
7
An Optimal State Identification Method Using a
Dynamic-Programming-Based Approach for Protocol Testing

Rong S. Lin*s and Maria C. Yuang*

*Department of Computer Science and Infonnation Engineering
National Chiao Tung University, Hsinchu, Taiwan

sTelecommunication Laboratories Chung-Li, Taiwan

Abstract
The Unique Input/Output (UIO) sequence has been regarded as an efficient technique for state

identification for protocol testing. Unfortunately, it has been shown that some states in a protocol
may possess no UlO sequences. Another input/output sequence called a signature can be genemted
as a substitute for a state without a UlO sequence. The existing signature technique performs state
identification by distinguishing a given state from another single state at a time. The limitation is
that it cannot assure a minimum-length signature. Moreover, a recentlY-1lroposed method, called
the Partial UlO (PUIO) sequence, distinguishes a state from a nonempty proper subset of states at
a time. The goal of the paper is to construct a minimum-length signature by selecting appropriate
PUIO sequences from the set of all PUIO sequences. This paper first tmnsforms the problem into
a Minimum-Cost Pattern Covering Problem (MCPCP), where the pattern is the set of the remaining
states from which the state under consideration is to be distinguished. To solve the MCPCP, the paper
presents a dynamic-1lOOgmmming-based algorithm with three reduction rules and three termination
rules. The reduction rules are used to reduce the original problem to simpler subproblems, and the
termination rules are used to terminate the reduction process. The paper also discusses the time
complexity of the algorithm. Consequently, an optimal-length signature can be efficiently
constructed.

1. Introduction
State identification is an important subject in conformance testing. Since an Implementation

Under Test (lUT) is typically regarded as a black box, its internal states are invisible. Hence in order
to indirectly recognize a state of the IUT, testing is performed by applying a sequence of inputs to
the IUT and verifying the sequence of outputs in response. Concisely, state identification is related
to the problem of deriving an input/output sequence from the protocol specification. The derived
sequence can be used to determine if the ruT is currently in a particular state.

Much research work on state identification has been undertaken using various methods
[1,2,3,4,5]. The most effective one is the Unique Input/Output (UIO) method. The UlO sequence
for a state is an input/output behavior not exhibited by any other state in the protocol. Owing to the
fault detection and incurring shorter length than other methods, UlO sequences have been widely
applied to the test-case genemtion for conformance testing. However, the major limitation of the
UlO method is that some states in a protocol may possess no UlO sequences. To overcome this
difficulty, a technique called the signature [4] has been proposed. The signature attempts to
distinguish a state from other states one at a time. The signature for a given state Sj can be expressed
as follows:

signature(Sj) = 100Sj, Sl) II Tl II IOfSj, S~) II T2 II ... II IO(Sj, Sj-l) II Tj_l II
IO(Sj, Sj+l) II Tj+l I ... II IO(Sj, S,J,

T. Mizuno et al. (eds.), Protocol Test Systems
© Springer Science+Business Media Dordrecht 1995

112 Part Two

where II is the concatenation operation; IO(Sj, Sj) (Sj 'i' Sj) is the minimum-length I/O subsequence
(starting from Sj) used to distinguish Sj and Sj; and Tj is tlie transfer I/O sequence leading the ending
state of IO(Sj, Sj) back to Sj. In addition, instead of concatenating all I/O subsequences, another
method of directly employing the set of I/O subsequences (called the signature set [6]) has been
proposed to improve the fault detection capability. In practice, both the signature and signature-set
methods can be derived in polynomial time [7] and are usually regarded as substitutes for UlO
sequences.

The existing signature (or signature set) technique attempts to distinguish a state from the
remaining states one at a time. Therefore, it does not generate the minimum-length I/O sequence,
compared to a technique that distinguishes a state from multiple states at a time. A notion called a
Partial UlO (PUlO) sequence [8] was then introduced. A PUlO sequence is an input/output sequence
by which a state without a UlO sequence can be distinguished from a nonempty proper subset of
the states in the protocol. An algorithm of searching all PUlO sequences for a given state has also
been proposed. As a result, a minimwn-length signature of a state can be generated by selecting
appropriate PUIO sequences of the state. However, selecting the required PUlO sequences is not
a trivial problem.

