be 
computed by sampling the respective error counter and computing its derivative. Ideally, the agent 
should export a data model of health parameters that can be accessed and manipulated by the 
fault management application. However, the specific data model required can vary from element 
to element and among different installations, and over time. The MIB designers can not possibly 
capture the large variety of possible health functions in a rigid MIB. 

Of course, it is possible for the application to retrieve raw MIB data and compute the health 
data model at the NMS. This solution can be highly inefficient and unscalable as it would force 

•supported by ARPA contract F19628-93-C-0170. 
1 The techniques and concepts introduced by this paper are cast within the framework of SNMP. They could be 

mapped to the GDMO framework of CMIP where they would play an equally important role. This mapping will be 
described in future work. 

A. S. Sethi et al. (eds.), Integrated Network Management IV
© Springer Science+Business Media Dordrecht 1995



MIB view language for SNMP 455 

excessive polling of MIB data. Furthermore, it does not allow various applications that execute at 
multiple NMS to share the computations of the health data model effectively. In a multi-manager 
environment such sharing of data models is of great significance. 

An alternative approach, developed in this paper, is to support effective computations of user­
defined data models - views - at the agent side. The ability to define computed views of data 
has found a broad range of applications in traditional databases. View definition and manipula­
tion capabilities are integral components of virtually all database systems. This paper proposes to 
extend the SMI and agent environment to support similar view computations to meet the need of 
management applications to transform raw MIB data into useful information. 

The health data model, for example, could be defined in terms of the proposed MIB view language 
(MVL). The MVL computations could be delegated [YGY91] to the agent's environment, or to a 
local manager. Views can be organized in and accessed through agent's MIB. Applications could 
use standard SNMP queries to access and retrieve these view definitions. One can thus consider 
view MIB as a programmable layer of transformations of raw MIB data into information required 
by remote management applications. 

There is an approach to transform MIB data, especially for OSI SMI architecture [SB93]. In this 
paper, we concentrate on SNMP architecture and are introducing actual MVL. 

In following sections, we describe what can be done with views (Section 2) and then provides 
actual MVL specifications (Section 3). 

2 Views of Managed Data 

A database system includes an intrinsic data model defined by its schema. This intrinsic model is 
used to provide effective access to stored data, anticipating certain patterns of use by applications. 
Often, however, applications require a different data model than the one that is stored. A view 
provides a mapping of the intrinsic stored-data model to the data model needed by the application. 

The data model created by a view can be considered as a virtual MIB. A virtual MIB is computed 
by an agent and may be accessed by SNMP managers like any other MIB. The examples illustrate 
various applications of virtual MIBs. 

An application may wish to correlate data in multiple related tables. In a relational databases 
such correlation is accomplished by computations of a join. Consider for example the MIBs used 
in a terminal server device. The physical layer of the terminal server, described by the RS232 MIB 
[RFC1317], includes a table (rs232SyncPortTable) describing the physical ports. The logical layer 
of the terminal server, described by the point-to-point protocol (PPP) MIB [RFC1471], includes a 
table (pppLqrTable) describing logical link objects. These tables are depicted in Figure l(a) and 
(b). Suppose now that a management application wishes to correlate the status oflogicallinks and 
of the physical ports which they use. This is important in isolating faults that are manifested by 
managed objects associated with both layers. To accomplish such correlation one would want to 
compute a join of the respective tables (Figure l(c)). 

pppl.qrQuallty ppplqrlnGoodOcl8t 
rii232Sync rs232Syncframe 

pppPartQu811ty 
pppPortR8232SyncPort 

Porttndex CheckErrar FrameCheckEnor 

IJO«l 1234 /J 0 IJO«l 0 

bad 4667 4 /14 bad /14 

IJO«l IU3! II II IJO«l II 

(a) ppplqrTable (b) ra232SyncPortTable (c) Created (Joined) Table 

Figure 1: Example of "join" Tables. 



