
19

From SDL Specifications to Optimized Parallel Protocol Implementations

Stefan Leuea and Philippe Oechslinb

a Institute for Informatics, University of Berne, Liinggassstrasse 51, CH-3012 Berne,
Switzerland

b Computer Network Lab LTI, Swiss Federal Institute of Technology, DI-LTI EPFL,
CH-1015 Lausanne, Switzerland

Keyword Codes: C.l.2; C.2.2; D.2.1; D.2.2
Keywords: Computer-Communication Networks, Network Protocols; Software Engineer­
ing, Requirements/Specification; Software Engineering, Tools and Techniques

Abstract
We propose a formalized method that allows to automatically derive an optimized im­

plementation from the formal specification of a protocol. Our method starts with the SDL
specification of a protocol stack. We first derive a data and control flow dependence graph
from each SDL process. Then, in order to perform cross-layer optimizations we combine
the dependence graphs of different SDL processes. Next, we determine the common path
through the multi-layer dependence graph. We then parallelize this graph wherever pos­
sible which yields a relaxed dependence graph. Based on this relaxed dependence graph
we interpret different optimization concepts that have been suggested in the literature,
in particular lazy messages and combination of data manipulation operations. Together
with these interpretations the relaxed dependence graph can be be used as a foundation
for a compile-time schedule on a sequential or parallel machine architecture. The formal­
ization we provide allows our method to be embedded in a more comprehensive protocol
engineering methodology.

1. Introduction

Optimized protocol implementation has become an important field of research as net­
work speed has increased much faster than computer processing power over the last
decade. We present a method for the mainly automated derivation of efficient implemen­
tations of protocol stacks, starting from formal specifications. The rigor in the formaliza­
tion is useful when implementing our method as a tool, which we are currently doing. In
the paper we formalize and generalize optimization approaches that can be found in the
literature, in particular in the literature on optimal protocol implementation.

Overview. In Figures 1 and 2 we present a (partial) view of the SDL specification
of a two layer protocol stack consisting of two processes named N and N+l. It will serve
as a running example in our paper and we will refer to it as TLS. It is the purpose of
our optimization and implementation method to transform specifications similar to TLS
into parallelized and optimized implementations. In Section 2 we discuss the sort of

G. Neufield et al. (eds.), Protocols for High Speed Networks IV
© Springer Science+Business Media Dordrecht 1995

From SDL specifications to optimized parallel protocol implementations 309

layered SDL specifications we consider in the paper. Here, we also argue why a direct and
faithful implementation of SDL specifications would lead to inefficient implementations.
This is mainly due to the structuring of SDL specifications into per-layer processes and
the resulting inter-layer asynchronous queue based communication mechanism.

First, we construct a dependence graph representing control-flow and data dependences
among statements in an SDL specification. This leads us to so-called Transition Depen­
dence Graphs. Their construction is explained in Section 3.1. For the dependence graphs
for example TLS see Figures 1 and 2. The dependence graph construction is an applica­
tion of methods known from the domain of compiler optimization and parallel compilation
as they ar~ for example described in [10] and [3]. Control flow dependences relate directly
successive statements (e. g. S2 and S3 in Figure 1) whereas data dependences relate
statements where the depending statement uses a variable that is defined in the other
statement (e. g. Sand Dl in Figure 1).

In the second step of our method we perform an optimization and parallelization of
the operations which are caused by the processing of a packet. We consider the way the
packet takes from the point where it enters the protocol stack to where it exits. Therefore
we have to combine transition dependence graphs belonging to different SDL processes.
We do so by eliminating the inter-layer communication statements, e. g. the statements S4
and S9 in the example TLS. The result is a Multi-Layer Dependence graph. We describe
the construction in Section 3.1, for an example see Figure 4.

Third, we identify the path a packet takes through the protocol stack in the so-called
common case, from the root node representing the point where a packet is accepted from
the environment to the exit node, where the packet is conveyed to the environment.
For example, we assume that in the example TLS decision Dl has one common and
one uncommon branch, whereas decision D2 has two common branches. This resulting
graph is called common path graph, for an example see Figure 6. We will apply our later
optimizations only to the common case part of the specification.

Fourth, we relax dependences on the common path graph in the following steps.

• Anticipation of the common case: In this step we ignore that certain statements
depend on a decision, namely for those decisions where we assumed a common
outcome. Henceforth we treat these decision nodes as if no other node depends on
their execution. An example is decision Dl (see Figure 6).

• Parallelization: We construct a relaxed dependence graph by taking the data flow
dependence relation of the CPG and by adding additional dependences which ensure
that a node is never executed before the last decision node on which it depends in the
control flow dependence relation has been executed (see Section 6.2). For example
node S10 is not data flow dependent on decision node D2, but still both nodes
may not be executed in any order, because the execution of S10 depends on the
evaluation of 02. However, S10 and S11 are not data dependent and may thus be
executed in parallel (meaning in any order).

Finally, in Section 7 we show how suggestions that have been made in the literature to
optimize the implementation of communication protocols can be interpreted based on the

310 Part Seven Posters

relaxed dependence graph. We refer to the concepts of Lazy Messages (see [20]), and, in
particular, Grouping of Data Manipulation Operations (see [7], [8] and [1]).

The optimized and parallelized graph now serves as a foundation for an implementation
on either a sequential or a parallel machine architecture. The discussion of implementation
aspects such as scheduling is outside the scope of this paper. We refer the reader to [17]
and [15] for further discussion.

Related work. Aspects of hardware and software architecture that increase an imple­
mentation's efficiency are discussed in [7], [8], [20], [9] and [23]. Hardware implementations
for high speed protocols have been proposed in [13]. Special attention has been paid to the
parallelization of protocol implementations, so for example in [5] and [24]. However, the
parallelization proposed in these papers depends entirely on the intuition of the designer
and thus its efficiency may be non-optimal. Therefore automated support for the paral­
lelization is desirable. An approach based on the scheduling of parallel tasks generated by
an Estelle compiler is presented in [11]. In [19] the determination of data-flow dependence
graphs for parallel implementations of stream processing programs on transputers are de­
scribed. Others ([22], [14]) analyze the data- and message flow dependences between
communicating processes, whereas we restrict ourselves to the analysis of dependences
inside processes.

