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Abstract 
In feedback rate control mechanisms of both rate and window domains, M-ary control 

class can be considered as an extension of the widely implemented binary control class. In 
this paper, the stability properties of the class of continuos time M-ary rate controls are 
analytically established using dynamic theoretic tools. The dynamic behaviour is shown 
to exhibit a Hopf bifurcation where the stability of the system changes at a critical param­
eter value. The uniqueness of the optimal controller is established where the optimality 
criterion is defined as the convergence rate invariance property. This contrasts with the 
non unique and mutually exclusive controls of the discrete time M-ary rate control class. 
As a consequence of the rate-window duality, performance implications of this analysis 
for a recently proposed window control algorithm of the M-ary form are discussed. One 
such implication is that, the systemic stability of a partially distributed implementation 
of the window controller is guaranteed stable. 
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1 INTRODUCTION 

The class of feedback flow control mechanisms form a substantial part of overall flow 
control regimes in computer networks [Agarwala et al., 1992; Bolot et al., 1990; Chiu 
et al., 1989; Gerla et al., 1980; Jacobson, 1988; Jain, 1989; Keshav, 1991; Mitra et 
al., 1990; Mukherjee et al, 1991; Shenker, 1990). The study of these mechanisms is 
prompted by their intrinsic analytical tractability, implementational simplicity and the 
relationships that exist between complementary classes of mechanisms. More recently, an 
attempt has been made to emphasise a precise analytical specification of the flow control 
problem compared to past efforts. In this respect a few complex flow controls with a 
sound theoretical basis have been proposed [Keshav, 191; Mitra et al., 1990). 

Recently Fendick et al [Fendick et al., 1992) have analysed the window control algo­
rithm of Mitra et al [Mitra et al., 1990), in an attempt to obtain certain performance 
characteristics of Mitra's algorithm. They have resorted to a direct analysis by mapping 
the original algorithm in a window domain to an equivalent piece-wise continuous rate 
control, thus obtaining results pertaining to unilateral stability, an optimal value of a con­
trol parameter and obtaining evidence for the existence of a large class of such controls. 
It is our view that, where a direct analysis of a complex algorithm is appropriate yet dif­
ficult, it would be more feasible to analyse a simpler complementary form of algorithm to 
that of the original, which may yield performance bounds and possibly implementational 
insight that could generally be valid for the original algorithm. 

This study has its origins in two previous works. Bolkot et al [Bolot et al., 1990; Bolot 
et al., 1992) have studied binary rate control schemes and their dynamic behaviour, and 
have concluded that the absence of proper modelling tools has hindered the analytic es­
tablishment of stability properties. Shenker [Shenker, 1990) has studied a class of controls 
which we have identified as discrete time M-ary rate controls, where M-ary in our nomen­
clature refers to virtual M decision levels in the flow controller. The name is synonymous 
with the term M-ary in digital transmission schemes. The class of continuous time M-ray 
rate controls is hence identified as the natural counterpart to the discrete time class. We 
have also observed that Mitra's algorithm generally fits the definition of a M-ary control. 

Our investigation in this paper centres on the analysis of the class of continuous 
time M-ary rate control mechanisms for its performance characteristics as an extension 
of Shenker's and Bolot et al's work, and as an analysis of Mitra's algorithm through a 
complementary yet a simpler approach. Our analysis makes the rigorous establishment 
of the stability of continuous time M-ary rate control possible by dynamic and queuing 
theoretic techniques. By implication of this stability for all deterministic continuous time 
M-ay controls, we predict the systemic stability of the partially distributed implementa­
tions, among other implementational insight [Ranasinghe, 1994). 

In discrete time M-ary rate control, Shenker [Shenker, 1990) established that there 
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are a number of non unique and mutually exclusive controls such as time scale invariant, 

time scale variant and logistic type forms. In contrast we show that the continuous time 

M-ary rate control class has a unique optimal controller for each specified equilibrium 

point. The optimality criterion is defined as the property of convergence rate invariance, 

i.e., the property that the server utilisation remains constant for a range of convergence 

rates. This property was inherent in the discrete time M-ary rate class, yet it has to be 

explicitly specified in the optimisation process of the continuous time counterpart. 