456 Part Three Practice and Experience 

In contrast with databases, neither SNMP nor CMIP provide a mechanism to correlate data by 
computing joins. In the example, the fault analysis application will have to retrieve both tables from 
the terminal server agent and compute the join. This computation of a join is very inefficient as much 
more data than needed will be retrieved and processed by the application. Moreover, it can lead to 
serious errors. Retrievals of tables by SNMP is not an atomic operation. Each GET-NEXT access 
will retrieve the current data in the respective tables. If attributes stored in the table change during 
retrieval the table images at the application side will reflect multiple versions of the respective MIB 
tables. The fault analysis routine may be mislead by the data to identify the wrong faults. Problem 
management could exacerbate the problems rather than resolve them. The problem of computing 
a join of table as an atomic action commonly occur in other network management scenarios. For 
example, resolution of routing problems typically involves correlation of routing, address translation 
and other configuration tables. It would be thus very useful to support effective computations of 
atomic joins. 

Views can be used to perform such computations efficiently. A view computation could obtain 
an atomic (or a very good approximation of it) snapshot of the respective tables and then join 
them at the agent side. The joined table is a part of a virtual view MIB. It could be accessed 
by applications for retrievals via GET-NEXT (or GET-BULK) as any other MIB table. Atomic 
retrievals, of course, can be important even when tables are not joined. A view could be used to 
generate an atomic snapshot of a MIB table in the virtual MIB which could then be retrieved by 
managers. 

Views may be used, similarly, to select objects that meet certain filtering criteria of interest. 
Selective retrievals are provided by CMIP via filters passed to agents as part of queries. In contrast, 
SNMP does not permit filtering of data at the source. Consider the terminal server example. Suppose 
one wishes to retrieve logical link data for all troubled links (defined by some filtering conditions 
on link status). At present, it is necessary to retrieve the entire logical links table and perform the 
filtering at the manager. This is inefficient and presents great difficulty in searching large tables (e.g., 
of thousands of virtual circuit objects in AtomMIB [ATOMMIB]). A view could be defined over the 
logical link table to perform the filtering required by the manager. A GET-NEXT access to this 
view will retrieve the next logical link that meets the filtering criteria. This can be used to augment 
SNMP with selective retrievals without any changes to the protocol. Furthermore, this method of 
filtering could be more efficient than the one pursued by CMIP since the filters are delegated ahead 
of access and require no parsing and interpretation during access time. 

Views may be used to support participatory management of complex multi-domain networks. 
Consider for example a collection of private virtual networks (PVN) sharing a common underlying 
physical network. Such PVN are commonly used by telecommunication service providers as means 
to partition bandwidth among multiple organizations. NMS responsible to manage the various PVN 
must share access to agents of the underlying network elements. At the same time, their access 
should be limited to monitor and control the resources in their respective PVN. It is thus necessary 
to provide each PVN with a view of the actual MIBs. SNMPv2 [RFC1442] provides a "context" 
mechanism to support projection view of a MIB. A party may be authorized to access a subset of the 
MIB. Views significantly extend this mechanism to support not only projections but also computed 
data. The virtual MIBs accessed by PVN may hide some of the underlying network features to 
prevent PVN from compromising sensitive resource data. 

Views may be used to support atomic actions in a multi-manager environment. In the multi­
manger environment, it is difficult to ensure atomicity of actions invoked from several managers. 
With SNMP architecture, a side-effect of a SET operation is used to invoke an action. This operation 
may take one or more parameters which control a behavior of the action. When an action invoked 
by setting an value to an object (trigger object), agent may treat one or more other objects as 
parameters related to the action (parameter objects). But a parameter object set by one NMS may 
be modified by other managers before the previous manager invokes the action by setting trigger 
object. This can lead to incorrect behaviors. A view can define the action trigger and its parameters 
·as an atomic group. This will associate with the group a queue of action requests. Each SET invoked 
by a manager to any object in the group will be queued. When all object SET requests by a given 



MIB view language for SNMP 457 

manager have been received in the queue the action is invoked atomically. Should two managers 
access the action concurrently, their actions are serialized by the queuing mechanism. 