Precursors. Precursors of our work appeared in [17] where we describe the application
of our method to a IP /TCP /FTP protocol stack. Further results will appear in [16]. More
technical detail can be found in (15].

The role of SDL. The formal specification technique we consider is the CCITT stan­
dardized Specification and Description Language SDL [6]. We chose this language not be­
cause we particularly advocate its suitability as an implementation language, but rather
because it enjoys wide acceptance in the protocol engineering community. For an overview
of SDL see for example [4]. The choice of a formal description technique as starting point
connects our method to existing techniques and methods in the domain of protocol engi­
neering (see for example [18]). We may for example assume that as result of a previous
verification step the specifications on which we base our optimization are dead- and live­
lock free. Also, conformance tests developed based on the formal specification can be
directly applied to the implementation. Part of our method (dependence analysis and
construction of multi-layer dependence graphs) are specific to features of SDL. However,
we claim that for many other procedural specification methods an easy adaptation is pos­
sible. The later steps (starting with the CPG construction and down to the optimization
steps we describe) are independent of the specification method on which the dependence
graph is based.

2. A Discussion of SDL Specifications

2.1. SDL Specifications of Protocol Stacks
SDL is a Formal Description Technique frequently used in the specification of telecom­

munications systems, in particular for the layered specification of communications pro­
tocols. An SDL specification of a protocol stack can usually be structured into different
concurrent processes, each one representing the functionality of one protocol layer. A
process is structured into transitions which describe its dynamic behaviour. Processes

From SDL specifications to optimized parallel protocol implementations 311

communicate via asynchronous signal queues. In SDL the mapping of the output signals
of the sending process to corresponding input signals of the receiving process is done using
a relatively complicated mapping of signal names to signal routes, where the signal routes
carry the sender and receiver identification information. For reasons of conciseness of the
presentation we abstract away from this mechanism and identify sender and receiver of
messages simply by identity of the message type. Thus, in the Example TLS the message
Y sent out by process N is consumed by process N+1.

2.2. Inadequacy of 'Faithful' Implementations
By the term faithful we refer to an implementation which follows in its structure and in

the sequence of operations exactly the original SDL specification from which it is derived.
This may for example mean that the SDL specification is directly compiled so that every
statement in the SDL specification is mapped to a statement in the implementation, that
every SDL process corresponds to a process in the implementation, and that the pro­
cesses in the implementation communicate using the SDL asynchronous communication
mechanism via infinite queues. However, as we argue in the following, such a faithful
implementation is potentially inefficient.

• No explicit parallelism: Although SDL processes run concurrently the processing
inside an SDL process is strictly sequential. This means that the structuring of
the specification into processes, which in many cases is influenced by general design
decisions, determines the degree of parallelism of a specification. It also means that
without optimizations the sequential processing of operations inside a process may
be inefficient compared to a parallel execution.

• Structuring of the specification into processes: The structure of the specification
often means that there is one process per protocol layer peer entity of the protocol
(see for example the specifications presented in [4]). The design of communication
protocols is often governed by the principle that 'a good specification is a highly
modular and layered specification'. Though from a structured-design point of view a
layered design may be desirable, we stipulate that in order to derive efficient parallel
protocol implementations such a layered design is obstructive. This is mainly due to
the fact that the parallel scheduling and combined execution of operations belonging
to different protocol layers, which can lead to a considerable gain in efficiency, are
inhibited by the layer-wise structuring of the specification. Similar arguments can
be found in [9].

• Asynchronous inter-layer communication via infinite queues: An efficient imple­
mentation of a protocol stack for one peer entity will usually be a non-distributed
system. Apparently it is very inefficient to implement the exchange of data in a
non-distributed system via asynchronous queues. Instead, the protocol data will be
stored in a local memory and the communication between the processes will be by
shared variables.

The objectives of our method are therefore to remove the boundaries between processes, to
remove the asynchronous communication between processes, and to analyze dependences
between statements in order to enable parallel and combined execution of statements
belonging to different processes.

312 Part Seven Posters

3. Dependence Analysis for SDL Processes

In this section we explain how a Dependence Graph can be obtained by syntactical
analysis from an SDL specification. For a definition of the mathematical notation we
use here and in later Sections see the Appendix. First we will explain how transitions
as basic building blocks of SDL process specifications can be formalized and then how
entire protocol stacks can be represented as graphs, based on the graphs representing the
transitions.

3.1. Transitions in SDL Specifications
Syntactic structure. A transition in an SDL specification is a construct which de­

scribes the transition of an SDL process from one symbolic state into a successor symbolic
state. The body of a transition consists of a collection of statements which we group in
the set of statements S. We only consider a limited subset of SDL-statements, namely
INPUT, TASK, DECISION and OUTPUT statements, and we identify one of these four state­
ment types with every element of S. For a complete description of the syntax of SDL
transitions see [4]. The syntactic subset we have chosen is a concise subset of the full
SDL syntax. It allows for the analysis of standard protocol specifications as presented in
[4]. For the sake of conciseness we have limited our considerations to the language subset
described above but we conjecture that an adequate treatment of most of these constructs
is possible when extending our method.

3.2. Control Flow and Data Flow Dependences
The syntactical analysis of the SDL specifications that we describe in this Section yields

a graph structure over the set of statements S. This so-called dependence graph represents
the two types of dependences between the statements of a specification, namely control
flow and data flow dependences.

Statements, which according to the syntactical and semantical rules of SDL are direct
successors, are part of the control flow dependence relation cfd over the set S. A statement
of type DECISION has two or more directly succeeding statements, all pairs of a DECISION
statement and it successor statements are part of the cfd relation. The execution of a
statement directly succeeding a DECISION statement depends on the run-time evaluation
of the decision predicate. This is represented by a branching of the cfd graph.

A statement usually describes operations on process variables in which these are usually
referenced in two different ways.

• We say that a statement Sn uses a variable x iff it references the variables current
value without modifying it. Note that in one statement more than one variable may
be used. A typical use of a variable would be to reference its value in the expression
on the right hand side of an assignment statement.

