
24

On the Exploitation of Parallelism in a Test Generation Method for LOTOS·
Specifications

Volkmar PleBer

Technical University of Munich, Chair for Data Processing,
D-80290 Miinchen, Germany
vp@ldv.e-technik.tu-muenchen.de

Abstract
A major problem in the field of automatic test derivation from LOTOS and other formal
description techniques is that resulting complete tests become too large to be useful in
practice. This paper describes how a new automatic test derivation method exploits par­
allelism in the specification to overcome this problem. The method uses a fault model in
order to define possible faults that the test has to investigate. Thus the method avoids the
well-known state space explosion problem, and it, therefore, generates short test sequenc­
es with high fault coverage. The length of the test sequence grows only linear with the
number of subbehaviours in a parallel expression.

1. Introduction

The use of formal description techniques in protocol specifications serves as a basis for deriving
tests from the specification automatically. Much of work has been done on this in the recent
years. Many methods have been proposed for deriving tests from LOTOS [I] specifications.

In [2] so-called canonical testers and a way to derive test suites from these are defined. Other
methods transform the specification into labelled transition systems (LTSs) or finite state ma­
chines (FSMs) in order to derive tests from these (e. g. [3]). Often test derivation methods de­
veloped earlier for these models are applied after the transformation. A survey over these meth­
ods is given in [4]. [5] describes how LTSs can be transformed into FSMs in order to exploit the
FSM-based test derivation methods.

Although LTSs serve as a semantic model for LOTOS, the transformation of LOTOS specifi­
cations into finite LTSs or FSMs is not possible in every case. The main difficulty is the well­
known state space explosion problem. This problem can occur when parallel expressions are
transformed into LTSs. LOTOS possesses the operators III, 1[...]1 and II to express parallelism.
The number of states of a behaviour B:=B IIIIB2 is the product of the number of states of Bland
B2. This leads to very large LTSs. If there is any recursion in the parallelism the state space of
the LTS can become infinite, even. Due to this problem, the methods, mentioned above, often
lead to large or even infinite test. In order to get short test cases that are feasible in practice a
test selection has to be done, which can be guided by test coverage metrics [6].

Approaches that exploit the structure of the specification can be found in [7] and [8]. In opposite
to us, they aim at a test derivation that incorporates a human test designer. We aim at nearly
complete automation.

T. Mizuno et al. (eds.), Protocol Test Systems
© Springer Science+Business Media Dordrecht 1995

326 Part Seven Short Paper Session 2

We have developed a test derivation method that exploits parallel expressions in the specifica­
tion, in order to get short test sequences. The LOTOS specification is not entirely transformed
into one LTS. Instead of this, it is transformed into a system of LTSs. This system consists of
LTSs that are linked together with LOTOS parallel operators. Thus we avoid the state explosion
problem and we can deal even with behaviours with an infinite state space.

We have developed a fault model for this system of LTSs, that considers parallel expressions
especially. In this paper we combine the fault model for interleaving LTSs with the transition
tour method (TTmethod) for deterministic FSMs which was introduced in [9]. A combination
with other known test derivation methods for FSMs would be possible also.

The rest of this paper is structured as follows. Section 2 introduces a fault model for LOTOS
parallel expression. In section 3, the accompanying test sequence is described. In section 4 a
simple example demonstrates the benefit of this method. Section 5 considers non-determinism
and, finally, section 6 gives a conclusion.

2. A fault model for LOTOS

Testing of infinite behaviours with full fault coverage is generally not possible. This follows
from a proposition of [10] that says that a finite state machine is not identifiable unless the entire
input alphabet and the maximum number of states in its minimal form are known in advance. In
the practice of testing the number of states of an implementation that has to be tested (IUT =
implementation under test) is never known. One way to overcome this problem is to restrict the
faults that should be searched for to such that are likely to occur. This restriction is done by
means of a fault model. Fault models were introduced in [11]. In the formal definition of the
notion of a fault model we follow [5]:

Definition 1: Fault models

A fault model fm for the domain S is a mapping fm: S~P(S), peS) is the powerdomain of
3. It defines how the given specification can be transformed into an implementation to rep­
resent a fault that fits to the given fault model.