Views could also provide a beneficial mechanism to protect access to data. A view can be used 
to define the data model and access rights available to certain applications. This is routinely used 
in databases to secure data access. SNMPv2 has this capability but view could provide it even with 
SNMPvl. However, a full discussion of view applications to secure management is beyond the scope 
ofthis preliminary paper. 

Finally, views may be used to simulate abstraction/inheritance relations among SNMP objects, 
similarly to the object model provided by CMIP. For example, a view could define a port object 
and its properties as a common abstraction of various port objects in different MIBs. The abstract 
port properties could be mapped by the view (simulating inheritance) to properties of the specific 
port objects in the MIB. Similarly, one can use views to model containment relations among objects. 
These features, however, is beyond the scope of this paper. 

In summary, a view could be used to support extensive computations over MIBs (correlations 
and filtering of data), atomicity of data access and actions, access control and object abstrac­
tions/inheritance and containment. These capabilities are summarized in Figure 2. 

FEATURE DESCRIPTION 

CORRELATION 
Join tables ID cresla nsw tabla which contslns 
comtlatad data. 

ATOMIC RETIEVE 
Generate atomic -pahot of a MIB tabla which 
can ba relieved atomicly. 

FILTERING 
Select data which meat a fillaring condition at 
agantalda. 

SELECT PARTIAL MIB 
Provide partial accasa ID each manager In multi· 
manager environment 

ATOMIC ACTION 
Garantaa atomic invocation of actions in multi· 
manager environment 

SECURE ACCESS 
Defina accaaa rights to each management 
application. 

OBJECT-ORIENTED Simulala date abetructions and Npr&Rntation 
MODEL of containment relationships. 

Figure 2: Summary of View Features. 

3 MIB View Language 

This section introduces the MIB View Language (MVL). The goal of MVL is to provide a minimal 
extension of SNMP's SMI [RFC1155, RFC1442] that supports: 

• definitions of the structure of view objects 

• conversion of data from real MIB objects to compute view objects. 

Traditional database systems use SQL, the data manipulation language, to define views. For exam­
ple, 

CREATE VIEW View1 
AS SELECT T.Attr1, T.Attr2 

FROM Rea1_Table T 
WHERE T.Attr3=0 AID T.Attr4=1 



458 Part Three Practice and Experience 

These SQL expressions accomplish definitions of the structure of view objects and their compu­
tations from real objects simultaneously, using a SELECT-FROM-WHERE construct. MVL develops a 
similar approach to view definitions, adapted to the SMI. 

View definitions in MVL are compiled by a MVL compiler into appropriate agent computations 
and MIB structures for the view MIB. Access to a view MIB by a manager is indistinguishable from 
access to any other MIB. 

An important consideration in implementing views is the organization of a view MIB and access 
within a complex multi-MIB agent environment. There are a few issues that an implementation 
architecture must address. 

1. how does a manager query of a view MIB get processed 

2. how are computations of a view MIB executed 

3. how do view computations access real MIB objects 

4. how are views delegated to an agent environment 

A comprehensive discussion of the architectural options to address these questions is beyond the 
scope of this paper. We provide here a brief summary of one possible solution. View computations 
are encapsulated in a view agent. A view agent can function as a subagent within a multi-agent 
environment. An SNMP query of a view will be communicated by the master agent to the subagent 
(e.g., using one of a number of mechanisms currently available such as SMUX, WINSNMP, or 
other extensible agent mechanisms). The view agent is entirely responsible to compute the views. 
Views can be delegated to the view agent using the management by delegation mechanisms [YGY91). 
Figure 3 depicts the overall organization of the different components of a typical SNMP management 
environment extended with view mechanisms . 