This paper thus transfonns the problem into a Minimum-Cost Pattern Covering Problem
(MCPCP), where the pattern is the set of the remaining states from which the state under
consideration is to be distinguished. To solve the MCPCP, the paper presents a
dynamic-programming-based algorithm with three reduction rules and three tennination rules. The
reduction rules are used to reduce the original problem to simpler subproblems, and the tennination
rules are used to tenninate the reduction process. The paper also discusses the time complexity of
the algorithm. Consequently, an optimal-length signature can be efficiently constructed.

The paper is organized as follows. Section 2 defines the MCPCP and addresses the association
of the problem with the state identification problem. Section 3 presents the dynamic-programming­
based algorithm and its reduction and tennination rules. The time complexity of the algorithm is also
discussed in the section. Finally, Section 4 concludes the paper.

2. Minimum-Cost Pattern Covering Problem (MCPCP)

Definition: Minimum-Cost Pattern Covering Problem (MCPCP)
Assume that there are n types of items a I, a2, ... an, and a finite set U of m packages A I, A2, .. .

Am. Each package Aj is associated with a cost, denoted as cost(Aj), and a set of items (ail, ai2, .. .
ajk). In addition, no package contains all n items (i.e., the size of Aj < n). The MCPCP is to detennine
a package subset U' ofU, such that the union of all packages Aj in U' is equal to (aI, a2, ... an) and
the sum of all cost(Aj) is minimized. The set of items (aj, a2, ... an) expected to be collected is
hereinafter referred to as the target pattern, and a package in the set U=(Aj, A2, ... Am} that can be
selected is referred to as an accessible package.

The relationship between the minimum-length signature and the MCPCP is realized as follows.
Since each PUlO sequence can be used to distinguish a state from a nonempty proper subset of states,
a PUIO sequence can be considered as a package, the states that a PUIO sequence can distinguish
are the items contained in the package, and the length of the PUlO sequence corresponds to the cost
of the package. All PUIO sequences generated for a given state thus correspond to accessible
packages. Since the signature is used to distinguish a state from all remaining states in the protocol,
the target pattern becomes the set of the states in the protocol except the state under consideration.
Therefore, once the minimum--cost package subset U' is detennined, the minimum-length signature
is also obtained.

An optimal state identification method 113

To ensure that there always exists a solution to the MCPCP, we make two additional assumptions
concerning U. First, assume that there always exists a V which is a subset ofU, such that V is a special
package set { Blo B2, ... Bnl, where Bi = (ail (i.e., the i-th package Bi contains the i-th item only).
Therefore, the worst solution of the MCPCP is V with the cost being the sum of all cost(Bj). Any
package Bi in V, referred to as a basic package, dose exist because there always exists an
input/output sequence that can distinguish a state from any state in a protocol (if the protocol is
modeled as a reduced Finite State Machine [4]). Notice that, solution V corresponds to the traditional
signature which distinguishes a state from the remaining states one by one. Second, the cost of a
package containing more than one item (e.g., Ai=(aj, Ilk}) is always less than the sum of the costs
of the corresponding basic packages (i.e., cost(Ai) < cost(Bj) + cost(Bk».

For solving the MCPCP, a brute-force algorithm can be considered as: each package is either
selected or not. Since there are a total of m accessible packages and each of which requires O(n) time
to determine the items it contains, the time complexity is thus O(n*2m). Moreover, since there are
n items in total and each item ai is either contained or not contained in a package, the number of
possible accessible packages m can be associated with n by 2n (i.e., O(m)""O(2n». Therefore, the

n
time complexity of the brute-force algorithm becomes O(n*2 2). This algorithm is obviously
impractical.

3. Dynamic-Programming-Based Algorithm
Before our algorithm is presented, three reduction and three termination rules are first derived.

The algorithm and its complexity are presented afterwards.

3.1 Reduction and Termination Rules
For the convenience of illustration, all items and packages are ordered. Let P(i, (ail, ai2, ... aikl)

(where i is the largest index of accessible packages being selected and (ail, ai2 aik I is the target
pattern being collected) denote the minimum cost to collect items ail, ai2, ... aik, from packages A h
A2, ... Ai. Consequently, solving the MCPCP corresponds to solving P(m, (at. a2, ... an)).

