
2 
Models and Support Mechanisms for 

Distributed Management1 

J.-Ch. Gregoire2 

INRS-Telecommunications 
16, pl. du Commerce, Ile des Soeurs, 
Verdun, Qc, CANADA H3E 1H6 
gregoire@inrs-telecom. uque bec.ca 

Abstract 

We describe here an experimental environment for distributed network and system 
administration based on the integration of a small number of simple efficient conceptual 
models which support a variety of management paradigms. They are implemented in 
turn by a couple of simple, but powerful mechanisms and a customizable runtime 
environment. We describe how this environment has been realized around a small and 
efficient language. 

Keywords: distributed systems management, delegation, worm, conceptual models, imple­
mentation support architecture. 

1 Introduction 

Network management has received a lot of attention from standardization bodies, network 
and computer equipment manufacturers, and has inspired various consortiums. In most 
cases, network management has been handled, to a large extent, as a distributed database 
problem, where the management information is acquired remotely then transferred to a 
central location to be processed [11, 2]. The data is organized as a hierarchical distributed, 
potentially object-oriented model [3, 4]. However, even when the model is object-oriented, it 
nevertheless supports direct data manipulation as well as a notion of operation3 • In other 
words, the notion of object provides inheritance of properties and granularity of concepts, 
but not necessarily encapsulation. It is worth noting, in this case, that the database model 
is not explicitly recognized as the basis for the management mechanisms, and little effort 
has been made to integrate the results of developments in distributed database technology 
in standards and platform alike. 

The major alternative offered to the database model is a distributed object-oriented 
application. The importance of this model appears to be increasing, even though it has 
been pushed forward mainly by consortiums [16, 15] rather than official standardization 
bodies, although the conceptual influence of Open Distributed Processing (ODP) [5] must 

1parts of this work were submitted to DSOM'94 
2 this work was partially funded by the Chaire Cyrille Duquet en Logiciels de Telecommunications 
3note that, in this document, operation may mean an action on an object or the operations of the 

distributed system/network 

A. S. Sethi et al. (eds.), Integrated Network Management IV
© Springer Science+Business Media Dordrecht 1995



18 Part One Distributed Systems Management 

be acknowledged. This model supports cooperative forms of management and appears to 
be quite well suited for higher levels of management. Because objects tend to be large 
grained, and their manipulation through trading and/ or brokerage mechanisms may incur a 
significant operational overhead, this model is not really considered for low-end operations 
such as data acquisition at this stage. 

System management has been more the focus of individual computer systems manufactur­
ers as well as third party suppliers. This form of management is typically aimed at system 
configuration and information sharing. As such, its problems are different from network 
management as it focuses more on dynamic configuration through information distribution 
and sharing (e.g. with Hesiod or NIS) whereas configuration in network management tends 
to be more static. Yet, the support mechanisms used can be related to decentralized and/or 
hierarchical databases. Monitoring and performance oriented operations are typically done 
locally. 

More recent developments, mainly from private companies, have introduced distributed 
platforms for operations management, again using a distributed object-oriented model. 
These new developments bring system management more in line with the concerns of network 
management, and we thus feel that it is legitimate to try and unify the two notions. 

Each form of management uses a unique mechanism, either a distributed database or 
distributed objects, to support all management tasks. This mechanism is either limited in 
functionality for efficiency reasons (e.g. SNMP), or turns out to be a rather heavyweight 
generic tool (e.g. Tivoli, ANSA ware). The lack of flexibility in mechanisms leads to inflexible 
solutions. There are indeed few tradeoffs available in computing power and bandwidth 
requirements between either mechanisms. 

The focus of our study is the identification of a basic set of conceptual mechanisms and 
models (paradigms) necessary and sufficient to support management tasks. Using several 
mechanisms, as opposed to a single, general one, allows us to have minimal structural over­
head for different operations. We can also mix different levels of support for different classes 
of devices. Overhead indeed increases dramatically as platforms increase in complexity, with 
a single general mechanism. 

A toolkit supporting these conceptual mechanisms allows us to fine tune the quality of 
service for different operations. Performance, availability, integrity and safety are all factors 
that can be taken into consideration in the selection process. These toolkit consists of a 
programming language and its runtime environment, which supports remote execution and 
dynamic interactions. 

The structure of this paper is as follows. We first give some general background on net­
work management and its terminology. We then discuss different computational structures 
used in, or of potential interest for network management. We then discuss another dimension 
of management, that is the nature of the operations that must be performed. This allows us 
to introduce our set of mechanisms and show how it can support the functi9nality required. 
We show how it can be used, and describe a prototype implementation. We close with a 
discussion and some conclusions. 



