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Abstract 
We propose a formalized method that allows to automatically derive an optimized im­

plementation from the formal specification of a protocol. Our method starts with the SDL 
specification of a protocol stack. We first derive a data and control flow dependence graph 
from each SDL process. Then, in order to perform cross-layer optimizations we combine 
the dependence graphs of different SDL processes. Next, we determine the common path 
through the multi-layer dependence graph. We then parallelize this graph wherever pos­
sible which yields a relaxed dependence graph. Based on this relaxed dependence graph 
we interpret different optimization concepts that have been suggested in the literature, 
in particular lazy messages and combination of data manipulation operations. Together 
with these interpretations the relaxed dependence graph can be be used as a foundation 
for a compile-time schedule on a sequential or parallel machine architecture. The formal­
ization we provide allows our method to be embedded in a more comprehensive protocol 
engineering methodology. 

1. Introduction 

Optimized protocol implementation has become an important field of research as net­
work speed has increased much faster than computer processing power over the last 
decade. We present a method for the mainly automated derivation of efficient implemen­
tations of protocol stacks, starting from formal specifications. The rigor in the formaliza­
tion is useful when implementing our method as a tool, which we are currently doing. In 
the paper we formalize and generalize optimization approaches that can be found in the 
literature, in particular in the literature on optimal protocol implementation. 

Overview. In Figures 1 and 2 we present a (partial) view of the SDL specification 
of a two layer protocol stack consisting of two processes named N and N+l. It will serve 
as a running example in our paper and we will refer to it as TLS. It is the purpose of 
our optimization and implementation method to transform specifications similar to TLS 
into parallelized and optimized implementations. In Section 2 we discuss the sort of 
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layered SDL specifications we consider in the paper. Here, we also argue why a direct and 
faithful implementation of SDL specifications would lead to inefficient implementations. 
This is mainly due to the structuring of SDL specifications into per-layer processes and 
the resulting inter-layer asynchronous queue based communication mechanism. 

First, we construct a dependence graph representing control-flow and data dependences 
among statements in an SDL specification. This leads us to so-called Transition Depen­
dence Graphs. Their construction is explained in Section 3.1. For the dependence graphs 
for example TLS see Figures 1 and 2. The dependence graph construction is an applica­
tion of methods known from the domain of compiler optimization and parallel compilation 
as they ar~ for example described in [10] and [3]. Control flow dependences relate directly 
successive statements (e. g. S2 and S3 in Figure 1) whereas data dependences relate 
statements where the depending statement uses a variable that is defined in the other 
statement (e. g. Sand Dl in Figure 1). 

In the second step of our method we perform an optimization and parallelization of 
the operations which are caused by the processing of a packet. We consider the way the 
packet takes from the point where it enters the protocol stack to where it exits. Therefore 
we have to combine transition dependence graphs belonging to different SDL processes. 
We do so by eliminating the inter-layer communication statements, e. g. the statements S4 
and S9 in the example TLS. The result is a Multi-Layer Dependence graph. We describe 
the construction in Section 3.1, for an example see Figure 4. 

Third, we identify the path a packet takes through the protocol stack in the so-called 
common case, from the root node representing the point where a packet is accepted from 
the environment to the exit node, where the packet is conveyed to the environment. 
For example, we assume that in the example TLS decision Dl has one common and 
one uncommon branch, whereas decision D2 has two common branches. This resulting 
graph is called common path graph, for an example see Figure 6. We will apply our later 
optimizations only to the common case part of the specification. 

Fourth, we relax dependences on the common path graph in the following steps. 

• Anticipation of the common case: In this step we ignore that certain statements 
depend on a decision, namely for those decisions where we assumed a common 
outcome. Henceforth we treat these decision nodes as if no other node depends on 
their execution. An example is decision Dl (see Figure 6). 

• Parallelization: We construct a relaxed dependence graph by taking the data flow 
dependence relation of the CPG and by adding additional dependences which ensure 
that a node is never executed before the last decision node on which it depends in the 
control flow dependence relation has been executed (see Section 6.2). For example 
node S10 is not data flow dependent on decision node D2, but still both nodes 
may not be executed in any order, because the execution of S10 depends on the 
evaluation of 02. However, S10 and S11 are not data dependent and may thus be 
executed in parallel (meaning in any order). 

Finally, in Section 7 we show how suggestions that have been made in the literature to 
optimize the implementation of communication protocols can be interpreted based on the 
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relaxed dependence graph. We refer to the concepts of Lazy Messages (see [20]), and, in 
particular, Grouping of Data Manipulation Operations (see [7], [8] and [1]). 

The optimized and parallelized graph now serves as a foundation for an implementation 
on either a sequential or a parallel machine architecture. The discussion of implementation 
aspects such as scheduling is outside the scope of this paper. We refer the reader to [17] 
and [15] for further discussion. 

Related work. Aspects of hardware and software architecture that increase an imple­
mentation's efficiency are discussed in [7], [8], [20], [9] and [23]. Hardware implementations 
for high speed protocols have been proposed in [13]. Special attention has been paid to the 
parallelization of protocol implementations, so for example in [5] and [24]. However, the 
parallelization proposed in these papers depends entirely on the intuition of the designer 
and thus its efficiency may be non-optimal. Therefore automated support for the paral­
lelization is desirable. An approach based on the scheduling of parallel tasks generated by 
an Estelle compiler is presented in [11]. In [19] the determination of data-flow dependence 
graphs for parallel implementations of stream processing programs on transputers are de­
scribed. Others ([22], [14]) analyze the data- and message flow dependences between 
communicating processes, whereas we restrict ourselves to the analysis of dependences 
inside processes. 