To solve P(i, (ail, ... aik)), one can easily get P(i, (ail, ... aik)) = P(i-l, (ailo ... aik)) if the last
package Ai is not selected. Otherwise, if Ai is selected, P(i, (ail, ... aik)) = cost(Ai) + P(i-l, (awh
... awsl), where the set (awlo ... awsl contains the remaining items after the items included in package
Ai have been removed. This resolves our first reduction rule (R-rule 1) as:

• R-rule 1: P(i, (ail, ... aik)) = min(P(i-l, (ail, ... aik)), cost(AMP(i-l, (awl, ... aws })).

Notice that this rule reduces problem P(i, (ail, ... aikl) to two subproblems in which the number
of accessible packages and the size of the target pattern are respectively reduced.

• R-rule 2: If the current observed package Ai does not contain any item in the target
pattern (ail, ... aik), package Aiis defmitely not selected, i.e., P(i, (ail, ... aik)) = P(i-l,
(ail, ... aik))·

To illustrate R-rule 3, an array, called FIRST, with size n is employed. FIRST[i] denotes the
index of the first package from An+l to Am in which item ai is included. For example as shown in
Figure 2, FIRST[5] = 8, since item a5 first appears in As (from A6 to AlO).

• R-rule 3: Given an MCPCP P(i, (awl, aw2, ... awk, ak)), where ak is the last item of the
required target pattern, if FIRST(k»i, then P(i, law!. aw2, ... awk, ak)) = cost(Ak)+P(i,
(awl, aw2, ... awk I), since the remaining accessible packages do not contain item ak except
the basic package Ak.

114 Part Two

Briefly, there are a total of four types of reductions derived on the basis of R-rules I, 2, and 3,
as shown in Figure 1. The first two types, R-rules La and I.b, are based on R-rule 1. There are two
possibilities for package Ai. If Ai contains the last item of the target pattern, say aj, the outcome of
the reduction is shown in R-rule La. Otherwise, the outcome is shown in R-rule Lb. Notice that
the size of the target pattern is decremented by at least one after Ai is selected, regardless of whether
or not Ai contains item aj. For R-rule 2, the original problem is directly replaced by a new
subproblem with the number of accessible packages decremented by one. For R-rule 3, the original
problem is also directly replaced by a new subproblem with the last item removed from the target
pattern.

In addition to the reduction rules given above, three termination rules (T -rules I to 3) are
presented next.

item
R-rule l.a {}

~~SI~1
i-I

package 0

case 1: Ai is not selected.
case 2: Ai contains aik and the size of

remaining target pattern after Ai is
selected is decremented by at least 1.

R-rule 2

~l ::::::: :r::::
Ai is useless with respect to the target pattern

R-rule l,b

case 1: Ai is not selected
case 2: Ai does not contain aik, but the size of

the remaining target pattern after Ai is
selected is decremented by at least 1.

R-rule 3

..
FlRST[k] > i

Figure 1. Summary of reduction rules .

• T -rule 1: If the target pattern is an empty set (i.e., no more items are dealt with), then
P(i, {})=O .

• T -rule 2: If the target pattern contains just one item, say ai, the solution can be
immediately derived as: P(i, {ai})=cost(AJ, where Ai is the basic package containing
item ai only.

An optimal state identification method 115

~ Oor II 1 2 3 4 5
Packa)te
A\={ad
cost(A\)=3

A2={a21
cost(A~=4

A3={a31
cost(A3)=7

Ai={ad
cost(Ai)=9

As={asl (5,{lI2), t,{a\.az.a3))
cost(As)=12

A6={a\,a31 (6,m. .. ~ ~ ~3)e-
-(6,{al.az.a~f)

cost(A6)=8 (6,{a3)- (6, (a,,II4))

A7={ a3,C141 ~ (7, ~;,a3'!I4) ... (7,{al.az,a3,114,as))

cost(A7)=15 (7,{a3)~
~ a3,114)>-"- (7,{a3,114.as~

~ 7,{a3.as))

AS={C14,aS} ~ ::f<8,{al.az,aJ~
,as)

cost(As)=16 (8,{a3~15))
(8, (a3.as))

A9={a\,a2} J (9,{al~Zt~3,114.aS)
cost(A9)=6 (~,{a3.as))

AIO={ a\,a2,C14 (10, (al.az.a'3,!I4.aS))

cost(AIO)=12

Figure 2. Reduction and tennination of an MCPCP .