.... '\tr,;lh········~ - . . 

r-· 

I 
-•• I 
.~.;.J ... 
'!'Jno;;,:;.,-.i -

Figure 3: View Agent and MVL compiler. 

MVLCornpiJ..-

Notice that a view agent may act as a manager and use proprietary or standard protocols to 
access remote agents and retrieve data needed in computing views. This may be accomplished by 
functions, invoked through view computations, to access and retrieve remote data. 



MIB view language for SNMP 459 

3.1 The VIEW-TYPE Macro and View Function 

The data structure of view object can be defined by a modified OBJECT-TYPE macro of SNMP. We 
called it a VIEW-TYPE macro. The only difference between view objects and real objects is that 
the value of the view object is computed from existing managed objects. Therefore we introduce 
VIEW-FUICTIOI block to specify how to compute the value of a view object. COMPUTED-BY clause is 
used to bind view object and view function. Figure 4 illustrates a view definition using a VIEW-TYPE 
macro and a VIEW-FUICTIOI block.2 

view0bject1 VIEW-TYPE 
SYITAX IITEGER 
MAX-ACCESS read-write 
STATUS current 
DESCRIPTIO» "Example of view 

definitions" 
COMPUTED-BY function! 

{view 1} 

function1 VIEW-FUICTIOI 
SELECT realObjectl 
WHERE realObjectl <= 100 

Figure 4: VIEW-TYPE and VIEW-FUNCTION. 

3.1.1 COMPUTED-BY Clause 

The COMPUTED-BY clause declares the function name which computes the value of the object by 
accessing existing objects. If no COMPUTED-BY clause appeared in VIEW-TYPE macro, value of the 
view object is persistently stored into the view MIB instead of being computed from existing real 
objects. In this case the value of the object should be initialized by a manager application or through 
a DEFVAL clause. 

3.1.2 VIEW-FUNCTION Block 

Each function declared by a COMPUTED-BY clause has to be defined using a VIEW-FUICTIOI block. 
This defines conversion procedures of data. A VIEW-FUICTIOI block is based on SQL. It consists of 
two clauses, "SELECT" and "WHERE". 

SELECT Clause The SELECT clause defines how to access values of existing objects in com­
puting a view object. Note that, the existing objects specified here may be other view objects. The 
following operators are available for computing selection: 

[ ) operator Indexing column object in table structure (See Section 3.2) 

- > operator To access a column object from an object identifier of conceptual row object. 

+, -, *• / operator Arithmetic operators for calculation 

WHERE Clause The WHERE clause specifies a condition that filters the instances of objects 
accessed by the SELECT clause. The following conditional operators are available: 

AND operator Logical AND operator 

OR operator Logical OR operator 

2 In this paper, we use syntax of SNMPv2 SMI as a.n example. But MVL is also applicable to SNMPvl with few 
modification. 



460 Part Three Practice and Experience 

NOT operator Logical NOT operator 

IN operator Compare two object identifiers (OIDs) whether right hand OlD is included in the left 
hand OlD's subtree 

=, <>, <, >, <=, >= operator Compare magnitude of two expressions 

[ ], - >, +, -, *• / operator All these operators described with SELECT clause can be used in WHERE 
clause 

The key word "SELF-IIDEI" is used as an index value of [ ] operator to specify index value of 
the view object its self. (See Section 3.2) 

3.2 Computing Join and Selection View Tables 

Specifying the computations of view tables from real tables is particularly challenging. One must 
identify how conceptual rows in the view table relate to respective rows in the real tables. Of· 
particular significance is the computation of the index of a view table. The simplest case is when a 
view table uses a column from a real table as its index. This is illustrated by the following example. 

viewifindex VIEW-TYPE 
SYITAI IITEGER 

COMPUTED-BY func_ifindex 

func_ifindex VIEW-FUICTIOI 
SELECT ifindex[SELF-IIDEI] 

In here viewifindex is the index column of the view table and ifindex is a column of a real MIB 
table. The notation [SELF-IIDEI] is used to specify the index of the real MIB table containing 
ifindex. Of course, one must ensure that the values in if Index can be suitably used as an index 
(i.e., they are key for the view table). 