Precursors. Precursors of our work appeared in [17] where we describe the application 
of our method to a IP /TCP /FTP protocol stack. Further results will appear in [16]. More 
technical detail can be found in (15]. 

The role of SDL. The formal specification technique we consider is the CCITT stan­
dardized Specification and Description Language SDL [6]. We chose this language not be­
cause we particularly advocate its suitability as an implementation language, but rather 
because it enjoys wide acceptance in the protocol engineering community. For an overview 
of SDL see for example [4]. The choice of a formal description technique as starting point 
connects our method to existing techniques and methods in the domain of protocol engi­
neering (see for example [18]). We may for example assume that as result of a previous 
verification step the specifications on which we base our optimization are dead- and live­
lock free. Also, conformance tests developed based on the formal specification can be 
directly applied to the implementation. Part of our method (dependence analysis and 
construction of multi-layer dependence graphs) are specific to features of SDL. However, 
we claim that for many other procedural specification methods an easy adaptation is pos­
sible. The later steps (starting with the CPG construction and down to the optimization 
steps we describe) are independent of the specification method on which the dependence 
graph is based. 

2. A Discussion of SDL Specifications 

2.1. SDL Specifications of Protocol Stacks 
SDL is a Formal Description Technique frequently used in the specification of telecom­

munications systems, in particular for the layered specification of communications pro­
tocols. An SDL specification of a protocol stack can usually be structured into different 
concurrent processes, each one representing the functionality of one protocol layer. A 
process is structured into transitions which describe its dynamic behaviour. Processes 



From SDL specifications to optimized parallel protocol implementations 311 

communicate via asynchronous signal queues. In SDL the mapping of the output signals 
of the sending process to corresponding input signals of the receiving process is done using 
a relatively complicated mapping of signal names to signal routes, where the signal routes 
carry the sender and receiver identification information. For reasons of conciseness of the 
presentation we abstract away from this mechanism and identify sender and receiver of 
messages simply by identity of the message type. Thus, in the Example TLS the message 
Y sent out by process N is consumed by process N+1. 

2.2. Inadequacy of 'Faithful' Implementations 
By the term faithful we refer to an implementation which follows in its structure and in 

the sequence of operations exactly the original SDL specification from which it is derived. 
This may for example mean that the SDL specification is directly compiled so that every 
statement in the SDL specification is mapped to a statement in the implementation, that 
every SDL process corresponds to a process in the implementation, and that the pro­
cesses in the implementation communicate using the SDL asynchronous communication 
mechanism via infinite queues. However, as we argue in the following, such a faithful 
implementation is potentially inefficient. 

• No explicit parallelism: Although SDL processes run concurrently the processing 
inside an SDL process is strictly sequential. This means that the structuring of 
the specification into processes, which in many cases is influenced by general design 
decisions, determines the degree of parallelism of a specification. It also means that 
without optimizations the sequential processing of operations inside a process may 
be inefficient compared to a parallel execution. 

• Structuring of the specification into processes: The structure of the specification 
often means that there is one process per protocol layer peer entity of the protocol 
(see for example the specifications presented in [4]). The design of communication 
protocols is often governed by the principle that 'a good specification is a highly 
modular and layered specification'. Though from a structured-design point of view a 
layered design may be desirable, we stipulate that in order to derive efficient parallel 
protocol implementations such a layered design is obstructive. This is mainly due to 
the fact that the parallel scheduling and combined execution of operations belonging 
to different protocol layers, which can lead to a considerable gain in efficiency, are 
inhibited by the layer-wise structuring of the specification. Similar arguments can 
be found in [9]. 

• Asynchronous inter-layer communication via infinite queues: An efficient imple­
mentation of a protocol stack for one peer entity will usually be a non-distributed 
system. Apparently it is very inefficient to implement the exchange of data in a 
non-distributed system via asynchronous queues. Instead, the protocol data will be 
stored in a local memory and the communication between the processes will be by 
shared variables. 

The objectives of our method are therefore to remove the boundaries between processes, to 
remove the asynchronous communication between processes, and to analyze dependences 
between statements in order to enable parallel and combined execution of statements 
belonging to different processes. 
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3. Dependence Analysis for SDL Processes 

In this section we explain how a Dependence Graph can be obtained by syntactical 
analysis from an SDL specification. For a definition of the mathematical notation we 
use here and in later Sections see the Appendix. First we will explain how transitions 
as basic building blocks of SDL process specifications can be formalized and then how 
entire protocol stacks can be represented as graphs, based on the graphs representing the 
transitions. 

3.1. Transitions in SDL Specifications 
Syntactic structure. A transition in an SDL specification is a construct which de­

scribes the transition of an SDL process from one symbolic state into a successor symbolic 
state. The body of a transition consists of a collection of statements which we group in 
the set of statements S. We only consider a limited subset of SDL-statements, namely 
INPUT, TASK, DECISION and OUTPUT statements, and we identify one of these four state­
ment types with every element of S. For a complete description of the syntax of SDL 
transitions see [4]. The syntactic subset we have chosen is a concise subset of the full 
SDL syntax. It allows for the analysis of standard protocol specifications as presented in 
[4]. For the sake of conciseness we have limited our considerations to the language subset 
described above but we conjecture that an adequate treatment of most of these constructs 
is possible when extending our method. 