Models and support mechanisms for distributed management 19 

2 Background 

In this paper, we will be using the "standard" network management framework. 

2.1 General notions 
A manager communicates with network elements running agents. An agent interacts with 
the physical (or logical) process to create and maintain managed object abstractions. An 
agent can also act as a proxy, that is, hide and create a management compatible abstraction 
for parts of the network that use a different protocol. 

Management is the realization of various functional categories, such as Operations, Ad­
ministration, Maintenance and Provisioning (OAM&P) in the TelCo tradition, or Account­
ing, Fault, Configuration, Performance and Security in the OSI perspective. 

Network management solutions address the problem of network element (or device) man­
agement. They incorporate important decisions wrt issues such as 

• in band vs. out of band, 
• connection based or connectionless, 
• protocol efficiency and performance, 
• agent resources requirements, 
• manager resources requirements, 
• complexity of access and manipulation of the information structure. 

Network management protocols reflect a conceptual structure of managed information. 
The database model is the underlying structure in international network management stan­
dards such as SNMP or CMIS. Basically, the managed resources are treated as a collection 
of managed objects whose state can be queried and modified from a number of remote man­
agers. The database model naturally suggests itself as long as one views the network as a 
collection of information sources to browse, and possibly to change. 

SNMP, for example, is a connectionless protocol, suitable for small scale networks. Its 
use of polling to update the database information also generates a volume of traffic which 
can consume too much bandwidth as networks grow in size: a form of the so-called probing 
effect [13]. Its agents are however rather simple. Its data access paradigm is also quite 
simple, and consists mainly of variable manipulation. CMIP on the other hand is connection 
based. Its information model is richer than SNMP's and require more support from the 
agent. It is meant to be scalable to large networks, but it lacks, as does SNMP, a hierarchy 
of higher level, inter-manager, information exchange and cooperation structure. 

2.2 Problems with current models 

There are a number of problem with the current database approach to network management. 
First, the mechanism actually implemented in protocols is a restricted form of the database 
model, however, for efficiency reasons. 

Atomicity of access is restricted to some operations when it is available at all. Operations 
can only be performed on a unique network element at a time. Consistency of information 



20 Part One Distributed Systems Management 

retrieval across several network elements cannot therefore be guaranteed, i.e. we cannot 
manipulate distributed relations. 

The complexity of the management work rests on one or several management station(s) 
which must be capable of browsing the information structure of the managed objects and 
recover, or modify, specific objects. Managed objects may howeyer spontaneously notify 
a manager of some change in their status with traps or notifications (a notion similar to 
triggers in the database world). 

The database model lacks notions of cooperation and grouping. There is no provision in 
the basic model for cooperation between managers, although the underlying mechanisms can 
be used to communicate information to another manager. There is also no way of grouping 
agents into a single element to give it a collective presentation. 

In the case of in-band management, when agents have to be polled for updates, the 
database model may incur a significant load on the network which can be detrimental to 
normal operations. Scalability then becomes an important issue. Spontaneous notification 
mechanisms may somewhat alleviate the problem, however. 

Finally, the different database models used in administration are non-hierarchical and 
another mechanism is required to integrate managers for domains that outgrow the model 
quantitatively of geographically. 

2.3 Evolution 

More recently, there has been a growing interest in using emerging "standard" 4 distributed 
00 platforms as a basis for object management or, in another case, at least to support 
inter-manager communication, acting as an integration platform. 

In the first case, a managed entity is defined, accessed and manipulated like an object. 
Unlike the OSI management object model, operations are the only way to manipulate the 
state of an object. It is part of an object hierarchy, has an interface that defines the operations 
that can be performed on it and provides full encapsulation. 

In the latter case, a "bridging manager" must provide a bridge between a lower level 
protocol's data model and the object model, and integrate their operations. The object model 
is used to allow cooperation between peer managers, rather than developing a manager/ agent 
model. 

Because their purpose typically is to be a general purpose communication and computa­
tion infrastructure, distributed object oriented platforms tend to carry with them unneces­
sary luggage in the form of features of marginal use, whose implementation, however, can 
negatively impact performance overhead. They provide highly flexible, dynamic communi­
cation structures whereas most of management's communication patterns tend to be fixed. 