• We say that a statement Sn defines a variable x iff it assigns an initial or new value
to the variable without referencing its previous value. A typical example is the
definition of a variable on the left hand side of an assignment statement.

A pair of statements (sb s2) is in the data flow dependence relation dfd if (s 1 , s2) IS

From SDL specifications to optimized parallel protocol implementations 313

in the transitive closure of the cfd-relation1 and s 2 uses a variable which is defined in
s 1 . For simplicity we assume that no re-definition of variable names inside transitions
occurs2 • Also, we assume that every variable name used in a transition is defined inside
of the transition, therefore no data dependences from statements in other transitions
exist. Function calls are assumed to have no side-effects and to return a single value.
Assignments to structured variables are decomposed into component-wise assignments.
An INPUT (X) statement is a define statement with respect to a variable named X, an
OUTPUT(Y) statement is a use statement with respect to variable named Y 3 •

3.3. Transition Dependence Graphs (TDG)
Definition Transition Dependence Graph. Let S, STT and X denote pair­

wise disjoint sets, the elements of which we call statements, statement types and vari­
ables. Formally, we define a Transition Dependence Graph (TDG) as a tuple T =
(S,STT,X,sttype,cfd,dfd) where cfd~ S x S, dfd~ cfd!', STT= {input,decision,task,
output}, sttype ~ S x STT is a functional relation (relating a statement to a statement
type), use~ S X P(X) is a functional relation (relating a statement to the set of variable
names which are being used in it), and define ~ S x X is a partial functional relation
(relating a statement to the variable name which is being defined in it), satisfying the
following conditions:

1. (S, cfd) is a tree.

2. Vs E S the following conditions hold: (sttype(s) = {input}) +-t (I {s} <1 cfd I=
1 A root(S, cfd) = { s}) (an INPUT statement has exactly one successor, and it is the
root of the tree), sttype(s) = {decision} -+I {s }<1cjd 12:: 2 (every DECISION node has
at least two successors), sttype(s) = {task} -+I { s} <1 cfd I::; 1 (every TASK node has
at most one successor), and sttype(s) ={output}-+ s E leaves(S, cfd) (an OUTPUT
statement is a leaf of the tree).

3. (V(v,w) E dfd)(define(v) ~ use(w)).

3.4. Example SDL processes and TDGs
In the following examples we give the SDL specification of a transition in graphical rep­

resentation (SDL-GR) on the left hand side, and equivalent specification in textual form
(phrase representation, SDL-PR) in the middle of the chart, and a resulting dependence
graph on the right hand side. We add labels Sn and Dn to help us to identify regular and
decision statements, respectively. However, these labels are not part of the specification.

The example in Figure 1 shows a partial view of the specification of a process N of
which we show only two transitions. The dependences are as follows. The control flow
dependence follows the linear sequence of the statements S1, S2, S3 and D1 and then
branches to either S4 or S5. The DECISON statement D1 has possible successor statements

1Thus our definition of the data dependence implies that an 'earlier' statement in the control flow cannot
be data dependent on a 'later' one.
2This avoids additional output dependences, see (21).
3 The data dependences we consider are purely local to the processes, we do not consider data dependences
between processes caused by message flows.

314 Part Seven Posters

PROCESS N;

STATE ST1;
Sl INPUT(X);
S2 TASK Y!H:=const;
S3 TASK Y!D:=f(X);
01 DECISION P(Y);

(true):
S4 OUTPUT(Y);

NEXTSTATE ST1;
(false):

S5 OUTPUT(Z); I

NEXTSTATE ST2; I
I

ENDDECISISON; I

S6 INPUT(U);
S7 TASK V:=g(U);
ss OUTPUT(V);

NEXTSTATE ST1;

ENDPROCESS N;

Figure 1. SDL-PR (left) and SDL-GR (middle) specifications and TDGs (right) for process
N

S4 and SS, the respective control flow dependence edges are labeled for illustrative pur­
poses by true and false. The data flow dependences are so that S3 depends on S1 because
of variable X, whereas D1 and S4 both depend on S2 and S3 because of the use of variable
Y4 • Figure 1 presents a graphical representation of this TDG which we call Tt, namely on
the right hand side by the graph starting in node Sl. Solid line arrows represent control
flow dependencies, thus elements of cfd, and dashed line arrows represent elements of dfd.
The dependences for the transition starting in statement S6 are obvious.

For our later argumentation, which aims at combining multiple processes to one process,
we need a further example of an SDL process, namely the process named N+1 presented
in Figure 2. The syntactical analysis leads to the transition dependence graph T3 shown
on the right hand side of Figure 2. The structure of the dependence graph is quite similar
to the structure of the dependence graph for process N. It should also be noted that the
decision D2 does not have a boolean evaluations, instead it evaluates to strings A1 or A2.

4. Dependence Graphs for Protocol Stacks

As we saw in Section 2 protocol stacks are usually specified by a set of independent
concurrent processes. Each of these processes consists of a number of transitions. In
Section 3 we described how to syntactically analyze each of these processes in order to

40ne may envisage Y! H to stand for the header and Y! D for the data part of a protocol data unit or a
packet.

From SDL specifications to optimized parallel protocol implementations 315

PROCESSN+l
PROCESS N+1;

STATE STl;
S9 INPUT(Y);
02 DECISION p(Y!H);

(' A1 '):

SlO TASK W!H:=h(Y!H);
S11 TASK W!D:=k(Y!D);
S12 OUTPUT(W);

NEXTSTATE ST1;
(' A2'):

S13 TASK W:=l(Y);
S14 OUTPUT(W);

NEXTSTATE ST1;

ENDPROCESS P;

Figure 2. SDL-PR (left) and SDL-GR (middle) specifications and TDGs (right) for process
N+l

derive a set of transition dependence graphs for each process. As we argued in Section
2.2 it is advantageous to remove the boundaries between layers of SDL processes and to
eliminate the inter-layer communication via infinite queues. In this section we describe the
necessary steps to combine the transition dependence graphs of different SDL processes
and to remove the communication between them. Technically, we perform this in two
steps. First, we label all TDGs of all processes by so-called input/output labels. These
labels are the names of the signals exchanged by the INPUT and OUTPUT statements at
the beginning and at the end of each transitions. Second, we combine all TDGs with
matching input/output labels, eliminate the OUTPUT(X)/INPUT(X) statement pairs, and
perform a cross-layer data dependence analysis. We may do this because we assume that
every OUTPUT statement can be mapped to a unique INPUT statement of another process.
The result is a graph which we call Multi-Layer Dependence Graph.