3.2. Control Flow and Data Flow Dependences 
The syntactical analysis of the SDL specifications that we describe in this Section yields 

a graph structure over the set of statements S. This so-called dependence graph represents 
the two types of dependences between the statements of a specification, namely control 
flow and data flow dependences. 

Statements, which according to the syntactical and semantical rules of SDL are direct 
successors, are part of the control flow dependence relation cfd over the set S. A statement 
of type DECISION has two or more directly succeeding statements, all pairs of a DECISION 
statement and it successor statements are part of the cfd relation. The execution of a 
statement directly succeeding a DECISION statement depends on the run-time evaluation 
of the decision predicate. This is represented by a branching of the cfd graph. 

A statement usually describes operations on process variables in which these are usually 
referenced in two different ways. 

• We say that a statement Sn uses a variable x iff it references the variables current 
value without modifying it. Note that in one statement more than one variable may 
be used. A typical use of a variable would be to reference its value in the expression 
on the right hand side of an assignment statement. 

• We say that a statement Sn defines a variable x iff it assigns an initial or new value 
to the variable without referencing its previous value. A typical example is the 
definition of a variable on the left hand side of an assignment statement. 

A pair of statements (sb s2) is in the data flow dependence relation dfd if (s 1 , s2 ) IS 
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in the transitive closure of the cfd-relation1 and s 2 uses a variable which is defined in 
s 1 . For simplicity we assume that no re-definition of variable names inside transitions 
occurs2 • Also, we assume that every variable name used in a transition is defined inside 
of the transition, therefore no data dependences from statements in other transitions 
exist. Function calls are assumed to have no side-effects and to return a single value. 
Assignments to structured variables are decomposed into component-wise assignments. 
An INPUT (X) statement is a define statement with respect to a variable named X, an 
OUTPUT(Y) statement is a use statement with respect to variable named Y 3 • 

3.3. Transition Dependence Graphs (TDG) 
Definition Transition Dependence Graph. Let S, STT and X denote pair­

wise disjoint sets, the elements of which we call statements, statement types and vari­
ables. Formally, we define a Transition Dependence Graph (TDG) as a tuple T = 
(S,STT,X,sttype,cfd,dfd) where cfd~ S x S, dfd~ cfd!', STT= {input,decision,task, 
output}, sttype ~ S x STT is a functional relation (relating a statement to a statement 
type), use~ S X P(X) is a functional relation (relating a statement to the set of variable 
names which are being used in it), and define ~ S x X is a partial functional relation 
(relating a statement to the variable name which is being defined in it), satisfying the 
following conditions: 

1. (S, cfd) is a tree. 

2. Vs E S the following conditions hold: (sttype(s) = {input}) +-t (I {s} <1 cfd I= 
1 A root( S, cfd) = { s}) (an INPUT statement has exactly one successor, and it is the 
root of the tree), sttype(s) = {decision} -+I {s }<1cjd 12:: 2 (every DECISION node has 
at least two successors), sttype( s) = {task} -+I { s} <1 cfd I::; 1 (every TASK node has 
at most one successor), and sttype(s) ={output}-+ s E leaves(S, cfd) (an OUTPUT 
statement is a leaf of the tree). 

3. (V(v,w) E dfd)(define(v) ~ use(w)). 

3.4. Example SDL processes and TDGs 
In the following examples we give the SDL specification of a transition in graphical rep­

resentation (SDL-GR) on the left hand side, and equivalent specification in textual form 
(phrase representation, SDL-PR) in the middle of the chart, and a resulting dependence 
graph on the right hand side. We add labels Sn and Dn to help us to identify regular and 
decision statements, respectively. However, these labels are not part of the specification. 

The example in Figure 1 shows a partial view of the specification of a process N of 
which we show only two transitions. The dependences are as follows. The control flow 
dependence follows the linear sequence of the statements S1, S2, S3 and D1 and then 
branches to either S4 or S5. The DECISON statement D1 has possible successor statements 

1Thus our definition of the data dependence implies that an 'earlier' statement in the control flow cannot 
be data dependent on a 'later' one. 
2This avoids additional output dependences, see (21). 
3 The data dependences we consider are purely local to the processes, we do not consider data dependences 
between processes caused by message flows. 
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PROCESS N; 

STATE ST1; 
Sl INPUT(X); 
S2 TASK Y!H:=const; 
S3 TASK Y!D:=f(X); 
01 DECISION P(Y); 

(true): 
S4 OUTPUT(Y); 

NEXTSTATE ST1; 
(false): 

S5 OUTPUT(Z); I 

NEXTSTATE ST2; I 
I 

ENDDECISISON; I 

S6 INPUT(U); 
S7 TASK V:=g(U); 
ss OUTPUT(V); 

NEXTSTATE ST1; 

ENDPROCESS N; 

Figure 1. SDL-PR (left) and SDL-GR (middle) specifications and TDGs (right) for process 
N 

S4 and SS, the respective control flow dependence edges are labeled for illustrative pur­
poses by true and false. The data flow dependences are so that S3 depends on S1 because 
of variable X, whereas D1 and S4 both depend on S2 and S3 because of the use of variable 
Y4 • Figure 1 presents a graphical representation of this TDG which we call Tt, namely on 
the right hand side by the graph starting in node Sl. Solid line arrows represent control 
flow dependencies, thus elements of cfd, and dashed line arrows represent elements of dfd. 
The dependences for the transition starting in statement S6 are obvious. 