Consider now the case where the view table is created by selecting a subset of conceptual rows 
from the real table. This may be used to filter row entities using appropriate filtering condition. 
For example, ifOperStatus represents the operational status of interface objects and a value 1 
represents that an interface is operational. [RFC1213, RFC1573] The following example creates a 
view table that includes index values for all operational interfaces. A manager accessing this view 
table via GET-NEXT could retrieve index values for operational interfaces only. 

func_column1 VIEW-FUICTIOI 
SELECT ifindex[SELF-IIDEI] 
WHERE ifOperStatus[SELF-IIDEI] = 1 

We now illustrate how to specify join views using MVL expressions. Consider two tables, ifTable 
[RFC1213, RFC1573) and atminterfaceConfTable [ATOMMIB] whose index column is ifindex. 
We wish to create a view table that join the two tables using their common index values and contain­
ing the common index column, followed by ifSpeed of ifTable and then the atminterfaceKaxVpcs 
and atminterfaceKaxVccs of atminterfaceConnTable. This is depicted in Figure 5 and is accom­
plished by the MVL specification in Figure6. 

3.3 Computing Atomic Operations in MVL 

Supporting invocation by managers of actions at agents is of great significance in management. 
Remote actions can be used to control configuration (e.g., partition hub ports, establish permanent 
virtual circuits through a switch or configure collection of statistics by a remote monitor) or invoke 



MIB view language for SNMP 461 

ItT able atmlnterfaceConnTable 

f•""t,:z,:,_ (•"" .. ..,.,.,. ----· IHJ<Vpc .. !) llutlcc .. !) 

(•rm.,"t.n.c. ,."" .. ..,.,.,. ..... 
lluVpcU) llutlccU) 

(•"".,":.,.,. (•""*'..,.,.,. ----· lluV~.!O) llutlcc..!O) 

I 

010 
(FfMntlpc-.!0) (VIIutlcca.!O) 

Index 

Figure 5: Join Tables. 

diagnostic procedures. CMIP, therefore, supports explicit invocation of remote procedure calls. In 
contrast, SNMP utilizes side-effects of SET to invoke agent procedures. This implicit invocation of 
remote procedures is seriously limited in passing parameters t o actions. A manager would have to 
ensure that parameters are set prior to triggering the e xecution of an action that uses ·them. In a 
multi-manager environment interference among managers t rying to invoke a parameterized actions 
could lead to erroneous actions. One manager could reset the values of parameters just set by 
another manager who issues an action triggering request. 

The parameterized action model of SNMP may be best viewed as a form of supporting trans­
actions among managers and agents. The problem is, accordingly, that of supporting concurrency 
control of such transactions to assure their serializability. Interference among managers can lead to 
non-serial execution schedules. 

Currently, there are several approaches to realize the parameterized atomic action. For example, 
using "lock" variable to control write access to parameters of action is the most popular method for 
the concurrency control. 

Managers must check the lock variable before modifying the parameters and if it is not set, the 
manager set the variable to lockout access from other managers . The agent keeps an ID of the 
manager which set the variable, and does not accept SET access from other managers. This method 
still have a chance of conflict to access lock variable itself. 

Another example to realize the parameterized atomic action is introduced by using row creation 
of SNMPv2. With this method, each manager which invokes an action creates a n ew row which 
contains parameters of the action. Since the other managers does not know the ident ifier of the 
new row, this manager can set the parameters without conflict from other managers. This method 
is fit for an action like create a n ew virtual circuit . But it may not be appropriate for changing 
parameters of some services. And this method cannot be applied to current SNMP. 