2 STABILITY OF A HYPOTHETICAL CONTROLLER 

2.1 The Network Model 

Consider a virtual circuit that traverses a single bottleneck node with a server rate p. 

(packets/sec). The service policy of the node is FIFO. The non-zero forward and reverse 

propagation delays are TJ and Tr (sec) respectively. The instantaneous source transmis­

sion rate is represented by A(t) (packets/sec), and a stochastic packet arrival and service 

process of general distribution may be assumed. The data flow is assumed to be unidirec­

tional and it is assumed that there exists a reverse acknowledgement flow indicating the 

bottleneck node queue level qB(t) to the source. The access line has a rate P.a(>> p.). In 

order that feedback is enforceable, the source is modelled as an infinite data source. The 

pipe size, which is the delay-bandwidth product of the path following the bottleneck p.r., 

is assumed to be P.Tr > > 1. See Figure 1. 
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Figure 1: The Physical Model 

2.2 Modelling and Analysis 

The hypothetical controller we subject to analysis is given as: 

~(t) =a- A(t)(R(t- Tr) -1)/fJ (1) 
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which, as can be seen is a generalised continuous time rate controller consisting of a 

linear rate increase policy with a convergence rate a (packets/sec) and an exponential 

rate decrease policy with a backoff time constant .B(sec), reacting to a normalised round 

trip delay R. We shall call this an M-ary extension of the binary rate control of Bolot 

et al [Bolot et al, 1990]. It has been shown [Bolot et al, 1992] that a discrete space 

stochastic process at a node approaches a deterministic process in the presence of a large 

packet population under continuous time control and this enables R( t) to be substituted 

by qB(t) as: 

as: 

R(t- r.) = qB(t- r.)fpr + 1 (2) 

where, T = TJ + r •. 
The deterministic node process itself is described by the fluid mode [Bolot et al, 1990] 

{ 
0 

qB(t) = 

).(t-TJ)-p 

if qB(t) = 0 } 
and ).(t- TJ) < p 

otherwise 

By substitution of (2) into (1 ), we obtain the rate controller in the form: 

(3) 

(4) 

which in conjunction with (3) describes the ·dynamic system in delay-differential equa­

tion form. The desired queue equilibrium point of the system qB., can be any chosen 

value. We shall initially choose qB• to be 1 in line with [Bolot et al., 1990]. The rate 

equilibrium point remains ).. = p, as implied by the server rate of the node. The delay­

differential model describing the queue and rate dynamics becomes analytically tractable 

if we convert it to a set of differential equations. Therefore, to obtain a R" model of the 

dynamic system which can be subjected to a dynamic theoretic analysis, we make use 

of a. queue model description. The node queue is modelled by an M/M/1 process whose 

fluid model description in (3) fits the deterministic process required [Filipiak 1988; Ohta, 
1988]. The delay segments are modelled by infinite server queues such as M/G/rx . We 
also choose to model either but not both of the pipe segments for simplicity. This should 

not affect the qualitative performance expected of the real system as what we essentially 

need is a non zero propagation delay anywhere in the closed loop. From the two possi­

ble equivalent queue model representations we select the following models as the other 

model introduces unknown functional dependency on state variables into the equations 
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[Ranasinghe,1994] . See Figure.2 
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Figure 2: The Queueing Model 

qp(t) = A(t)- qp(t)/r (5) 

(6) 

~(t) =a- A(t)qB(t)/ (3pr (7) 