For our later argumentation, which aims at combining multiple processes to one process, 
we need a further example of an SDL process, namely the process named N+1 presented 
in Figure 2. The syntactical analysis leads to the transition dependence graph T3 shown 
on the right hand side of Figure 2. The structure of the dependence graph is quite similar 
to the structure of the dependence graph for process N. It should also be noted that the 
decision D2 does not have a boolean evaluations, instead it evaluates to strings A1 or A2. 

4. Dependence Graphs for Protocol Stacks 

As we saw in Section 2 protocol stacks are usually specified by a set of independent 
concurrent processes. Each of these processes consists of a number of transitions. In 
Section 3 we described how to syntactically analyze each of these processes in order to 

40ne may envisage Y! H to stand for the header and Y! D for the data part of a protocol data unit or a 
packet. 
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PROCESSN+l 
PROCESS N+1; 

STATE STl; 
S9 INPUT(Y); 
02 DECISION p(Y!H); 

(' A1 '): 

SlO TASK W!H:=h(Y!H); 
S11 TASK W!D:=k(Y!D); 
S12 OUTPUT(W); 

NEXTSTATE ST1; 
(' A2'): 

S13 TASK W:=l(Y); 
S14 OUTPUT(W); 

NEXTSTATE ST1; 

ENDPROCESS P; 

Figure 2. SDL-PR (left) and SDL-GR (middle) specifications and TDGs (right) for process 
N+l 

derive a set of transition dependence graphs for each process. As we argued in Section 
2.2 it is advantageous to remove the boundaries between layers of SDL processes and to 
eliminate the inter-layer communication via infinite queues. In this section we describe the 
necessary steps to combine the transition dependence graphs of different SDL processes 
and to remove the communication between them. Technically, we perform this in two 
steps. First, we label all TDGs of all processes by so-called input/output labels. These 
labels are the names of the signals exchanged by the INPUT and OUTPUT statements at 
the beginning and at the end of each transitions. Second, we combine all TDGs with 
matching input/output labels, eliminate the OUTPUT(X)/INPUT(X) statement pairs, and 
perform a cross-layer data dependence analysis. We may do this because we assume that 
every OUTPUT statement can be mapped to a unique INPUT statement of another process. 
The result is a graph which we call Multi-Layer Dependence Graph. 

4.1. Input/Output labeled Transition Dependence Graphs (IOTDGs) 
We assume that all transitions we consider for the combination process start with an 

INPUT statement accepting a data packet from an adjacent layer process, and end with an 
OUTPUT statement which delivers the processed packet to the next adjacent layer process. 
Hence, we assume that all the processing for a packet in a layer process is carried out in 
the course of one transition, and that no looping inside a transition occurs. Thus, our 
dependence graphs are always trees. Different transitions starting in different states in 
one process may exist, but they only represent the process to be in different states (e. g. 
state waiting and state transmission). Furthermore, we assume that the packet passing 
is unidirectional, either from the medium towards the user or vice versa. 
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Formal Definition of Input/Output labeled TDGs. Based on the above stated 
assumptions on the structure of the SDL Transitions we formalize the concept of labeling 
of root and leave nodes of TDGs by the appropriate signal names as follows. Let T = 
(S,STT,X,sttype,cfd,dfd) denote a TDG and let SIG denote a set disjoint from any 
other set in sight, the elements of which we call signal names. Furthermore, let insig ~ 
((S n root(T)) X SIG) and outsig ~ ((S n leaves(T)) X SIG) denote functional relations. 
We define an Input-Output labeled Transition Dependence Graph (IOTDG) as a tuple 
I= (S, STT, X, SIG, sttype, cfd, dfd, insig, outsig) for which the following conditions hold: 
sttype(root(I)) =input, and (Vx E leaves(I))(sttype(x) =output). 

Example IOTDG In Figure 3 we show the three IOTDGs representing the TDGs for 
Example TLS. 

4.2. Multi-layer Dependence Graph (MLDG) 
What we have obtained so far is a set I = {T1 , •.. , Tn} of IOTDGs. I represents 

the dependences of all transition of the specification that we analyze. In this section we 
describe an algorithm that transforms I into a set M of Multi-Layer Dependence Graphs 
(MLDG). Each MLDG represents the dependences of the processing of one packet or 
protocol data unit in adjacent layers of the protocol stack. We are interested in following 
the processing of one packet from the code location where it enters into the protocol 
stack to the location where it exits. In our example this means that we will derive a 
connected control flow dependence graph from statement S1, where the packet X enters 
the processing in process N, to the statements S12 and S14, where it exits the stream of 
processing in process N+1 as a message of type W. Thus we have to compose the individual 
IOTDGs in /. The criterion for composing two IOTDGs will be that they exchange 
a message with identical names, e. g. one IOTDG ends with an OUTPUT(Y) statement 
and another IOTDG begins with an INPUT(Y) statement. We assume that the names of 
the types of the messages exchanged are unique at the interfaces between two processes, 
and that the direction of the message flow is uniquely determined by the message type 
names. Also, we assume that every OUTPUT statement can be mapped to a unique INPUT 
statement. Note that SDL transitions are deterministic on INPUT signals, i.e. in one state 
the future behavior is uniquely determined by the type of the message that is consumed 
next. 