MVL provides a simple and generic mechanism to support concurrency control of SET transac­
tions by multiple managers. MVL uses the ATOMIC-GROUP const ruct to accomplish this. We use the 
example in Figure 7 to illustrate the atomic execution mechanisms of MVL.3 

3 T his example io based on an action of virtua.l path (VP) cross-connect establishment described in (AT OMMIB], 



462 Part Three Practice and Experience 

viewAtmifTable VIEW-TYPE 
SYITAX SEQUEJICE OF 

vAtmifTableEntry 
MAX-ACCESS not-accessible 
STATUS current 
DESCRIPTIOJI "ATM Interface Table" 
IJIDEX {vifindex} 
: := {view 1} 

vAtmifTableEntry VIEW-TYPE 
SYJITAX VAtmifTableEntry 
MAX-ACCESS not-accessible 
STATUS current 
DESCRIPTIOJI "Conceptual row" 
::= {viewAtmifTable 1} 

VAtmifTableEntry ::= SEQUEJICE { 
vifindex IJITEGER, 
vifSpeed Gauge, 
vMaxVpcs IJITEGER, 
vMaxVccs IJITEGER 
} 

vifindex VIEW-TYPE 
SYITAX IITEGER 
MAX-ACCESS read-only 
STATUS current 
DESCRIPTIOJI 

"ifindex from ifTable" 
COMPUTED-BY func_vifindex 
::= {vAtmifTableEntry 1} 

func_vifindex VIEW-FUJICTIOJI 
SELECT ifindex[SELF-IJIDEX] 
WHERE ifType[SELF-IJIDEX] = 37 

vifSpeed VIEW-TYPE 
SYJITAX Gauge 
MAX-ACCESS read-only 
STATUS current 
DESCRIPTIOJI 

"Interface speed" 
COMPUTED-BY func_vifSpeed 
::= {vAtmifTableEntry 2} 

func_vifSpeed VIEW-FUJICTIOJI 
SELECT ifSpeed[SELF-IJIDEX] 
WHERE ifType[SELF-IJIDEX] 37 

vMaxVpcs VIEW-TYPE 
SYJITAX IJITEGER 
MAX-ACCESS read-write 
STATUS cu=ent 
DESCRIPTIOJI 

"Max. number of VPCs." 
COMPUTED-BY func_vMaxVpcs 
::= {vAtmifTableEntry 3} 

func_vMaxVpcs VIEW-FUJICTIOJI 
SELECT atminterfaceMaxVpcs 

[SELF-IIDEX] 
WHERE ifType[SELF-IJIDEX] = 37 

vMaxVccs VIEW-TYPE 
SYJITAX IJITEGER 
MAX-ACCESS read-write 
STATUS current 
DESCRIPTIOJI 

"Max. number of VCCs" 
COMPUTED-BY func_vMaxVccs 
::={vAtmifTableEntry 4} 

func_vMaxVccs VIEW-FUJICTIOJI 
SELECT atminterfaceMaxVccs 

[SELF-I liD EX] 
WHERE ifType[SELF-IJIDEX] = 37 

Figure 6: Example of MVL definition to join tables. 



MIB view language for SNMP 

vVpConnCont VIEW-TYPE 
SYITAX TimeTiclts 
MAX-ACCESS read-write 

ATOMIC-GROUP { vVpConnLowitindex, 
vVpConnLowVpi, 
vVpConnHighitindex, 
vVpConnHighVpi 
vVpConnAdminStatus, 
vVpL2HOperStatus, 
vVpL2LOperStatus } 

vVpConnLowitindex VIEW-TYPE 
SYITAX IITEGER 
MAX-ACCESS read-write 

COMPUTED-BY tunc_Lowitindex 

tunc_Lowitindex VIEW-FUICTIOI 
SELECT 

atmVpCrossConnectindex[SELF-IIDEX] 

vVpConn!dminStatus VIEW-TYPE 
SYITAX IITEGER 
MAX-ACCESS read-write 

COMPUTED-BY tunc_AdminStatus 

tunc_AdminStatus VIEW-FUICTIOI 
SELECT 

atmVpCrossConnectAdminStatus 
[SELF-IIDEX] 

vVpL2HOperStatus VIEW-TYPE 
SYITAX IITEGER 
MAX-ACCESS read-only 

COMPUTED-BY tunc_L2HOperStatus 

tunc_L2HOperStatus VIEW-FUICTIOI 
SELECT 

atmVpCrossConnectL2HOperStatus 
[SELF-IIDEX] 

Figure 7: Example of Atomic Group. 