In these equations, qp(t) is the pipe equivalent queue, qB(t) is node queue and A(t) is 

the source rate. r, p, a and (3 are as defined in (1) and (2). 
Now the dynamic system is in R3 , where r1 = T as Tr = 0. Given the state space 

description, the stability properties of the dynamic system at a specified equilibrium 

point (A., qB.) can be established. A similar proof to that of Fendick et al [Fendick et al, 
1992] shows that the system is unstable in the vicinity of the equilibrium point (p, 1) for 
example, and the interested reader is referred to [fendick et al, 1992]. Although the system 
is locally unstable, it can be proved that it exhibits a stable limit cycle behaviour for a 
range of parameter values of a (see Appendix). We have found that there exists a critical 

convergence rate Oc such that for 0 < a < oc, there is a stable limit cycle surrounding 
the unstable equilibrium point and, for a > oc, the system exhibits asymptotic stability. 
In dynamic systems theory, this is identified as a Hopf bifurcation where, as a parameter 
passes a critical value, the system changes from one state of stability to another [Beltrami 
1987] . In contrast, for the discrete time counterpart as shown by Shenker [Shenker,1990] 
the rate iterations moved from an asymptotic stability position to chaotic instability as a 
critical convergence rate was passed. For the heuristic controller ft (A, qB) in ( 4) and for 
(A., qB.) = (p, 1) this occurs for: 

(8) 
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where p.r > > 1. There is also a straightforward way to find the critical convergence 
rate. This involves the obtaining of the eigenvalue equation for the model in Rn and 
testing it for asymptotic stability or instability using Routh test. However in the present 
situation, it only indicates an instability in the region 0 < a < ac, which is not in itself a 
sufficient condition for the existence of a stable limit cycle. 

2.3 Simulation Performance 

The numerical solution of the delay-differential equation model or the model in R3 pro­
vides an indication of the behaviour of the flow controlled system. In a study of continuous 
time binary rate control with direct implications to our analysis, Bolot et al [Bolat et al, 
1992) have shown that there is a good agreement between the delay-differential model in 
the analytical domain and the discrete space stochastic model in the physical domain, 
i.e., the direct simulation of the packet transmission process, at large packet populations 
corresponding to p.r > > 1. This validates the simulation results obtained by numerical 
solution as representing the packet transmission process. The figures corresponding to 
the model in Rn were obtained by numerical solution of (5) to (7) using the package. 
[ISIM 1987), which uses the standard 4th order Runge-Kutta procedure. The rate control 
form ft(J.., qB) (9), with the values p. = 100 and r = 1 have been used throughout. The 
simulation tests show that each of the models describing the forward or the reverse pipe 
segments have identical dynamic performance except for a phase shift between the rate 
variation and the queue variation, which is expected. Figures 3 and 4 show a large discrep­
ancy between the delay-differential model and the model in~ at low qB. of 0(1). The 
delay-differential model behaviour further resembles the continuous time binary control 
of Bolot et al. 

From Figures 5 and 6, it can be seen that the delay-differential model and the model 
in R3 corresponding to ft(J..,qB) agree well at large queue equilibria of O(p.r), with a 
substantial bias towards sinusoidal rate variation. 

This observation confirms the applicability of a fluid approximation of he queue models 
used to describe the non-stationary stochastic behaviour at large packet populations. 
Therefore to retain equivalence between the model in ~ and the delay-differential model, 
we shift the system equilibrium point to (>.c, qB.) = (p., O(p.r)). However, our simulations 
also show that the delay-differential model and the model in ~ differ in their prediction 
of asymptotic stability criterion, though not consistently. For example, at an a > ac, the 
delay-differential model of ft ()., qB) displays a persistent backlog at the node queue, but 
the model in R3 displays asymptotic stability (a.s) (Figures. 7 and 8). It is conjectured 
that, this discrepancy is the result of the residual modelling differences and provided 
the working convergence rate does not exceed the critical a by a wide margin, then the 

delay-differential model exhibits a backlog. 