MLDG Construction Algorithm. The algorithm is as follows. First, a set T of 
initial IOTDGs is selected (step I.). This set contains all those IOTDGs that do not input 
a message that is output-ed by another IOTDG. The algorithm then loops over all these 
IOTDGs (III.). The set Z (V.) contains all those IOTDGs that can be appended to a leaf 
node of an IOTDG from T The next loop (VI.) performs the merging of two IOTGs (VII. 
to XVI.) for all elements of Z. The merging of two IOTDGs comprises the elimination of 
the two nodes x and root(Z) by which the two graphs are merged (IX.), this corresponds 
to the elimination of the OUTPUT I INPUT statements. XIII. describes the construction of 
the new cfd relation. Every node that depended on root( Z) is made dependent on every 
node from which x depended. The construction of the new dfd relation (XIV.) is very 
similar, but we additionally check whether a node on which x depended defines a variable 
which is used in a node that depended on root(Z). XVII. constructs the result, a set M 
of MLDGs. 
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Algorithm 1 

I. SELECTT' = {T{, ... ,T~} ~ T SO THAT 
(VTf)(VTj)(insig(root(T{)) n U#i outsig(leaves(Tj)) = 0); 

II. M := 0; 

Ill. FOR ALL Tf E T' 

IV. M :=Tf; 

v. z := {T E r I outsig(leaves(M)) n (insig(root(T))) f 0}; 

VI. WHILE Z f 0 
VII. FOR ALL Z E Z 

VIII. SELECT x E leaves(M) SO THAT 
( outsig( x) E insig(leaves( root ( Z)))); 

IX. SM := SM U Sz- {x}- root(Z); 

X. XM := XM UXz; 
XII. sttype:V := SM <1 (sttypeM U sttypez); 
XIII. cfd:V := cfdM U cfdz - ( cfdM 1> { x}) - (root ( Z) <1 cfdz) 

U {domain(cfdM 1> {x}) x range(root(Z) <1 cfdz)}; 

XIV. dfd:V := dfdM U dfdz- (dfdM 1> {x})- (root(Z) <1 dfdz) 
U{(v,w) E {domain(dfdMt>{x})xrange(root(Z)<Idfdz)} I define(v) ~ 
use(w)}; 

XV. M := (SM,STTM,XM,sttype:V,cfd:V,dfdM) 
XVI. Z := {T E T loutsig(leaves(M)) n (insig(root(T))) f 0}; 

XVII. M :=MUM 

As a result we obtain a set of MLDGs M. Each M E M is a multi-edged labeled tree 
(S, STT, X, SIG, sttype, cjd, dfd). Note, however, that not all ofthe conditions we required 
for IOTDGs still hold. For example it is not true any more that a node of type input 
has no predecessor in the cfd relation. For a MLDG M we say that a. node in root( M) 
is an entry node, that a node in branch nodes( M) is a branching node, and that a node 
in leaves(M) is an exit node. An entry node represents a statement where a message (in 
most cases a packet or protocol data unit) is accepted from the environment, and an exit 
node refers to a statement in the code where a. message is delivered to the environment. 

Example MLDG Figure 4 shows the set M which we obtain by applying our algorithm 
to the IOTDGs of our example TLS. It contains two MLDGs, one with root S1 and 
one with root S6. In order to illustrate the input/output labeling we also retained the 
respective labels at the nodes. Note that the cjJ.relation forms the skeleton of the MLDGs. 
The nodes S4 and S9 have been eliminated, reflecting the elimination of the OUTPUT (Y) I 
INPUT(Y) statement pair. The additional cfd pair (Dl, D2) has been added. Furthermore, 
data dependences between statements of the two merged graphs have been added, so for 
example (82, D2). 
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Justification for MLDG construction. When building the MLDG we modified the 
original SDL specification in two ways. Firstly, we ignored the asynchronous queue com­
munication mechanism, and secondly, we eliminated the corresponding OUTPUT I INPUT 

statement pair. The justified question arises whether these modifications preserve the cor­
rectness of the original specification. We argue that ignoring the queue can be justified 
because this is a refinement step which preserves two essential queue properties, namely 
1. the safety property that it is always true that if something is received it must have 
been sent before, and 2. the liveness property that it is always true that if something is 
sent it will eventually be received. The safety property is trivially satisfied because the 
order of the OUTPUT(X) and INPUT(X) statements is preserved. The liveness property is 
satisfied if we assume our implementation to be live, namely that every transition which 
is continuously enabled will eventually be taken. The elimination of the OUTPUT I INPUT 

statement pair can be justified by the fact that we preserved all control flow and data flow 
dependences. Thus, the above argument concerning the safety properties now holds for 
all those statements which are direct predecessors or successors of the OUTPUT I INPUT 

statements that we eliminated. Concluding we can say that out of the many interleavings 
of events which are possible according to the original specification we only implement one 
possible representative, namely the interleaving where a packet is accepted at one end of 
the protocol stack, entirely processed, and finally handed over at the other end before 
the next packet is accepted for processing. Also, as opposed to work reported in (12] in 
the context of ESTELLE we do not eliminate the asynchronous queue communication 
mechanism between adjacent layer processes by replacing these processes by one prod­
uct automaton because this would induce an extreme blow-up in the complexity of the 
implementation. 

5. Determination of the Common Path Graph 

The later steps of our optimization method rely on the assumption that we optimize 
the processing of a packet only for the 'common case' (we will come to a clearer under­
standing of this expression in this Chapter). In Chapter 6 we introduce optimization 
steps that anticipate certain common decision results according to a common case as­
sumption. We consider our common path determination a generalization of the Common 
Path optimization as advocated in (7]. 