463 

The view object vVpConnCont is defined as an atomic object with a value of TimeTiclts. The 
ATOMIC-GROUP declaration binds a group of view objects to an action (transaction) associated with 
vVpConnCont. The group of view objects is called atomic group. When a manager starts to invoke 
the atomic action, it would first SET the vVpConnCont with a value of time-out by which time the 
atomic action is canceled. Once the atomic object is SET, all subsequent SET accesses to any objects 
in the atomic group by the same manager are queued until the view agent has obtained a SET for 
all objects in the atomic group whose access is read-write (In this example, vVpConnLowltindex, 
vVpConnLowVpi, vVpConnHighitlndex, vVpConnHighVpi and vVpConnAdminStatus). At that time, 
the view agent executes all these SETs in the order defined by their request-id. When the last SET 
request is executed, the action is invoked at real agent (In this example, virtual path is connected). 
The other SET requests are used to set parameters of the action. 

After finishing all SET request executions, the view agent will execute GET requests to all read­
only objects in the atomic group (In this example, vVpL2HOperStatus and vVpL2LOperStatus). 
These read-only objects are used to return results of the atomic action. The view agent takes an 
atomic snapshot of these values for subsequent GET and GET-NEXT accesses by the manager. The 
snapshots will be deleted either through another SET request by the same manager or through a 
timer (vVpConnCont) expiration on the time-out. If the timer expires before all objects are SET, 
the atomic action will be canceled and the agent dose not execute any SET request issued by the 
manager. 

If all the variables in the ATOMIC-GROUP are read-only, then the agent interprets the SET request 
to the atomic object as an atomic retrieval initiation. It takes a snapshot of all these objects in the 
ATOMIC-GROUP and stores them. All subsequent GET or GET-NEXT access to these variables by 

but it is slightly modified from actual MIB definitions. Because, original definitions have their own way to provide 
atomic action with row creation teclmiques described above. 



464 Part Three Practice and Experience 

the manager that issued the SET retrieves this atomic snapshot. 
MVL also provides another capability of atomic retrieval which is called asynchronous update. 

SuppQlle that there are two or more counters defined in a MIB (a real MIB). And they are being 
updated concurrently. There is no guarantee that two counter values which are retrieved by manager 
are consistent. Because, the values may be updated by agent after the manager retrieves one counter 
value and before retrieves another one. Retrieving two values on different cycles of updating may 
make inconsistency between these values. 

MVL uses UPDATE-GROUP construct to prevent this inconsistency. Example in Figure 8 is used 
to illustrate the asynchronous update mechanism. 

updateErrorCounts VIEW-TYPE 
SYITAX TiaeTicks 
MAX-ACCESS raad-vrite 

UPDATE-GROUP { vifinErrors[SELF-IIDEX], 
vifOutErrors[SELF-IIDEX] } 

UPDATE-COIDITIOI 
IF ifOperStatus[SELF-IIOEX] = 1 

vifinErrors VIEW-TYPE 
SYJITAX Counter 
MAX-ACCESS read-only 

COMPUTED-BY func_inErrors 

func_inErrors VIEW-FUICTIOI 
SELECT ifinErrors 

[SELF-IIDEX] 

Figure 8: Example of Update Group. 

An updateErrorCounts is declared as an object controls asynchronous update with a value of 
TimeTicks. The UPDATE-GROUP declares a group of view objects which are updated simultaneously. 
The view agent updates a snapshot of the view objects in the group by getting values through view 
functions of each view objects. By default, interval time of update is given as a value of object 
defined with UPDATE-GROUP declaration (In this example, value of updateErrorCounts). 