• T -rule 3: If the number of accessible packages i is equal to (not possible to be smaller)
the number of items n, which implies the accessible packages are confined to the basic
packages At. ... An, the solution can be immediately derived as: P(i, (ail, ai2, ... aik}) =
cost(Ail)+cost(Ai2)+ ... +cost(A&), where each package contains one item only.

To illustrate the concept of reduction, we show an example in Figure 2. In this example, five
items at. ... as are expected to be collected. Ten packages, including five basic packages Al to As
and other five packages A6 to AIO, are given. All subproblems produced are shown in the
two-dimensional table with 10*6 entries (one additional column for the empty target pattern). A
problem, dealing with accessible packages up to i and the last item of the target pattern aj, is placed
at entry[i,j]. The target problem P(1O, (at. ... as}) is thus located in the down right comer
(entry[10,5]).

Initially, the last package A 10= { a h a2, C14} is examined. According to R-rule 1, P(10, (at. ... as})
= min (P(9, (at. ... as}), cost(AIO)+P(9, (a3, as})). Two new subproblems P(9, (at. ... as}) and P(9,

116 Part Two

(a3,as}) are produced and accordingly placed at entry[9,5]. According to R--rule 2, since the package
A9={ at. a2} contains no items in the target pattern {a3, as}, p(9, (a3, as)) = P(8, (a3, as)). According
to R-rule 3, since FIRST(5»7, P(7, (at. ... as)) = cost(As)+P(7, (al,a2,a3,1I4)). A new subproblem
P(7, (at.a2,a3,1I4)) is produced and placed at entry[7, 4]. The same reduction procedure is repeated
until all subproblems are solved and terminated according to the termination rules (T --rules 1 to 3).

3.2 Algorithm
A minimum cost of the MCPCP can be attained based on the following algorithm.

AI~rithm: The minimum cost of the MCPCP.
1nJwt: In an MCPCP, there are n items at. ... an; m accessible packages AI, ... An, An+t. ... Am, where

Al to An are the basic packages and An+1 to Am are the packages containing more than one
item; and an array FIRST of size n.

0uQwt: The minimum cost P(m, (ai, ... an)).

Step 1: Sequentially search the accessible packages from An+1 to Am to construct array FIRST.
Step 2: By applying R--rules 1,2, and 3, reiterativelyreduce the target problem P(m, (ai, ... an)) to

subproblems until one of the three T -rules is satisfied. A series of ordered subproblems will
be derived.

Step 3: By reversing the order of the subproblems produced, derive the solution of each subproblem
based on the previously solved subproblems. The target problem P(m, (ai, ... an}) can then
be solved.

The second and third steps of the algorithm are illustrated in Figures 2 and 3, respectively. In
Figure 3, For example, P(6, (aloa2,a3)) = mine P(5, (aba2,a3)), cost(A6)+P(5, (a2)))= mine cost(A I)
+ cost(A2) + cost(A3), cost(A6) + cost(A2)) = min(14, 8+4) = 12. Similar calculation is performed
until the cost of the target pattern pew, (ab ... as)) is determined. Consequently, the optimal solution
for the MCPCP P(10, (ab ... as)) is to select packages A2, A6 and As with cost 28.

3.3 Time Complexity
The time complexity of the algorithm is obviously dominated by the total number of

subproblems produced. Let us f1I'St consider the maximum number of subproblems placed at a table
entry. Since the target pattem of the subproblems placed at entry[i,j] must contain item aj, but with
or without iteIp. Ilk (lsksj-1) contained, the number of subproblems possibly placed at entry[ij] is
thus at most 2)-1. Therefore, the maximum number of subproblems of an entry is 2n-l. Second, let
us determine the maximum number of subproblems placed in a row. Since the maximum number
of subproblems at entry[i,l] is 2°, that at entry[i,2] is 21, ... , and that at entryri,n] is 2n-1, the
maximum number of subproblems placed in row i is thus equal to 20+21+ ... +2n-t = 2n_l= O(2n).