Protocols usually have the task of hiding imperfect behavior of lower layer services from 
upper layer users. This means that a major part of their functionality aims at detection 
and treatment of many kinds of exceptions and errors. Exceptions and errors, however, 
are usually uncommon, in particular in typical high speed communication environments. 
On the other hand, optimizing the common case implies that we need to take care of 
uncommon cases using alternate non-optimized error-case implementations. But, as we 
argued above, because of the low probability of these error handling cases we can tolerate 
the non-optimized processing of these error cases without risking a considerable degrada­
tion of the performance of the protocol. However, not all branching in the control flow 
can be classified so that one branch is common and all others are uncommon. It may 
as well be the case that more that one alternative is a common choice, namely when the 
branching does not aim at handling exception cases. 
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Now, what does the term common case mean technically? We distinguish the decision 
edges (outgoing cfd-edges of a node with out degree > 1) of the cfd relation of an MLDG M 
disjointly into those which are taken with a probability above a certain value (the common 
ones, labeled with 'C') and those for which the probability is below a certain value (the 
uncommon ones, labeled with 'U'). The labeling of the decision edges is described in 
Section 5.1. It defines a common path graph which is a subgraph of the cfd graph. Hence, 
our further optimization will only address the common way a packet takes through the 
protocol stack, along a common path, and not the uncommon cases. In order to obtain 
what we call the Common Path Graph (CPG) we drop those subgraphs of M which start 
with an edge labeled as uncommon from every decision node (see Section 5.2). 

5.1. Labeling of MLDGs 
Common/Uncommon Labeling of MLDGs. Let M denote an MLDG and let C = 

{ C, U} a set disjoint from any other set in sight. Furthermore let cul ~ (branch edges( S, cfd) 
x C) a functional relation. We say that cul is a common/uncommon labeling of the MLDG 
M. 

Example Common/Uncommon Labeled MLDG. Figure 5 presents and example 
of a common/ uncommon labeled MLDG. Note that the labeling of the branching edges 
yields a tree which represents the common path of the processing of a packet. This tree, 
which is indicated by bold solid line cfd edges in Figure 5, is obtained by traversing an 
MLDG so that no decision edge with label U is traversed. 

Discussion. Whether a decision edge is common or uncommon depends in part on 
the environment in which a protocol is running. The common/uncommon attributes can 
thus not be automatically derived from the protocol specification. The attribution has 
to be provided by the implementor as an input for our method. One way of finding out 
which decisions are uncommon is to analyze a working implementation using for example 
a tool like it has been proposed in [2] 5• In case such analyses are not available it may 
be necessary to use simulation techniques or estimations in order to determine whether a 
particular decision edge belongs to the common or the uncommon case. 

5.2. Common Path Graph (CPG) 
The very easy algorithm for the construction of the CPG can be found in [15]. It simply 

prunes all those subtrees of the labeled MLDG which start with an edge labeled 'U' in a 
decision node. 

Example CPG. In Figure 6 we present the CPG derived from the common / un­
common labeled MLDG in Figure 5. The subgraph that has been removed is the graph 
starting with the edge (Dl, 55). The subgraphs starting in node D2 have both been 
retained as they both represent common decisions. 

6. Construction of the Relaxed Dependence Graph 

In the previous chapters we have shown how a common path graph (CPG) can be 
derived from an SDL specification based on a control flow and data flow dependence anal­
ysis. In this Section we will construct a relaxed dependence graph (RDG) based on which 

5The authors describe a tool called Chitra which analyzes program execution sequences yielding a semi­
Markov chain model representing the time behavior of a program. 
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the original specification can be implemented. We conjecture that the implementation of 
the RDG will be functionally equivalent to the faithful implementation, but will execute 
faster. We propose the following steps to generate a RDG. 

• Anticipation of the common case: In this step we ignore that certain statements 
depend on a decision, namely for those decisions where we assumed a common 
outcome. Henceforth we treat these decision nodes as if no other node depends on 
their execution. 

• Parallelization: We construct a relaxed dependence graph by taking the data flow 
dependence relation of the anticipated CPG and by adding additional dependences 
which ensure that a node is never executed before the last decision node on which it 
depends in the control flow dependence relation has been executed. Two statements 
can be executed in parallel iff in the RDG they do not dependent on each other. 

6.1. Anticipation of the Common Case 
The CPG may contain decisions with only one outcome in the CPG. As we will see in 

the next transformation, decisions enforce an execution order, namely that a node must be 
executed after all decisions it depends on have been taken. Decisions thus limit potential 
parallelism. To enhance potential parallelism we anticipate the outcome of decisions 
that have only one outcome in the CPG. We treat such decisions as if they represented 
tasks instead of decisions. In [15] we discuss the handling of the uncommon cases in 
an implementation and argue that there is always a way to handle them consistently. 
Anticipation of the common case is applied to the CPG changing the type of those decision 
nodes which have only one successor in the cfd relation of the CPG to task. The algorithm 
can be found in [15]. 

In our example, anticipating the common case results in changing the statement type 
of D1 fromdecision to task. 

6.2. Relaxation of Dependences 
In this transformation we remove dependences from the CPG graph to allow its parallel 

execution. More precisely we remove all dependences and replace them by a smaller set 
of relaxed dependences. There are three precedence relations that the relaxed dependence 
graph must enforce. Data flow dependences: a node using a variable may not be executed 
before a node which defines that variable. Control flow dependences: a node which is 
(directly or transitively) control flow dependent of a decision node may not be executed 
before this decision has been taken. Final execution of exit nodes: Exit nodes must be 
the last nodes to be executed because they are the point where a protocol interacts with 
its environment and makes the result of the processing visible. Thus all statements which 
are no exit nodes must be executed before executing an exit node. The result of the 
transformation is a relaxed common path graph (RDG) in which the cfd and dfd relations 
have been replaced by a relaxed dependence relation rxd. We create the rxd relation in 
three steps. First we include all elements of the original CPG's dfd relation in rxd. This 
will ensure that data dependences are respected. Then we examine each node of the RDG 
to see if it already depends (directly or transitively) from its nearest preceding decision 
node in the cfd relation. If not, we add a dependence between the examined node and the 
nearest decision node. This ensures that a node is not executed before the last decision 
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it depends on. Finally we check that all exit nodes reachable from a given node in the 
CPG are also dependent of that node in the RDG. If this is not the case, we add relaxed 
dependences between the given node and the concerned exit nodes. 