! 
15 ,_: 

·~ .. 
~ 
~ 
~ 

~ 60 

~ 
4() 

20 

l 

Continuous time M-ary rate control mechanisms 

6 10 12 
T'"'-{IMlCI) 

Figure 3: Delay-Differential model 
(a= J.l / 2r, qB, = 1) 

:·· .. . .... . ,•, 

10 15 2Q 
TlrN(I,I'Wta) 

Figure 4: Differential model 
(a= J.1 / 2r,qBe = 1) 

16 

L•mbdtl­
O_bl..tlef · --- · 

16 

. ......... :' ~ 

25 

39 

30 



40 

200 

180 

160 

i 140 

(5 
,_: 120 

~ 100 

~ 
~ 80 
~ 

~ 
3 60 

40 

20 

0 
0 10 

180 

•eo 

i 
! 
~ 
i 

I 
3 

•o 

~ 

Part One High Speed Networks 

20 25 JO 
T~un") 
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This is confirmed, where a slightly different form of heuristic control, h(>.., qB) (see 
next section) was used, which had a negative critical convergence rate at a specified 
qB., a positive a resulted in a.s. for the delay-differential model (Figure not shown). It is 
reasonable to conclude that a persistent backlog may be the practical reality at an a > ac, 
for heuristic rate control. 

3 OPTIMAL CONTROL 

3.1 Optimality Criterion 

We now consider two heuristic rate controllers (9) and (10) and compare their critical 
convergence rates at a specified queue equilibrium point, qB. = p.r/k, with k~ 1 would 

represent a range of qB. values from 0(1) to O(p.r). Let: 

(9) 

which is 4 and 

(10) 

where 1 = (3p.r 
The corresponding critical convergence rates are: 

ac = p.(k -1)/r (11) 

for ft(>., qB), which is positive for k > 1 and 

ac = p.(k- 2)/r (12) 

for h(>., qB ), which is positive for k > 2. 
We note that a positive critical convergence rate for practical purposes is achieved at a 

lower queue equilibrium point for h( >.., qB) than for / 1 ( >.., qB) . However , as qB. approaches 
0(1), and thus operating at a high convergence rate within the critical ac, the continuous 
time M-ary rate controller's performance degrades to that of a continuous time binary 
rate control as observed in section 2.3, with the server utilisation being dependent on the 
convergence rate. Since our basis for the analysis of the M-ary class of rate controls is 
Shenker's work (Shenker, 1990], we have noted that the discrete time M-ary rate controls 
of all forms had the property of convergence rate invariance embedded in them. This 
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property implies that for a range of convergence rates, the rate controller maintains a 
constant server utilisation 17(= 1), in the case of deterministic continuous time control 
and, p( < 1) in case of stochastic discrete time controls. We shall define this property 
as the appropriate optimality criterion. We conclude therefore, any arbitrary heuristic 
M-ary rate controller is suboptimal in the sense that this property is not observed and, 
that there exists an optimal controller for any specified operating point (~ •• qB.)· 

3.2 On Optimisation 

In the specification of the optimal controller, the position of the desired queue equilibrium 
point has to be defined. In open queuing networks with Markovian nodes, qB. has been 
usually set to 0(1) which subsequently optimised the network power (Stidam, 1985). 
This approach is equally valid in selecting the operating point for discrete time M-ary 
rate controls. In continuous time rate controls of both binary and the proposed M-ary 
type, the network power argument cannot be effectively applied due to the deterministic 
nature of the node process An alternative approach is required and we raise the queue 
equilibrium point qB., to O(I'T) in order to have the widest possible range of convergence 
rates. For example, in bang-bang rate control, a unit server utilisation was reached at 
the highest possible convergence rate and at the minimum backoff time at a qB. of I'T 
[Wang et al. 1991]. Since the idea behind optimal continuous time M-ary rate control is 
to reach the goal of convergence rate invariance, which would maintain a constant server 
utilisation '7 of 1 for 0 < o: < o:., a sinusoidal rate variation would be the ideal description 
of such a behaviour due to it inherent symmetry. Therefore, consider the rate variation 
~(t) of the form: 

~(t) = X+ aosinwt (13) 

Where X = I' is the desired average rate, w = 21r /T is the angular frequency of an 
oscillation with period T, and (0 :5 a0 :5 I') is the amplitude of the variation. 