4.1. Input/Output labeled Transition Dependence Graphs (IOTDGs)
We assume that all transitions we consider for the combination process start with an

INPUT statement accepting a data packet from an adjacent layer process, and end with an
OUTPUT statement which delivers the processed packet to the next adjacent layer process.
Hence, we assume that all the processing for a packet in a layer process is carried out in
the course of one transition, and that no looping inside a transition occurs. Thus, our
dependence graphs are always trees. Different transitions starting in different states in
one process may exist, but they only represent the process to be in different states (e. g.
state waiting and state transmission). Furthermore, we assume that the packet passing
is unidirectional, either from the medium towards the user or vice versa.

316 Part Seven Posters

Formal Definition of Input/Output labeled TDGs. Based on the above stated
assumptions on the structure of the SDL Transitions we formalize the concept of labeling
of root and leave nodes of TDGs by the appropriate signal names as follows. Let T =
(S,STT,X,sttype,cfd,dfd) denote a TDG and let SIG denote a set disjoint from any
other set in sight, the elements of which we call signal names. Furthermore, let insig ~
((S n root(T)) X SIG) and outsig ~ ((S n leaves(T)) X SIG) denote functional relations.
We define an Input-Output labeled Transition Dependence Graph (IOTDG) as a tuple
I= (S, STT, X, SIG, sttype, cfd, dfd, insig, outsig) for which the following conditions hold:
sttype(root(I)) =input, and (Vx E leaves(I))(sttype(x) =output).

Example IOTDG In Figure 3 we show the three IOTDGs representing the TDGs for
Example TLS.

4.2. Multi-layer Dependence Graph (MLDG)
What we have obtained so far is a set I = {T1 , •.. , Tn} of IOTDGs. I represents

the dependences of all transition of the specification that we analyze. In this section we
describe an algorithm that transforms I into a set M of Multi-Layer Dependence Graphs
(MLDG). Each MLDG represents the dependences of the processing of one packet or
protocol data unit in adjacent layers of the protocol stack. We are interested in following
the processing of one packet from the code location where it enters into the protocol
stack to the location where it exits. In our example this means that we will derive a
connected control flow dependence graph from statement S1, where the packet X enters
the processing in process N, to the statements S12 and S14, where it exits the stream of
processing in process N+1 as a message of type W. Thus we have to compose the individual
IOTDGs in /. The criterion for composing two IOTDGs will be that they exchange
a message with identical names, e. g. one IOTDG ends with an OUTPUT(Y) statement
and another IOTDG begins with an INPUT(Y) statement. We assume that the names of
the types of the messages exchanged are unique at the interfaces between two processes,
and that the direction of the message flow is uniquely determined by the message type
names. Also, we assume that every OUTPUT statement can be mapped to a unique INPUT
statement. Note that SDL transitions are deterministic on INPUT signals, i.e. in one state
the future behavior is uniquely determined by the type of the message that is consumed
next.

MLDG Construction Algorithm. The algorithm is as follows. First, a set T of
initial IOTDGs is selected (step I.). This set contains all those IOTDGs that do not input
a message that is output-ed by another IOTDG. The algorithm then loops over all these
IOTDGs (III.). The set Z (V.) contains all those IOTDGs that can be appended to a leaf
node of an IOTDG from T The next loop (VI.) performs the merging of two IOTGs (VII.
to XVI.) for all elements of Z. The merging of two IOTDGs comprises the elimination of
the two nodes x and root(Z) by which the two graphs are merged (IX.), this corresponds
to the elimination of the OUTPUT I INPUT statements. XIII. describes the construction of
the new cfd relation. Every node that depended on root(Z) is made dependent on every
node from which x depended. The construction of the new dfd relation (XIV.) is very
similar, but we additionally check whether a node on which x depended defines a variable
which is used in a node that depended on root(Z). XVII. constructs the result, a set M
of MLDGs.

From SDL specifications to optimized parallel protocol implementations 317

Algorithm 1

I. SELECTT' = {T{, ... ,T~} ~ T SO THAT
(VTf)(VTj)(insig(root(T{)) n U#i outsig(leaves(Tj)) = 0);

II. M := 0;

Ill. FOR ALL Tf E T'

IV. M :=Tf;

v. z := {T E r I outsig(leaves(M)) n (insig(root(T))) f 0};

VI. WHILE Z f 0
VII. FOR ALL Z E Z

VIII. SELECT x E leaves(M) SO THAT
(outsig(x) E insig(leaves(root (Z))));

IX. SM := SM U Sz- {x}- root(Z);

X. XM := XM UXz;
XII. sttype:V := SM <1 (sttypeM U sttypez);
XIII. cfd:V := cfdM U cfdz - (cfdM 1> { x}) - (root (Z) <1 cfdz)

U {domain(cfdM 1> {x}) x range(root(Z) <1 cfdz)};

XIV. dfd:V := dfdM U dfdz- (dfdM 1> {x})- (root(Z) <1 dfdz)
U{(v,w) E {domain(dfdMt>{x})xrange(root(Z)<Idfdz)} I define(v) ~
use(w)};

XV. M := (SM,STTM,XM,sttype:V,cfd:V,dfdM)
XVI. Z := {T E T loutsig(leaves(M)) n (insig(root(T))) f 0};

XVII. M :=MUM

As a result we obtain a set of MLDGs M. Each M E M is a multi-edged labeled tree
(S, STT, X, SIG, sttype, cjd, dfd). Note, however, that not all ofthe conditions we required
for IOTDGs still hold. For example it is not true any more that a node of type input
has no predecessor in the cfd relation. For a MLDG M we say that a. node in root(M)
is an entry node, that a node in branch nodes(M) is a branching node, and that a node
in leaves(M) is an exit node. An entry node represents a statement where a message (in
most cases a packet or protocol data unit) is accepted from the environment, and an exit
node refers to a statement in the code where a. message is delivered to the environment.