Algorithm 2 is an algorithm for the construction of the RDG. Starting with a given, 
possibly anticipated CPG C it uses the cfd0 and dfd0 relations to create the rxd relation 
over So x So of the resulting RDG. The algorithm first selects a set D of all decision 
nodes of the graph plus the root of the graph (1.). It includes all elements of dfd0 into 
rxd (II.). Then, for every node x of the graph, it finds the nearest node in D from which 
x is transitively dependent in the cfd0 relation (III.). If in the rxd relation x is not 
yet transitively dependent of that node, a new dependence is added. Next, all nodes 
except the exit nodes of the graph are examined. A dependence is added (V.) between 
an examined (VI.) node y and each exit node which is transitively dependent of y in the 
cfd0 relation of the CPG but not in the rxd relation of the RDG (VII. and VIII.). 

Algorithm 2 

I. SELECT V = {Dt, ... , Dm} ~So SO THAT 
(VD;)(sttype(D;) =decision V D; = root(C)) 

II. rxd := dfdo 

Ill. FOR ALL n E So - root( C) 

IV. SELECT Dn SO THAT 
{s E VI (s,n) E cfd& 1\ (Dn,s) E cfd6} = 0 

V. IF (Dn, n) 1. rxd+ THEN rxd := rxd U {(Dn, n)} 

VI. FOR ALL mE S -leaves(C) 

VII. FOR ALL x E leaves( C) 

VIII. IF (m,x) E cfd& 1\ (m,x) 1. rxd+ THEN rxd := rxd U {(m, x)} 

We call the resulting directed graph R =(So, rxd) the relaxed dependence graph for CPG 
C. It should be noted that R is not a tree. Figure 7 shows the RDG for the CPG in Figure 
6. We see that 82 and 83 depend on 81 but not on each other. This means that once 81 
has been executed 82 and 83 can be executed in parallel. 

7. Optimizations based on the Relaxed Dependence Graph 

An implementation will be based on the RDG. In particular, the scheduling of the 
operations on a given hardware architecture is a central task of any implementation, be 
it at compile- or at run-time. When scheduling the operations the scheduler may take 
advantage of the relaxation of dependencies in the RDG. The execution of an operation 
may be scheduled at a different point of time compared to its execution according to the 
sequential SDL specification. In particular, the scheduler may schedule the processing of 
certain operations whenever it seems optimal, for example when the required resources 
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and data are available. A further gain in efficiency can be achieved by combining the 
execution of so-called Data Manipulation Operations (DMOs). 

Grouping of Data Manipulation Operations. We call data manipulation op­
erations (DMOs) operations that manipulate entire data parts of protocol data units. 
Combining two such operations into one that does two manipulations at the same time 
saves an extra storing and fetching 'lf all the data and thus executes much faster. This 
has already been demonstrated in [7]. It is also central to the work reported in [8] and 
[1]. Particularly, it has been shown in [20] that in presence of decisions along the path of 
execution of a protocol, it is better to wait with the execution of DMOs until all decisions 
have been taken. At that point the set of DMOs to be executed is known and the DMOs 
can be combined. The technique is referred to as lazy messages. Our algorithm is a gen­
eralization of this technique. In order to enable the joint execution of DMOs the RDG 
has to be modified. It has to be taken into account that when grouping the execution of 
two DMOs so that one operation depends on a decision higher up in the RDG than the 
other operation, the higher operation must be executed along every possible path through 
the RDG. 

An algorithm for grouping of DMOs. We propose a recursive algorithm that starts 
at the root of the RDG. Let B be the name of the node the algorithm is applied to. The 
algorithm distributes the DMOs that depend of B over each decision that depends of B, 
called B', iff other DMOs exist which can only be executed after B'. The algorithm is then 
recursively applied to all decisions B' that depend on B. Algorithm 3 does the operation 
described above. It is applied to the root node of a RDG C. It also takes as input the 
cfd relation of the CPG from which C was derived. The node it is applied to is called 
B. For each DMO D which depends of B (1.) a second DMO D2 depending on an other 
decision node is searched in the subset of nodes that may be executed if D is executed 
(II.). If such a DMO exists, the decision node B' depending of B and leading to D2 is 
found (III.). Then Dis removed from the graph (IV.-VI.) and several copies of D, called 
DL are created, one for each possible evaluation of B' (VII.-X.). Dependences are added 
from Di to all exit nodes which can be reached from B' with the corresponding evaluation 
of the predicate (XI.). Once all DMOs depending of B have been treated, the algorithm 
is applied to all decision nodes depending of B (XII. & XIII.). The algorithm stops when 
B has no more successors which are decision nodes. 