By application of the flow conversation rule(3) to the node queue and assuming a zero 
propagation delay between the source and the node, it follows that: 

(14) 

= ao(1 - coswt)/w (15) 

by substitution of (13). 
We have argued that the condition q8 be equal to qBo , be satisfied when the controller 

is optimal and it is also seen that X = ~. is true [Ranasinghe, 1994] Figures.5 and 6, show 
h(~,qB)aU. = l',qB. = 51-'r/(211") and with an o: = 1'/(10r), generating a rate variation 
that closely tracks the sinusoidal form expected, with average values of rate and node 
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queue being approximately equal to respective equilibrium point values. This does not 

however mean that fi(>..,qB) is optimal at the given operating point, as the "real" a. for 
the specified q8 • may be less than or greater than the "apparent" a., that is obtained 
analytically for a heuristic control. For example, the negative critical a for /2(>.., qB) 
clearly proves the case. We can state the optimal rate and node queue variations, taking 

round trip propagation delay into account as: 

Aop1{t) = I'+ aosinwt {16) 

qB(op~J(t) = a0{1- cosw(t- r))/w {17) 

In general, a heuristic controller /;(>.., qB) can be optimised using established La­
grangian optimisation techniques, However, it has been shown that the closed form solu­
tion does not exist for the system in R3 , as it is a non linear servo mechanism problem 
[Sage er al., 1977] . A numerical solution alternative does exist, but results in an open 
loop controller , whereas a closed loop controller is desirable. Accordingly, the realisation 

of the optimal controller is not possible. 

3.3 Uniqueness of the Optimal Control 

To obtain the predicted variation of the critical convergence rate a. with qB. confirming 
the uniqueness of the optimal continuous time M-ary rate controller, we proceed as follows. 
Since all rate controls must contain a linear rate increase component of the form >..(t) =a, 
that includes the convergence rate as a parameter see equation {1), by differentiating {16) 
and assigning wt = 0 to represent the highest rate increase effort, we obtain: 

a =a0w {18) 

Since qiJ = qB. and : 

q"B = ao/w (19) 

which follows from {17), we have: 

{20) 

As the peak amplitude of Aop~(t) is reached at the critical convergence rate a., we would 
then have, a 0qB. = 1'2 as the form of the characteristic curve of a.( qB.) as a function of 
qB. for the region where ao remains constant at I'· The region ao < I' is predicted by 
reference to qualitative results obtained by simulations [Ranasinghe, 1994]. See Figure 
9. These simulation results show that, as qB. decreases, the effective critical convergence 
rate decreases as well, indicating that there should be an optimal operating point for 
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the q8 • . Inferring from bang-bang rate control, which is a continuous time control that 
maintains a unit server utilisation, we note that the fundamental sinusoidal component 
of the source rate variation has a peak amplitude equal to I' corresponding to a qB. of 
pT [Wang et al., 1991]. It would not be incorrect to model the optimal continuous time 
M-ary rate control as the one that produces this sinusoidal variation, thus lowering the 
q[J of bang-bang control to the level of qB • . Therefore we let, for the optimal control a 

value of qBe(opt) = liT. 

We reach the conclusion that the optimal controller is unique for a 
given operating point . In contrast, in the discrete time M-ary rate controls, there 

were time scale invariant, time scale variant and logistic type rate iterations, and therefore 
a wide class of controls in reaching and maintaining a stochastic server utilisation of less 
than one. Alternatively, as the deterministic server utilisation aimed by a controller 
approaches unity, it becomes increasingly difficult to maintain the time scale invariant 
property and hence the uniqueness of the continuous time controller. 

4 STABILITY REVISITED 

4.1 Oscillatory Behaviour 

It has been shown that continuous time M-ary rate control exhibits an oscillatory be­
haviour for 0 < o < oc(qB.)· This is an artefact of reactive control in the presence of 
delayed feedback. In the implementation of heuristic controller J;( >., qB.), it uses the a 
prior knowledge of I' the constant server rate, and T the round trip propagation delay. 
Given these two pieces of information, it is possible to design a predictive controller [Ke­
shav,1991], that would converge to the equilibrium state >.. = p, in one round trip time. 
Basically, what the controller does is to inject and maintain a number of packets, known 
as the sliding window size W(= pr) in the system, filling the pipe and thus reaching the 
unit server utilisation required. 