Since all member objects of UPDATE-GROUP are updated simultaneously, managers always retrieve 
values with in a same update cycle by GET access. If agent receives GET request during it is 
updating values, the request is queued and responded after finishing update process. On the other 
hand, if update timing is reached during process of responding GET access, the update process is 
delayed after completion of the response. 

UPDATE-COIDITIOI clause specifies conditions of updating members of the UPDATE-GROUP. In 
an example of Figure 8, the agent updates the member objects only if a value of ifOparStatus 
is equal to 1 (UP). Any other condition identical to WHERE clause can be specified with IF clause. 
TIMIIG clause can also be specified to determine more complex update schedule. For example: 
TIMIIG { 10:00, 12:00, 14:00, 16:00 } declares that the member objects are updated at 10:00, 
12:00 and so on. With this declaration, the value of updateErrorCounts is ignored. 

4 Conclusion 

Introducing views concept of database management systems into managed object definitions of net­
work management systems provides capability of restructuring network models. This capability 
makes it is possible that network models can be modified to be best for each management applica-­
tion. Especially, views provides "select" and "join" features of database management systems and 
they make development of network management application easier and they can also reduce traffics 
between manager and agent nodes. 

We introduced "MIB View Language (MVL)" for SNMP architecture which can be used without 
changing any protocols between manager and agent. With MVL compiler, we can produce MIB 
structure for view agent and view functions which convert existing data models to view models. 



MIB view language for SNMP 465 

MVL and view agent also provide atomic operation features. With these features atomic invoca­
tion of actions and asynchronous update of view objects, which is not available with current SNMP 
architecture, can be achieved without changing SNMP protocol itself. 

References 

[ATOMMIB] M.Ahmed, K.Tesink, Editor, "Definitions of Managed Objects for ATM Management, 
Version 7.0", Internet Draft, 1994 

[EN89] R.Eimasri, S.Navathe "Fundamentals of Database Systems", The Benjamin/Cummings Pub­
lishing Company, Inc., 1989 

[GY93] G.Goldszmidt, Y.Yemini, "Evaluating Management Decisions via Delegation", Integrated 
Network Management, III, Elsevier Science Publishers B.V. (North-Holland), 1993 

[RFC1155] M.Rose, K.McCioghrie, "Structure and Identification of Management Information for 
TCP/IP-based Internets", RFC-1155, 1990 

[RFC1213] K.McCioghrie, M.Rose, "Management Information Base for Network Management of 
TCP /IP-based Internets: MIB-11", RFC-1213, 1991 

[RFC1317] B.Stewart, Editor, "Definitions of Management Objects for RS-232-Iike Hardware De­
vices", RFC-1317, 1992 

[RFC1351] J .Davin, J .Galvin, and K.McCioghrie, "SNMP Administrative Model", RFC-1351, 1992 

[RFC1442] J.Case, K.McCloghrie, M.Rose, S.Waldbusser, "Structure of Management Information 
for version 2 of the Simple Network Management Protocol (SNMPv2)", RFC-1,U2, 1993 

[RFC1471] F .Kastenholz, "The Definitions of Managed Objects for the Link Control Protocol of the 
Point-to-Point Protocol", RFC-1471, 1993 

[RFC1573] K.McCioghrie, F .Kastenholz, "Evolution of the Interfaces Group of MIB-11", RFC-1573, 
1994 

[SB93] S.Bapat, "Richer Modeling Semantics for Management Information", Integrated Network 
Management, III, Elsevier Science Publishers B.V. (North-Holland), IFIP 1993. 

[YGY91] Y.Yemini, G.Goldszmidt, S.Yemini, "Network Management by Delegation", Integrated 
Network Management, II, Elsevier Science Publishers B.V. (North-Holland), IFIP 1991 