Algorithm 3 
RecursiveCombine(B) 

I. FOR ALL {DE 'DMO I (B, D) E rxd} 

II. IF 3D2 E 'DMO I (D, D2 ) E cfd+ AND 
{s ESc I (D,s) E rxd+ 1\ (s,D2) E rxd+} = 0 

Ill. B' = s E branchnodes(C) I (B, s)inrxd 1\ (s, D2) E rxd+ 

IV. Sc := Sc- {D} 
V. VMO := 'DMO- {D} 
VI. rxd := rxd- {{D} <3 rxd U rxd 1> {D}} 

VII. FOR ALL N; E { B'} <1 cfd 
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Figure 8. CPG with marked DMOs (diamonds) 

VIII. Sc := Sc U { D;} 

IX. VMO := VMO U {D:} 
X. rxd := rxd U (B', D:) 

Figure 9. Grouped DMOs 

XI. rxd := rxd U {(D:, x), x E leaves( C) I (N;, x) E cfd+} 

XII. FOR all nodes newB E B <l rxd and sttype(newB) =decision 

XIII. call recursiveCombine( new B) 

Example. The application of the algorithm to our example is shown in Figure 8 and 
Figure 9. The two DMOs identified are S3 and Sll. S3 is replicated for each evaluation 
of D2, yielding S3'1 and S3'2. If D2 evaluates to 'Al' then a combined DMO S3'1/Sll 
can be executed. If D2 evaluates to 'A2', then 83 '2 is executed alone. In the final 
implementation the schedule of the operations has to be such that depending on the 
evaluation of the decision predicate D2 either 83'1 or S3'2 is executed before Dl, but not 
both. 

8. Conclusions 

In this paper we presented formalizations and algorithms for the derivation of optimized 
protocol implementations from SDL specifications. We started with a syntactical depen­
dence analysis for SDL processes. We then showed how multiple dependence graphs can 
be combined to multi-layer dependence graphs. Next we determined the common path 
graph, a subgraph of a multi-layer dependence graph which represents the common case 
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of processing of a packet in the protocol stack. This graph was the basis for an optimiza­
tion by anticipating the evaluation of some decision statements in the CPG, and then by 
relaxing the dependences. This essentially meant to omit control flow dependences and 
to only consider data flow dependences and dependences that express the dependence of 
a statement from the evaluation of a decision predicate. We called the result a relaxed 
dependence graph. When scheduling the operations on a given hardware architecture the 
scheduler may take advantage of the relaxation of dependencies in the RDG in particular 
by scheduling certain operations at a different point of time compared to the sequential 
execution in the SDL specification. In particular we showed how the optimization con­
cepts of lazy messages and grouping of Data Manipulation Operations can be interpreted 
based on the Relaxed Dependence Graph. 

We are currently developing a toolset for the support of our method. The toolset will 
consist in an SD L parser which generates dependence graphs, and a set of graph optimizing 
routines. The graph optimizing algorithms have already been implemented, the SDL 
parser is currently under development. Furthermore, we have implemented a prototype 
tool to support the scheduling aspect of the implementation. The fact that we have 
provided a rigorous formal description of our method clearly supports the implementation 
of such a toolset. It also connects our method well to other formally supported steps of 
an overall protocol engineering methodology, like testing and validation. 
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Appendix 

Notation and Definitions 
Relations. Let f ~ R x R denote a binary relation over a set R, let x, y E Rand S a 

set. We define the following restrictions and operators on a relation f. 

f t> S A {(a,b)l(a,b) E f I\ bE S} 

s~f A {(a,b)l(a,b)Ef I\ aES} 

domain(!)~ {a I (3b E R)((a,b) E f)} 

range(!) ~ {b I (3a E R)((a, b) E f)} 

field(!) ~ domain(!) U range(!) 

A relation f is functional if and only if each element in its domain is related to a unique 
element in its range. For a functional relation f and an x E R we sometimes write f(x) 
to denote range( {x} ~f). We use f+ to denote the transitive closure of a relation f, and 
f* to denote the transitive reflexive closure of f. 

Digraphs and Trees. Let V denote a set and let E ~ V x V, then we call T = (V, E) 
a digraph. We call T a tree if and only if the following additional conditions hold: 

• (3v E V)((Et> {v} = 0)) I\ (Vw E V,w =f. v)(Et> {w} =f. 0)) (we call v the root), 

• (Vv, wE V)((E t> {v} = 0) ~ (v, w) E E+) (all nodes are reachable from the root), 

• E+ n E* = 0 (there are no cycles), and 

• (Vv E V)(l {v}~E 1:5 1) (every node exceptfor the root has exactly one predecessor). 

A 
Furthermore, for a tree T = (V, E) we define: root(V, E) = { v E V I E t> { v} = 0}, 
leaves(V,E) ~ {v E VI {v} ~ E = 0}, branchnodes(V,E) ~ {v E VI (I {v} ~ E I)> 1}, 

and branchedges(V, E) ~ branchnodes(V, E) ~ E. 
Multi-edged and Labeled Trees. 

• Let E1 ... E,.. ~ V x V for n 2: 1. Then we call T = (V, E1 ... E,..) a multi-edged tree 
iff (V, EI) is a tree. 

• Let T = (V, E1 ••• En) a multi-edged tree. Let D1 ••• Dn denote sets which are 
pairwise disjoint from any other set in sight. Let L1 ... L,.. denote functional relations 
with L; ~ (E; x D;). Then we call T = (V, E1 ... E,.., D1 ... Dn, L1 ... Ln) a multi­
edged labeled tree. We shall slightly abuse notation in that we extend the notations 
root(T) and leaves(T) to multi-edged labeled trees, in the obvious way. 