2.4 Functional Categories 

Network and system management are characterized by functional categories, that is, a classi­
fication of the various operations which can be performed in the context of management [1]. 
The functionality is important to us, as it gives us indication on the respective computation 

4standard here denotes consortium activities, or platforms inspired by ODP 



Models and support mechanisms for distributed management 21 

and communication requirements of these classes of functions. We have thus identified four 
classes of support operations required to implement the functions: 

• data copy (e.g. configuration), 
• data retrieval (e.g. logging, accounting), 
• action (e.g. diagnostic, operation), 
• notification (e.g. asynchronous event reporting). 

Little is new here. However, we must make and additional distinction on the nature 
of the communication patterns, which may be between peers or organized hierarchically. 
Our notion of action is also dynamic, as its effect can be modified to reflect the changing 
nature of the network. Similarly, notifications, as they result from actions, can also be added 
dynamically to a system. 

This perspective allows us to look more closely at the nature of structural support that 
is required for different functional categories. Of course, orthogonal to these classes, we 
have further parameters to take into account such as volume of information, atomicity or 
distributed actions, but we should not forget that the use of mechanisms becomes more 
marginal as they get more sophisticated. Furthermore, as is already done in some cases, 
separate, dedicated, protocols can be used to support very specific, demanding management 
operations, such as, say, bulk transfer. We shall refine this classification in the next section. 

3 A new approach to distributed management 

We are building a management environment for networks and applications based on a col­
lection of conceptual mechanisms, such as: 

• basic access, 
• delegation, 
• worm, 
• cooperation, 
• notification. 

These conceptual mechanisms are supported by a remote execution and a local interaction 
mechanism. 

3.1 Conceptual mechanisms 

3.1.1 Basic access 

We call basic access the simplest general support mechanism. It enables the configuration of 
the device, as well as accounting operations. It allows the reading, retrieving and modifying 
chunks or pieces of information. This is the major functionality provided by database-like 
mechanisms. 



22 Part One Distributed Systems Management 

3.1.2 Delegation 

Delegation is operation and diagnostic oriented. Delegation allows us to dynamically expand 
the functionality of the network element by transferring executable code to it [8, 17]. This 
code can either execute a function locally and report back its results, or create a higher 
level object which can be queried by other mechanisms. Delegation helps to regroup a set 
of operations on several objects into a single action. 

Delegation has several benefits. Delegated management operations are executed locally 
one the network element, but in a flexible way as the operation can be modified dynamically 
at any time. It contributes to reducing the bandwidth required, as well as decreasing the 
latency in the discovery of potential problems and the execution of remedial actions. 

3.1.3 Worm 

The worm is a recursive form of delegation. In the pursuit of the root of a problem, it can be 
necessary to trace its symptoms across different machines. When the diagnostic is performed 
by browsing from machine to machine, a worm can be used to implement the procedure. 

A worm can also be used for configuration and accounting style operations for a range of 
machines. It can also implement features such as topology discovery. 

3.1.4 Cooperation 

Cooperation is the interaction of several managed objects to achieve a collective modification. 
It is a peer to peer model, as opposed to the hierarchical function/library model. 

The activities of the program are the result of the cooperation of several programs, rather 
than a single one. 

3.1.5 Notification 

A notification is an asynchronous, or rather unsolicited, message sent to signal an important 
change in the NE. 

A notification can be sent to a manager, or to another NE. 

3.2 Support mechanisms 

3.2.1 Remote execution 

The technique of remote execution simply means to transfer a program to a machine where it 
can be repeatedly executed. The transfer process must take care of architectural differences 
and manage an output channel to a manager. 

Remote execution depends on the availability of a core functionality, such as access 
to management information, on the target platform. It requires an execution mechanism, 
remotely accessible which must also be reflected in the management information model. It 
requires a support language in which the management functions can be expressed and also 
has a type system rich enough to capture the details of the conceptual model. 



Models and support mechanisms for distributed management 23 

Run-time safety is a prime concern. We want to guarantee that a program will not 
fail at run time. For most operations, this can be achieved with a type-safe language, 
with functional, rather than imperative, characteristics. Type-safe compilation and linking 
should guarantee that the data is available in the NE interface, represented as a library. A 
functional language has simple recursive data structures which are safer to manipulate than 
pointer-based structures. 

Remote execution implements basic access, delegation and worm. It supports notification. 
A program is the largest grain of atomicity provided in the model. 

3.2.2 Interaction 

Interactions exist at two different levels: either between co-resident or between remote (e.g. 
on a manager station) programs. 