Extending the analysis to more than one user (or connection), say N users, sharing 
the bottleneck node, the i-th user individual fair rate can be stated as>.;= pfN, leading 
to the window size per user in a predictive controller of W; = pT/N, Keshav [Keshav, 
1991] describes a technique that uses a rate allocating server discipline, which enables the 
evaluation of pfN adaptively by each user, which enables the predictive controller to be 
implemented. However, where a FIFO service discipline exists as in our case, this is not 
possible and, the way out of the problem is to use a partially distributed method, with 
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an upper bound Nmaz: on the number of users. 

' 
' 

11 ---------
't 

Figure 9: O'c variation with qBe for the optimal controller (not to scale) 

4.2 Systemic Stability in a Partially Distributed Implementation 

Consider the physical model shown in Figure. I, but with N virtual circuits of equal round 
trip propagation delay, T; = r;;Vi-:/= j, sharing the single bottleneck node and employing 
the same hypothetical rate control / 1 ( >., qB ), it is a straightward task to write the model 
in R5 by extending the equation as (5), (6) and (7) (Ranasinghe,1994). Further if 'Yi = 
'Yii Vi -:/= j, then the model reduces to R3 , which makes the direct application of unilateral 
stability conditions to the systemic case possible. 

Then by similar reasoning to that in section 2.2, and with the additional condition 
that o; = o;; Vi -:/= j the systemic stability condition is obtained as: 

with equilibrium point condition, 

N Oi"fi = >..qB. 

at the specified equilibrium point( >.., qB.) 

(21) 

(22) 

Ideally, as the number of connections vary, each source control should hold its common 
(3 constant, and vary the individual convergence rate o; based on a distributedly known 
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value of N. Where this is not possible, partial distribution with an upper bound value, 

Nm .. .,, can be attempted [Jain, 1989 : Mitra et al. , 1990]. Suppose the active number of 

connections at a given instant No.ctive be greater than Nmaz· Then in satisfying the new 

equilibrium point condition. 

(23) 

where ~. = ~-'• it becomes qBe(active) > qs., when compared to equation(22). 
A controller which had been optimised for qs. , when shifted to a higher qse(o.ctive) 

without being re-optimised, will produce an "apparent" critical a that may be negative 
(see section 2.3). As a result, for a positive convergence rate, the system reaches a.s., 
or will exhibit a stable queue backlog. Similarly, it can be shown that in the case of 

Nactive < Nmo..,, the suboptimal behaviour is reflected in the form of a server under­
utilisation which depends on the convergence rate. 

Therefore, it can be argued that, the class of continuous time M-ary rate control is ro­
bust in the face of a partially distributed implementation. In contrast, a predictive control 
with W; = J'TNo.ctive/Nm...,, is susceptible to a node buffer overfiow. The complementari­
ness of the continuous time M-ary rate control to that of Mitra's window algorithm [Mitra 
et al .. 1990] is further confirmed by the simulation observation that for Nactive > Nmaz1 

a stable increase in the queue backlog has been observed in the later. This conclusion is 

valid to all continuous time M-ary controls. 

5 CONCLUSIONS 

In this paper we have considered the stability and optimality of continuous time M-ary 

rate control mechanisms. Following a theoretic analysis of the dynamic system, we have 
shown that the class of continuous time M-ary rate controls exhibit a stable limit cycle 
that surrounds an unstable equilibrium point which vanishes to asymptotic stability as the 
convergence rate is raised beyond a critical point. The critical point is a Hop/ bifurcation 

point, in that the systems stability properties differ either side of this point. 
Using a common optimality criterion for both the discrete and continuous time M-ary 

rate control forms, which is expressed as the convef!1ence rate invariance property, it has 
been shown that the continuous time M-ary control produces a unique optimal control for 
specified operating point, whereas the discrete time counterpart consisted of a wider class 
of mutually exclusive controls satisfying the optimality criterion. The study of continuous 
time M-ary rate controls was found to have implications in the performance characterisa­
tion and implementational aspects of a complementary class of window controls. 
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Appendix 

We present the proof of stability of the rate controlled system / 1(>., qB), described by 

the model in R3 • We use the Hopf bifurcation theorem [Beltrami 1987] into prove the 

existence of a stable limit cycle surrounding an unstable equilibrium point. 