Example MLDG Figure 4 shows the set M which we obtain by applying our algorithm
to the IOTDGs of our example TLS. It contains two MLDGs, one with root S1 and
one with root S6. In order to illustrate the input/output labeling we also retained the
respective labels at the nodes. Note that the cjJ.relation forms the skeleton of the MLDGs.
The nodes S4 and S9 have been eliminated, reflecting the elimination of the OUTPUT (Y) I
INPUT(Y) statement pair. The additional cfd pair (Dl, D2) has been added. Furthermore,
data dependences between statements of the two merged graphs have been added, so for
example (82, D2).

318 Part Seven Posters

SIX

'

, , ,

\
I
I

I
I

~
~

Figure 3. IOTDGs for Example TLS.
Figure 4. MLDGs for Example
TLS.

' \

, ,

Figure 5. La­
beled MLDG for Exam­
ple TLS.

' ' I

Figure 6. Common Path
Graph for Example TLS.

Figure 7. The Relaxed
Dependence Graph for
ExampleTLS

From SDL specifications to optimized parallel protocol implementations 319

Justification for MLDG construction. When building the MLDG we modified the
original SDL specification in two ways. Firstly, we ignored the asynchronous queue com­
munication mechanism, and secondly, we eliminated the corresponding OUTPUT I INPUT

statement pair. The justified question arises whether these modifications preserve the cor­
rectness of the original specification. We argue that ignoring the queue can be justified
because this is a refinement step which preserves two essential queue properties, namely
1. the safety property that it is always true that if something is received it must have
been sent before, and 2. the liveness property that it is always true that if something is
sent it will eventually be received. The safety property is trivially satisfied because the
order of the OUTPUT(X) and INPUT(X) statements is preserved. The liveness property is
satisfied if we assume our implementation to be live, namely that every transition which
is continuously enabled will eventually be taken. The elimination of the OUTPUT I INPUT

statement pair can be justified by the fact that we preserved all control flow and data flow
dependences. Thus, the above argument concerning the safety properties now holds for
all those statements which are direct predecessors or successors of the OUTPUT I INPUT

statements that we eliminated. Concluding we can say that out of the many interleavings
of events which are possible according to the original specification we only implement one
possible representative, namely the interleaving where a packet is accepted at one end of
the protocol stack, entirely processed, and finally handed over at the other end before
the next packet is accepted for processing. Also, as opposed to work reported in (12] in
the context of ESTELLE we do not eliminate the asynchronous queue communication
mechanism between adjacent layer processes by replacing these processes by one prod­
uct automaton because this would induce an extreme blow-up in the complexity of the
implementation.

5. Determination of the Common Path Graph

The later steps of our optimization method rely on the assumption that we optimize
the processing of a packet only for the 'common case' (we will come to a clearer under­
standing of this expression in this Chapter). In Chapter 6 we introduce optimization
steps that anticipate certain common decision results according to a common case as­
sumption. We consider our common path determination a generalization of the Common
Path optimization as advocated in (7].

Protocols usually have the task of hiding imperfect behavior of lower layer services from
upper layer users. This means that a major part of their functionality aims at detection
and treatment of many kinds of exceptions and errors. Exceptions and errors, however,
are usually uncommon, in particular in typical high speed communication environments.
On the other hand, optimizing the common case implies that we need to take care of
uncommon cases using alternate non-optimized error-case implementations. But, as we
argued above, because of the low probability of these error handling cases we can tolerate
the non-optimized processing of these error cases without risking a considerable degrada­
tion of the performance of the protocol. However, not all branching in the control flow
can be classified so that one branch is common and all others are uncommon. It may
as well be the case that more that one alternative is a common choice, namely when the
branching does not aim at handling exception cases.

320 Part Seven Posters

Now, what does the term common case mean technically? We distinguish the decision
edges (outgoing cfd-edges of a node with out degree > 1) of the cfd relation of an MLDG M
disjointly into those which are taken with a probability above a certain value (the common
ones, labeled with 'C') and those for which the probability is below a certain value (the
uncommon ones, labeled with 'U'). The labeling of the decision edges is described in
Section 5.1. It defines a common path graph which is a subgraph of the cfd graph. Hence,
our further optimization will only address the common way a packet takes through the
protocol stack, along a common path, and not the uncommon cases. In order to obtain
what we call the Common Path Graph (CPG) we drop those subgraphs of M which start
with an edge labeled as uncommon from every decision node (see Section 5.2).

5.1. Labeling of MLDGs
Common/Uncommon Labeling of MLDGs. Let M denote an MLDG and let C =

{ C, U} a set disjoint from any other set in sight. Furthermore let cul ~ (branch edges(S, cfd)
x C) a functional relation. We say that cul is a common/uncommon labeling of the MLDG
M.

Example Common/Uncommon Labeled MLDG. Figure 5 presents and example
of a common/ uncommon labeled MLDG. Note that the labeling of the branching edges
yields a tree which represents the common path of the processing of a packet. This tree,
which is indicated by bold solid line cfd edges in Figure 5, is obtained by traversing an
MLDG so that no decision edge with label U is traversed.

Discussion. Whether a decision edge is common or uncommon depends in part on
the environment in which a protocol is running. The common/uncommon attributes can
thus not be automatically derived from the protocol specification. The attribution has
to be provided by the implementor as an input for our method. One way of finding out
which decisions are uncommon is to analyze a working implementation using for example
a tool like it has been proposed in [2] 5• In case such analyses are not available it may
be necessary to use simulation techniques or estimations in order to determine whether a
particular decision edge belongs to the common or the uncommon case.

5.2. Common Path Graph (CPG)
The very easy algorithm for the construction of the CPG can be found in [15]. It simply

prunes all those subtrees of the labeled MLDG which start with an edge labeled 'U' in a
decision node.