Considering the worst case, i.e., the R-rule 1, which creates two new subproblems at a time, the
number of subproblems in a row will be doubled from 1 to 2 to 4 and so on until the maximum 2n
is reached. Furthermore, the number of rows with maximum 2n subproblems is at most n, since the
maximum size of the target pattern is n and the size of the target pattern is decremented by at least
one during each reduction, as shown in R-rules 1.a and 1.b in Figure 1. Therefore, the total number
of the subproblems produced becomes O(n*2n).

The time complexity of the proposed algorithm can now be analyzed as follows. Step 1 requires
O(m*n) time, since Oem) packages will be sequentially checked and at most O(n) items are included
in each package. Step 2 requires the time needed for each reduction operation multiplied by the total

An optimal state identification method 117

Figure 3. The cost computation process (the 3rd step) for the example in Figure 2.

number of subproblems derived. Since each accessible package will be compared with the target
pattern, O(n) time is required during the reduction. Step 2 thus requires O(n*n*2n) time. Step 3
requires the time needed to solve each subproblem multiplied by the total number of subproblems
derived. Since each subproblem can be solved based on the previously solved subproblems, a
constant time is enough. Step 3 thus requires O(n*2n) time. The aggregate time complexity becomes
O(m*n) + O(n*n*2n) + O(n*2n) = O(n2*2n) (since m~2n). Finally, as was previously stated, the
number of possible accessible packages is at most 2n, Le., O(m)",O(2n), so the time complexity
O(n2*2n) of the proposed algorithm becomes O(n2*m). Compared to the brute-force algorithm, our
new algorithm reduces the time complexity from O(n*2m) to O(n2*m), where O(m)",O(2n).

4. Conclusions

The paper first introduced the concept of VIO sequences, the minimum-length signature, and
PUlO sequences. The paper then defined the Minimum-Cost Pattern Covering Problem (MCPCP),
which corresponds to constructing a minimum-length signature of a given state by making use of
all of its PUlO sequences. A dynamic-prograrnrning-based method was then presented to solve the
MCPCP. Three R-rules were derived to reduce the target problem to simpler subproblems and three
T -rules were employed to terminate the reduction process. Compared to a brute-force algorithm
requiring O(n*2m) time, the algorithm reduced the time complexity to O(n2*m).

118 Part Two

References

[1] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar, "An Optimization Technique for Protocol
Conformance Test Generation Based on UIO Sequences and Rural Chinese Postman Tours,"
Protocol Specification, Testing, and Verification VII, pp.75-86, 1988.

[2] F. C. Hennie, "Fault Detecting Experiments for Sequential Circuits," in Proc. Fifth Ann.
Symposium Switching Circuit Theory and Logical Design, pp. 95-110,1964.

[3] R. E. Miller, and S. Paul, "Generating Minimal Length Test Sequences for Conformance Testing
of Communication Protocols," Proc. IEEE INFOCOM '91, pp. 970-979, 1991.

[4] K. K. Sabnani, and A. T. Dahbura, "A Protocol Test Generation Procedure," Computer Networks
and ISDN Systems, Vol. 15, No.4, pp. 285-297, 1988.

[5] D. Sidhu, and T. Leung, "Fault Coverage of Protocol Test Methods, "Proc.IEEE INFOCOM'88,
pp.80-85, 1988.

[6] Wendy Y. L. Chan, Son T. Vuong, and M. Robert Ito, "An Improved Protocol Generation
Procedure Based on UIOS," SIGCOMM'89, pp. 283-294, 1989.

[7] W. H. Chen, and C. Y. Tang, "Computing the Optimal 10 Sequence of a Protocol in Polynomial
Time," Information Processing Letters, Vol. 8, No. 40, pp. 145 -148, 1991.

[8] W. Chun, and P. D. Amer, "Improvements on UIO sequence generation and partial UIO
sequence," Proc. of Int'l Symposium on Protocol Specification, Testing and Verification, 1992.