Consider first, the nonlinear dynamic system described by: 

:i: = f(x,e) 

where, x(t) E R2 , and has an isolated equilibrium point x.(e), where e is a variable 

parameter. Let the linearised Jacobian of the system A(e) have eigenvalues >.;(e) = 

a(e)±jf3(e) which are differentiable in e in a suitable range lei < 8. The Hopf Bifurcation 

theorem in R2 states the following [Beltrami 1987]. 

Suppose that the equilibrium point x.(e) is asymptotically stable for e < o and un­

stable for e > 0, and that a(O) = 0, i.e., x.(O) of the linearised system is neutrally stable. 

If da(O)/de > 0 and {3(0) # 0 then for all sufficiently small lei, a closed orbit exists fore 

either positive or negative. In particular , if x.(O) is locally a.s, then there exists a stable 

limit cycle r about x.(e) for all small e > 0 . Moreover, the amplitude of r grows as e 
increases. 

Since the linearised system is neutrally stable at x.(O), we have to ensure that x.(O) is 

in fact locally a.s., which is a difficult procedure. However, extending the theorem to R3 

we remove this obstacle by observing that two of the three eigenvalues >.;(e); i = 1, 2, 3 of 

Jacobian A( e) are complex and one is real and negative. At x.(O) the complex eigenvalues 

become imag1nary but, since >.3(0) is real and negative, the system is locally a.s. 

Recall that the model in R3 corresponding to JI(>.,qB) as (see (5), (6) and (7) 

~(t) =a- >.(t)qB(t)/ {Jp:r 

with the state vector x = (qp, qB, >.) and the equilibrium point x. = (p.r, 1, p.). 
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The Jacobian of the linearised system at x. is obtainable as: 

( 
-1/r 

A= 1~T 
0 1 ) 
0 1 

-p.h -1h 
The characteristic equation with eigenvalues A; as roots follows from the Jacobian and 

is given by: 

A3 + (1/r + a/p.)A2 + Aa/(p.r) + afr = 0 

Let there exist two complex conjugate and, one real and negative eigenvalue for this 

characteristic equation as: 

fori = 1, 2 and Aa, real. 

Therefore from m=1(A- A;) we get: 

For linearised systems to be neutrally stable at a possible bifurcation point e = 0 it 
should be such that: 

REAL(A;(O)) = u(O) = 0 

substitution of which simplifies the characteristic equation, and by comparison with 
the general equation we get: 

A3 = -(1/r + a/p.) 

Since A3(0) is real and negative, the non-linear system is locally a.s. at x.(O) , and 

since JMAG(A;(O)) = p -:f. 0, we have satisfied two conditions required by the theorem. 
The bifurcation point can be determined now. Since; 

Aal = -a/r = -a(1/r +a/ p.)/ p.r 

by algebraic simplification we obtain the solution to a, as: 
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or, e = (ac- a) withe= 0 as the possible bifurcation point. 

Finally, we need to check that REAL(d>.;(O)/de) > 0. Noting that ~ = -da, by 

differentiating the characteristic equation with respect to a, followed by the substitution 

e = 0, i.e., a= ac gives: 

dJ..(O) 1/T + }..jpT + )..2jp 
T = 3)..2 + 2>.(1/T + ac/P) + ac/PT 

Since >.(0) = ±jp(O) in the above equation, a complex fraction results, of which the 

real part is extractable as: 

of which the denominator is positive, and the numerator further simplifies to give 

2ac(PT -1)/ pT3 which is positive for pT > 1, thus satisfying the required condition. 

Thus for small enough e > 0, there exists a stable limit cycle about x.(e), by implica­

tion of the theorem. Alternatively, from a dynamic theoretic point of view, for 0 < a < a 0 , 

a local instability gives way to a globally stable closed orbit, and for a > a0 , a globally 

unstable cycle degenerates into a stable point. 
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