Co-resident interaction can be handled through a simple type message passing interface. 
An interface must be defined for every type of communication. Two partners exchanging 
information can exchange some form of token to guarantee that they are using the right 
interface, as is done in presentation layer negotiation schemes. Remote interaction can be 

-treated as a combination of remote execution and co-resident interaction. 
Interaction implements cooperation and support notification in its remote form. The 

managers must have an interface to capture the interactions. 

3.3 Management environment 

Since our work is experimental in nature, we are aiming at simplicity and flexibility in the 
construction of the management support environment. The major complexity of implement­
ing administration with our mechanisms is that, since they are at a lower conceptual level, i.e. 
they act as enabling mechanisms, and their access is language-based, operations may require 
some programming. One should note, however, that our mechanism can be enabled by man­
agement platform technology similar to what is in use in the industry. Graphical browsers 
and mouse-based operations activation can hide the assembly, compiling and transfer of 
a program. By using a lightweight, efficient interpreter environment, the compilation and 
linking overhead can be kept to a minimum and close to performance levels similar to mar­
shalling/unmarshalling operation times. The information structure can be mapped from a 
conceptual object oriented structure to the type system of the programming language. 

3.4 Complementary mechanisms 

Other mechanisms that we have to consider to expand our capability are a mass transfer 
mechanism, and a multi-way communication structure. 

The first one is definitely useful to retrieve, typically, logging or accounting information. 
In the telecommunication industry, this is done with a different file oriented transfer protocol, 
such as FTAM. 

A multi-way communication structure is a simple way to share information between 
different parties. Combined with a causal communication structure [6], we can build globally 
consistent information updates and built consistent views of parts of the network. Such 



24 Part One Distributed Systems Management 

an infrastructure has proved useful to implement distributed monitoring [13], but it has a 
significant overhead, however, and would be best done by a dedicated, separate structure, 
installed only as required. 

4 Implementation 

We have built an experimental delegation/worm environment at INRS-Telecommunications 
[9, 7]. It is a lightweight environment, flexible and quite suitable for experimentation. It is 
smaller in size of code and runtime image than the SNMP libraries and SNMP agents we 
have studied5 . 

The environment was built around the CAML language and the CAML-LIGHT virtual 
machine [12]. This pragmatic, (mostly) functional language has most of the features we 
required, namely strong, polymorphic typing, separate compilation, an exception mecha­
nism and a rich data model. Its implementation gives us ease of extension, portability, 
architecture-dependent conversions postponed to linkage time, and a compiler/virtual ma­
chine implementation. We have added to it multithreading, that is, the capacity of executing 
several CAML programs concurrently with preemption, remote loading of compiled code, re­
mote control and monitoring of the threads, inter-thread communications, remote linking 
and a worm mechanism. The data model of the language is rich, dynamic and flexible and 
it has been proved to be capable of emulating 00 structures. 

The interface to managed objects is done through an encapsulated, typed interface (an 
abstract data type). An interface defines the structure of the information and the operations 
which can manipulate it. The virtual machine is responsible for retrieving the information 
relevant to all managed objects and updates the corresponding data structures at regular 
intervals, as required by the applications. The virtual machine also supports atomicity of 
access and manipulation to managed objects. It is possible to write different interfaces to the 
same objects, for different access rights. The interface one uses thus limits the manipulation 
of the data. The management of access rights is done entirely out of our model. If necessary, 
the communications between platforms could be encoded, although we have not implemented 
it. 

Interaction between threads is done through type-safe interfaces, implemented using tech­
niques similar to marshalling. Unfortunately, because it uses compilation, the CAML-LIGHT 

environment does not keep type information at run-time, and we had to introduce our own 
mechanism. These interfaces are available only locally. For two threads running on different 
machines to interact, a intermediate, interaction thread must be transferred to the machine 
where the interaction will occur. The use of such intermediate interaction threads is hidden 
in communications libraries. 

Any administrative task is implemented by a piece of code. This code is compiled from 
the administration environment, transferred to the target machine where it is linked and 
executed as a thread. Libraries of executable threads can be managed on the target machines, 
if the memory is available. Similarly, libraries of precompiled tasks can be stored in the 
administration environment and transmitted as required. More importantly, each virtual 

5typically the ISODE snmp and the CMU packages 



Exte al 
<E coriiillu 

<E----

Models and support mechanisms for distributed management 

0000 Th=& 

Virtual 0 
Machine ' 0 '---------

Linker 

0 0 A virtual 

~esources 

Figure 1: The elements of the management environment 

25 

machine stores the libraries which give access to the managed objects abstractions, with 
which threads have to be linked. Only the interfaces definitions for these libraries need to 
be available to compile a thread on a manager's site. 