Example CPG. In Figure 6 we present the CPG derived from the common / un­
common labeled MLDG in Figure 5. The subgraph that has been removed is the graph
starting with the edge (Dl, 55). The subgraphs starting in node D2 have both been
retained as they both represent common decisions.

6. Construction of the Relaxed Dependence Graph

In the previous chapters we have shown how a common path graph (CPG) can be
derived from an SDL specification based on a control flow and data flow dependence anal­
ysis. In this Section we will construct a relaxed dependence graph (RDG) based on which

5The authors describe a tool called Chitra which analyzes program execution sequences yielding a semi­
Markov chain model representing the time behavior of a program.

From SDL specifications to optimized parallel protocol implementations 321

the original specification can be implemented. We conjecture that the implementation of
the RDG will be functionally equivalent to the faithful implementation, but will execute
faster. We propose the following steps to generate a RDG.

• Anticipation of the common case: In this step we ignore that certain statements
depend on a decision, namely for those decisions where we assumed a common
outcome. Henceforth we treat these decision nodes as if no other node depends on
their execution.

• Parallelization: We construct a relaxed dependence graph by taking the data flow
dependence relation of the anticipated CPG and by adding additional dependences
which ensure that a node is never executed before the last decision node on which it
depends in the control flow dependence relation has been executed. Two statements
can be executed in parallel iff in the RDG they do not dependent on each other.

6.1. Anticipation of the Common Case
The CPG may contain decisions with only one outcome in the CPG. As we will see in

the next transformation, decisions enforce an execution order, namely that a node must be
executed after all decisions it depends on have been taken. Decisions thus limit potential
parallelism. To enhance potential parallelism we anticipate the outcome of decisions
that have only one outcome in the CPG. We treat such decisions as if they represented
tasks instead of decisions. In [15] we discuss the handling of the uncommon cases in
an implementation and argue that there is always a way to handle them consistently.
Anticipation of the common case is applied to the CPG changing the type of those decision
nodes which have only one successor in the cfd relation of the CPG to task. The algorithm
can be found in [15].

In our example, anticipating the common case results in changing the statement type
of D1 fromdecision to task.

6.2. Relaxation of Dependences
In this transformation we remove dependences from the CPG graph to allow its parallel

execution. More precisely we remove all dependences and replace them by a smaller set
of relaxed dependences. There are three precedence relations that the relaxed dependence
graph must enforce. Data flow dependences: a node using a variable may not be executed
before a node which defines that variable. Control flow dependences: a node which is
(directly or transitively) control flow dependent of a decision node may not be executed
before this decision has been taken. Final execution of exit nodes: Exit nodes must be
the last nodes to be executed because they are the point where a protocol interacts with
its environment and makes the result of the processing visible. Thus all statements which
are no exit nodes must be executed before executing an exit node. The result of the
transformation is a relaxed common path graph (RDG) in which the cfd and dfd relations
have been replaced by a relaxed dependence relation rxd. We create the rxd relation in
three steps. First we include all elements of the original CPG's dfd relation in rxd. This
will ensure that data dependences are respected. Then we examine each node of the RDG
to see if it already depends (directly or transitively) from its nearest preceding decision
node in the cfd relation. If not, we add a dependence between the examined node and the
nearest decision node. This ensures that a node is not executed before the last decision

322 Part Seven Posters

it depends on. Finally we check that all exit nodes reachable from a given node in the
CPG are also dependent of that node in the RDG. If this is not the case, we add relaxed
dependences between the given node and the concerned exit nodes.

Algorithm 2 is an algorithm for the construction of the RDG. Starting with a given,
possibly anticipated CPG C it uses the cfd0 and dfd0 relations to create the rxd relation
over So x So of the resulting RDG. The algorithm first selects a set D of all decision
nodes of the graph plus the root of the graph (1.). It includes all elements of dfd0 into
rxd (II.). Then, for every node x of the graph, it finds the nearest node in D from which
x is transitively dependent in the cfd0 relation (III.). If in the rxd relation x is not
yet transitively dependent of that node, a new dependence is added. Next, all nodes
except the exit nodes of the graph are examined. A dependence is added (V.) between
an examined (VI.) node y and each exit node which is transitively dependent of y in the
cfd0 relation of the CPG but not in the rxd relation of the RDG (VII. and VIII.).

Algorithm 2

I. SELECT V = {Dt, ... , Dm} ~So SO THAT
(VD;)(sttype(D;) =decision V D; = root(C))

II. rxd := dfdo

Ill. FOR ALL n E So - root(C)

IV. SELECT Dn SO THAT
{s E VI (s,n) E cfd& 1\ (Dn,s) E cfd6} = 0

V. IF (Dn, n) 1. rxd+ THEN rxd := rxd U {(Dn, n)}

VI. FOR ALL mE S -leaves(C)

VII. FOR ALL x E leaves(C)

VIII. IF (m,x) E cfd& 1\ (m,x) 1. rxd+ THEN rxd := rxd U {(m, x)}

We call the resulting directed graph R =(So, rxd) the relaxed dependence graph for CPG
C. It should be noted that R is not a tree. Figure 7 shows the RDG for the CPG in Figure
6. We see that 82 and 83 depend on 81 but not on each other. This means that once 81
has been executed 82 and 83 can be executed in parallel.

7. Optimizations based on the Relaxed Dependence Graph

An implementation will be based on the RDG. In particular, the scheduling of the
operations on a given hardware architecture is a central task of any implementation, be
it at compile- or at run-time. When scheduling the operations the scheduler may take
advantage of the relaxation of dependencies in the RDG. The execution of an operation
may be scheduled at a different point of time compared to its execution according to the
sequential SDL specification. In particular, the scheduler may schedule the processing of
certain operations whenever it seems optimal, for example when the required resources

From SDL specifications to optimized parallel protocol implementations 323

and data are available. A further gain in efficiency can be achieved by combining the
execution of so-called Data Manipulation Operations (DMOs).

Grouping of Data Manipulation Operations. We call data manipulation op­
erations (DMOs) operations that manipulate entire data parts of protocol data units.
Combining two such operations into one that does two manipulations at the same time
saves an extra storing and fetching 'lf all the data and thus executes much faster. This
has already been demonstrated in [7]. It is also central to the work reported in [8] and
[1]. Particularly, it has been shown in [20] that in presence of decisions along the path of
execution of a protocol, it is better to wait with the execution of DMOs until all decisions
have been taken. At that point the set of DMOs to be executed is known and the DMOs
can be combined. The technique is referred to as lazy messages. Our algorithm is a gen­
eralization of this technique. In order to enable the joint execution of DMOs the RDG
has to be modified. It has to be taken into account that when grouping the execution of
two DMOs so that one operation depends on a decision higher up in the RDG than the
other operation, the higher operation must be executed along every possible path through
the RDG.

An algorithm for grouping of DMOs. We propose a recursive algorithm that starts
at the root of the RDG. Let B be the name of the node the algorithm is applied to. The
algorithm distributes the DMOs that depend of B over each decision that depends of B,
called B', iff other DMOs exist which can only be executed after B'. The algorithm is then
recursively applied to all decisions B' that depend on B. Algorithm 3 does the operation
described above. It is applied to the root node of a RDG C. It also takes as input the
cfd relation of the CPG from which C was derived. The node it is applied to is called
B. For each DMO D which depends of B (1.) a second DMO D2 depending on an other
decision node is searched in the subset of nodes that may be executed if D is executed
(II.). If such a DMO exists, the decision node B' depending of B and leading to D2 is
found (III.). Then Dis removed from the graph (IV.-VI.) and several copies of D, called
DL are created, one for each possible evaluation of B' (VII.-X.). Dependences are added
from Di to all exit nodes which can be reached from B' with the corresponding evaluation
of the predicate (XI.). Once all DMOs depending of B have been treated, the algorithm
is applied to all decision nodes depending of B (XII. & XIII.). The algorithm stops when
B has no more successors which are decision nodes.

Algorithm 3
RecursiveCombine(B)

I. FOR ALL {DE 'DMO I (B, D) E rxd}

II. IF 3D2 E 'DMO I (D, D2) E cfd+ AND
{s ESc I (D,s) E rxd+ 1\ (s,D2) E rxd+} = 0

Ill. B' = s E branchnodes(C) I (B, s)inrxd 1\ (s, D2) E rxd+

IV. Sc := Sc- {D}
V. VMO := 'DMO- {D}
VI. rxd := rxd- {{D} <3 rxd U rxd 1> {D}}

VII. FOR ALL N; E { B'} <1 cfd

324 Part Seven Posters

Figure 8. CPG with marked DMOs (diamonds)

VIII. Sc := Sc U { D;}

IX. VMO := VMO U {D:}
X. rxd := rxd U (B', D:)

Figure 9. Grouped DMOs

XI. rxd := rxd U {(D:, x), x E leaves(C) I (N;, x) E cfd+}

XII. FOR all nodes newB E B <l rxd and sttype(newB) =decision

XIII. call recursiveCombine(new B)

Example. The application of the algorithm to our example is shown in Figure 8 and
Figure 9. The two DMOs identified are S3 and Sll. S3 is replicated for each evaluation
of D2, yielding S3'1 and S3'2. If D2 evaluates to 'Al' then a combined DMO S3'1/Sll
can be executed. If D2 evaluates to 'A2', then 83 '2 is executed alone. In the final
implementation the schedule of the operations has to be such that depending on the
evaluation of the decision predicate D2 either 83'1 or S3'2 is executed before Dl, but not
both.

8. Conclusions

In this paper we presented formalizations and algorithms for the derivation of optimized
protocol implementations from SDL specifications. We started with a syntactical depen­
dence analysis for SDL processes. We then showed how multiple dependence graphs can
be combined to multi-layer dependence graphs. Next we determined the common path
graph, a subgraph of a multi-layer dependence graph which represents the common case

From SDL specifications to optimized parallel protocol implementations 325

of processing of a packet in the protocol stack. This graph was the basis for an optimiza­
tion by anticipating the evaluation of some decision statements in the CPG, and then by
relaxing the dependences. This essentially meant to omit control flow dependences and
to only consider data flow dependences and dependences that express the dependence of
a statement from the evaluation of a decision predicate. We called the result a relaxed
dependence graph. When scheduling the operations on a given hardware architecture the
scheduler may take advantage of the relaxation of dependencies in the RDG in particular
by scheduling certain operations at a different point of time compared to the sequential
execution in the SDL specification. In particular we showed how the optimization con­
cepts of lazy messages and grouping of Data Manipulation Operations can be interpreted
based on the Relaxed Dependence Graph.

We are currently developing a toolset for the support of our method. The toolset will
consist in an SD L parser which generates dependence graphs, and a set of graph optimizing
routines. The graph optimizing algorithms have already been implemented, the SDL
parser is currently under development. Furthermore, we have implemented a prototype
tool to support the scheduling aspect of the implementation. The fact that we have
provided a rigorous formal description of our method clearly supports the implementation
of such a toolset. It also connects our method well to other formally supported steps of
an overall protocol engineering methodology, like testing and validation.

Acknowledgments. The work of both authors was supported by the Swiss National
Science Foundation. We would like to thank Peter Ladkin for very helpful commentary
on an earlier draft of this paper.

REFERENCES

1. M. Abbott and L. Peterson. Increasing network throughput by integrating protocol
layers. IEEE/ACM Transactions on Networking, 1(5), October 1993.

2. M. Abrams, N. Doraswamy, and A. Mathur. Chitra: Visual ananlysis of parallel and
distributed programs in the time, event, and frequency domains. IEEE Transactions
on Parallel and Distributed Systems, 3(6):672-685, November 1992.

3. U. Banerjee, R. Eigenmann, A. Nicolau, and D. Padua. Automatic program paral­
lelization. Proceedings of the IEEE, 81(2):211-243, Feb 1993.

4. F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Protocol Specifica­
tion. Prentice Hall International, 1991.

5. T. Braun and M. Zitterbart. Parallel transport system design. In A. Danthine and
0. Spaniol, editors, Proceedings of the ..(.th IFIP conference on high performance net­
working, 1992.