Each thread can be activated with specific information, in the form of run-time argu­
ments. Each thread has a "log" channel to recover error information. Another channel 
recovers normal output. These channels are set up dynamically for each thread and, simi­
larly, each thread can report to a different manager. 

Figure 1 illustrates the general structure of the management environment. 
We use this environment to remotely manage our distributed heterogeneous workstation 

environment. We have built an interface to the Unix kernel for system monitoring and we use 
Unix commands to carry operations. We also have integrated a SNMP access mechanism. 
Worms have been used to track users, implement load balancing and experiment with several 
distributed algorithms. We have also replaced the distributed configuration environment 
of our workstations by a local control managed by delegation. Several forms of resources 
management are also executed locally in this environment. In this context, distributed 
management follows the "think globally, act locally" philosophy. 

5 Discussion 

In our vision of distributed management, all NE's should support remote execution. Local 
interaction would come second on our list. The resources of the devices could limit the 
number of resident and active programs, with the possible effect of increasing latency in the 



26 Part One Distributed Systems Management 

response to some operations. 
Our perspective, however, is that not all NE's need to support the whole set of mech­

anisms. By keeping them orthogonal, we can limit the impact of their combination on 
performance, memory and CPU requirements. It is even possible to cross compile for a ma­
chine which doesn't have enough memory for a linker, or enough storage for libraries. There 
are in fact a wide range of quality of service factors which can be tuned independently of our 
conceptual mechanisms. Different transport protocols can be used, storage can be offioaded 
to another machine; it is even possible to fully compile a (then) static application where 
performance can be critical. 

One interesting feature of our mechanisms is that they can be used recursively across hi­
erarchical administration domains. The remote execution and interaction mechanisms make 
no provision on the peer to peer or master/servant nature of the communication relationship. 
It is straightforward for an agent station to become a server provided it can store the code 
for the tasks under its control. The remote execution mechanism is directly accessible to the 
threads. 

In our experience, the overhead of the transmission of threads is low. For simple oper­
ations, a thread fits in a single packet. The main cost of the execution of threads on the 
virtual machine is in memory management. We have had to tune a garbage collector to 
optimize the management of the memory of on-shot threads vs recurring threads. In fact, 
specific algorithms can be used depending on the degree of sophistication of the operations 
performed by the agent (i.e. hub vs workstation vs management platform). 

Further mechanisms such as file transfer would be left out of the virtual machine. In 
that respect, it is worth pointing out the fact that distributed network applications coex­
ist with distributed management. Typical examples are distributed network reconfiguration 
and, more generally routing. Although such mechanisms can be implemented using our 
mechanisms, they tend to be either integrated in a low level protocol, or are realized with 
dedicated links. What is at stake here is a tradeoff between flexibility and efficiency. Dedi­
cated mechanisms potentially avoid information extraction and conversion overhead, at the 
cost of flexibility. Traditionally, real-time applications (e.g. routing) have used dedicated 
mechanisms whereas less time critical applications (e.g. on-line diagnostic) have used more 
generic mechanisms, and also potentially more computationally intensive (e.g. AI search 
techniques) techniques. 

6 Comparison with other work 

The techniques we have described here have been pursued in various guises, but, to our 
knowledge, never in a similar integrated context of a toolkit of complementary mechanisms, 
supported by a programmable environment. 

Delegation of duties has been studied both from a operations and an administrative 
point of view [14]. One application of delegation in a standard's framework is the definition 
and implementation of higher level managed objects, which compute some chosen function 
based on the values of other objects. Programmable area managers are another example of 
delegation of operations. An area manager is responsible for a small network of- say - SNMP 
managed devices. The area manager is programmable and can perform tasks delegated from 



Models and support mechanisms for distributed management 27 

a higher level manager, through a suitable, but different protocol. MINERVA [10] is such an 
environment, where local changes of interest, monitored through SNMP, are reflected into 
events which in turn trigger the execution of scripts, written in a custom language. Empirical 
Tools and Technologies6 is a commercial company which sells a manager which can execute 
SCHEME programs which can be remotely downloaded. Let us notice here that SCHEME is 
not as safe a language as CAML and the risk of occurrence of run-time errors is significantly 
higher. 

The AI notion of agents is also similar to our concepts of recursive remote execution, as 
used by worms. The use of AI agents for distributed network management has been suggested 
recently by different researchers. In that work, the use of agents to study and improve routing 
is described. Although such work is usually done by more efficient mechanisms, worms could 
be programmed to realize such a task. 