6. CCITT. Recommendation Z.100: CCITT Specification and Description Language
(SDL). CCITT, Geneva, 1992.

7. D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An analysis of TCP processing
overhead. IEEE Communications Magazine, 27(6):23-29, June 1989.

8. D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new genera­
tion of protocols. In Proceedings of the ACM SIGCOMM '90 conference, Computer
Communication Review, pages 200-208, 1990.

9. J. Crowcroft, I. Wakeman, Z. Wang, and D. Sirovica. Is layering harmful? IEEE

326 Part Seven Posters

Network Magazine, pages 20-24, january 1992.
10. J. Ferrante, K. J. Ottenstein, and J.D. Warren. The program dependence graph and

its use in optimization. ACM Transactions on Programming Languages and Systems,
pages 319-349, July 1987.

11. S. Fischer and B. Hofmann. An Estelle compiler for multiprocessor platforms. In
R. L. Tenney, P. D. Amer, and M. U. Uyar, editors, Formal Description Techniques,
VI, IFIP Transactions C, Proceedings of the Sixth International Conference on Formal
Description Techniques. North-Holland, 1994. To appear.

12. B. Hofmann and W. Effelsberg. Efficient implementation of Estelle specifications.
Technical report Reihe Informatik, Nr. 3/93, University of Mannheim, Mannheim,
Germany, 1993.

13. A. S. Krishnakumar and K. Sabnani. VLSI implementation of communication proto­
cols- a survey. IEEE Journal on Selected Areas in Communications, 7(7):1082-1090,
September 1989.

14. P.B. Ladkin and B.B. Simons. Compile-time analysis of communicating processes.
In Proceedings of the Sixth ACM International Conference on Supercomputing, pages
248-259. ACM Press, 1992.

15. S. Leue and Ph. Oechslin. A formal approach to optimized parallel protocol imple­
mentation. Technical report, University of Berne, Institute for Informatics, Berne,
Switzerland, 1994.

16. S. Leue and Ph. Oechslin. Formalizations and algorithms for optimized parallel pro­
tocol implementation. In D. Lee et al., editor, Proceedings of the 1994 International
Conference on Network Protocols ICNP-94. IEEE Computer Society Press, 1994. To
appear.

17. S. Leue and Ph. Oechslin. Optimization techniques for parallel protocol implementa­
tion. In Proceedings of the Fourth IEEE Workshop on Future Trends in Distributed
Computing Systems, Lisbon, Sep. 1993. To apear.

18. M. T. Liu. Protocol engineering. In M. C. Yovitis, editor, Advances in Computers,
volume 29, pages 79-195. Academic Press, Inc., 1989.

19. A. Mitschele-Thiel. On the integration of model-based performance optimization and
program implementation. In 4th Workshop on Future Trends of Distributed Comput­
ing Systems, 93.

20. S. W. O'Malley and L. L. Peterson. A highly layered architecture for high-speed
networks. In M. J. Johnson, editor, Protocols for High Speed Networks II, pages
141-156. Elsevier Science Publishers (North-Holland), 1991.

21. D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers.
Communications of the ACM, 29(12):1184-1201, Dec 1986.

22. W. Peng and S. Purushothaman. Data flow analysis of communicating finite state
machines. ACM TOPLAS, 21(3):399-442, 1991.

23. Y.H. Thia and C.M. Woodside. High-speed OSI protocol bypass algorithm with win­
dow flow control. In B. Pehrson, P.Gunningberg, and S. Pink, editors, Protocols
For High-Speed Networks III C, volume C-9, pages 53-68. IFIP, NORTH-HOLLAND,
1993.

24. C. M. Woodside and R. G. Franks. Alternative software architectures for parallel
protocol execution with synchronous IPC. IEEE/ACM Transactions On Networking,

From SDL specifications to optimized parallel protocol implementations 327

1(2):178-186, April1993.

Appendix

Notation and Definitions
Relations. Let f ~ R x R denote a binary relation over a set R, let x, y E Rand S a

set. We define the following restrictions and operators on a relation f.

f t> S A {(a,b)l(a,b) E f I\ bE S}

s~f A {(a,b)l(a,b)Ef I\ aES}

domain(!)~ {a I (3b E R)((a,b) E f)}

range(!) ~ {b I (3a E R)((a, b) E f)}

field(!) ~ domain(!) U range(!)

A relation f is functional if and only if each element in its domain is related to a unique
element in its range. For a functional relation f and an x E R we sometimes write f(x)
to denote range({x} ~f). We use f+ to denote the transitive closure of a relation f, and
f* to denote the transitive reflexive closure of f.

Digraphs and Trees. Let V denote a set and let E ~ V x V, then we call T = (V, E)
a digraph. We call T a tree if and only if the following additional conditions hold:

• (3v E V)((Et> {v} = 0)) I\ (Vw E V,w =f. v)(Et> {w} =f. 0)) (we call v the root),

• (Vv, wE V)((E t> {v} = 0) ~ (v, w) E E+) (all nodes are reachable from the root),

• E+ n E* = 0 (there are no cycles), and

• (Vv E V)(l {v}~E 1:5 1) (every node exceptfor the root has exactly one predecessor).

A
Furthermore, for a tree T = (V, E) we define: root(V, E) = { v E V I E t> { v} = 0},
leaves(V,E) ~ {v E VI {v} ~ E = 0}, branchnodes(V,E) ~ {v E VI (I {v} ~ E I)> 1},

and branchedges(V, E) ~ branchnodes(V, E) ~ E.
Multi-edged and Labeled Trees.

• Let E1 ... E,.. ~ V x V for n 2: 1. Then we call T = (V, E1 ... E,..) a multi-edged tree
iff (V, EI) is a tree.

• Let T = (V, E1 ••• En) a multi-edged tree. Let D1 ••• Dn denote sets which are
pairwise disjoint from any other set in sight. Let L1 ... L,.. denote functional relations
with L; ~ (E; x D;). Then we call T = (V, E1 ... E,.., D1 ... Dn, L1 ... Ln) a multi­
edged labeled tree. We shall slightly abuse notation in that we extend the notations
root(T) and leaves(T) to multi-edged labeled trees, in the obvious way.