In spite of the similarities in concepts however, we haven't found anywhere an attempt 
at providing scalable mechanisms, and to provide a uniform view and uniform support for 
the manager/NE universe. 

7 Conclusions 

We have described a perspective of enabling management through a set of simple conceptual 
mechanisms, rather than a single high level one, and described a management environ­
ment based on remote execution and interaction. These mechanisms support a number of 
paradigms well suited for network and distributed application management. These mech­
anisms have been implemented in a programming language-based environment. Comple­
mentary mechanisms such as file transfer can be done efficiently using a dedicated protocol 
outside of this environment. 

In practice, there seem to already exist a few commercial tools which follow our philosophy 
of combining several mechanisms, including a form of remote execution, in their management 
environment. However, they all tend to support a single layer in the management hierarchy 
and do not share our vision of the recursive application of similar concepts with tradeoffs 
with regard to the quality of service. 

The major benefit that we see in using remote execution as opposed to a database mech­
anism is the integration of a computational and a data models which allow us to uniformly 
manipulate the data as well as retrieving it. 

Since our focus was on low level enabling mechanisms, there are a large number of con­
cerns that we haven't covered in this short presentation, such as higher level of management 
coordination, domains and policies, etc. We are currently studying the requirements of the 
management platform with these considerations in mind. 

Acknowledgments. 
The development of the distributed platform has been done by F. Gagnon. 
N. Greene and F. Gagnon have provided helpful feedback on various drafts of this paper. 

6this information is based on an exchange with K. Auerbach 



28 Part One Distributed Systems Management 

References 

[1] CCITT Recommendation X.700- ISO/IEC 7498-4: 1992, Information Technology -
Open Systems Interconnection- Management Framework for Open System Interconnec­
tion. 

[2] CCITT Recommendation X.711- ISO/IEC 9596-1: 1992, Information Technology -
Open Systems Interconnection - Common Management Information Protocol, part 1: 
Specification. 

[3] CCITT Recommendation X.720- ISO/IEC 10165-1: 1992, Information Technology­
Open Systems Interconnection - Structure of management information, part 1: Man­
agement information model. 

[4] CCITT Recommendation X.722- ISOjiEC 10165-4: 1992, Information Technology -
Open Systems Interconnection - Structure of management information, part 5: Guide­
lines for the definition of managed objects. 

[5] CCITT Recommendation X.901-ISO/IEC 10746-1 Basic Reference Model for Open 
Distributed Processing- Part 1: Overview and guide to use, 1993 

[6] 0. Babaoglu and K. Marzullo, Consistent Global States of Distributed Systems: Fun­
damental Concepts and Mechanisms, in "Distributed Systems", E. Miillender, Ed., 2nd 
Edition, Addison Wesley, 1993. 

[7] J-Ch. Gregoire, Delegation: Uniformity in Heterogeneous Distributed Administration, 
LISA VII, Monterey, California, 1993. 

[8] J-Ch. Gregoire, Management with Delegation, IFIP'93, AlPs Techniques for LAN and 
MAN Management, Paris, France, 1993. 

[9] J-Ch. Gregoire, F. Gagnon, Implementation of Delegation in Distributed Network Ad­
ministration, Canadian Conference on Electrical and Computer Engineering, Vancouver, 
Canada, 1993. 

[10] D.J. Hughes, Z.D. Wu, Minerva: An Event Based Model for Extensible Network Man­
agement, Proceedings of INET'93, pp. CEC-1-CEC-6. 

[11] Internet RFC 1157, A Simple Network Management Protocol {SNMP), 1990. 

[12] X. Leroy, "The Caml Light system documentation and user's manual", version 0.6, 
INRIA, 1993. 

[13] M. Mansouri-Samani, M. Sloman, Monitoring Distributed Systems, Chap. 12 in Network 
and Distributed Systems Management M. Sloman, Ed., Addison Wesley, 1994. 

[14] J.D. Moffett, M.S. Sloman, Delegation of Authority, I. Krishnan & W. Zimmer (eds), 
Integrated Network Management II, North Holland (1991), pp 595-606. 

[15] Object Management Group, Common Object Request Broker, 1992. 

[16] Open Software Foundation, Distributed Management Environment, 1991. 

[17] Y. Yemini, G. Goldszmidt and S. Yemini, Network management by delegation, Inte­
grated Network Management II, Elsevier Science Publishers, pp. 95-107, 1991. 