The set fm(S) contains conforming and non-conforming implementations. The tester should be
able to decide for all implementations IEfm(S) whether they conform to the specification S or
not. If the tester is able to do this, it has full fault coverage with respect to the fault model. If any
implementation I is not an element of fm(S), the tester may detect that the implementation I does
not conform to the specification, but it does not need to.

A fault model for LOTOS

Our fault model rests on the assumption, that the implementor gets some support on the imple­
mentation of processes in the specification. He does not need to make an error-prone transfor­
mation from parallel structures of LOTOS processes into one single state machine. Under this
assumption the following fault model leads to short tests with high fault coverage. This is
achieved by exploiting parallelism in the specification. The fault model does not deal with the
LOTOS specification directly. Instead of this, it deals with a system of LTSs derived from the
specification. This offers two advantages:

Firstly, the fault model does not need to consider every LOTOS operator separately. Instead of
this, it can focus on operators that normally cause problems, namely parallelism.

The exploitation o/parallelism in a test generation method 327

Secondly, the fault model can be used for other formal description techniques that expresses
parallelism as well. For this, only a transformation from the formal description technique to our
system of LTS has to be derived.

Definition 2: Labelled transition systems (LTS)

A labelled transition system is a 4-tupel <S,Act,T,so>, where S is a non-empty set of states,
Act is a set of observable actions, T~Sx(Actu{ i))xS is the transition relation, i is an internal,
unobservable action, and SOE S is the initial state. A L TS is finite, if and only if (iff) the sets
S and Act are finite.

Behaviour expressions that do not contain any parallelism are transformed into L TSs using
known methods (see e. g. [1,3, 12]). For these expressions the fault models ofknown test gen­
eration methods can be used. We will adapt the TT-method to LTS in our example in the next
section, i. e. these parts are tested with respect to output errors. It would be possible also to use
other methods in order to detect output errors and transition errors or to use methods that can
deal with non-determinism.

Definition 3: The fault model for parallel expressions

The fault model for any parallel expression B 1 I[... JI B21[... JI ... I[... JI Bn that is not expanded
takes into consideration the following fault types:

E 1: a fault in any of the subbehaviours B 1, B2, ... Bn,

E2: a complete inactivity of at least one of the subbehaviours B 1, B2, ... Bn in at least one
state of another subbehaviour B 1, B2, ... , or Bn,

E3: faulty synchronization of two subbehaviours.

This fault model can be used for every kind of parallel expression of LOTOS because interlea­
ving (III) and full synchronization (II) are special cases of the general parallel expression ([... J).

We want to consider the special case of only two subbehaviours Bland B2 in the parallel ex­
pression in order to explain the details of this fault model. The fault model for a parallel expres­
sion B IlllB2 or B 11[... JIB2 or B IllB2 encompasses the following fault types:

El leads to faults in the behaviours Bl (fault type Fl) and B2 (F2). E2 considers a complete
inactivity of B 1 in at least one state of B2 (F3) and vice versa (F4). E3 leads to a faulty (addi­
tional or missing) synchronization of Bland B2 (FS).

In Fl and F2 the structures of Bland B2, respectively, determine the faults to be considered. If
a subbehaviour B 1 or B2 is represented by a LTS without parallelism a known test generation
method for FSMs adapted to LTSs would be used to test this subbehaviour. Otherwise the sub­
behaviour will include further parallelism. In this case the fault model for parallel expressions
can be used for the parallel expressions in the subbehaviour, too.

F3 and F4 describe faults where one behaviour becomes completely inactive while the other be­
haviour is in a certain state. Faults like these can occur due to faulty scheduling of parallel proc­
esses. Completely inactive means that the behaviour totally blocks. It is not able to make any
transition.

Fault type FS deals with the synchronization of Bland B2. For an action that is not in the syn­
chronization list, a faulty synchronization means an additional synchronization in the imp le-

328 Part Seven Short Paper Session 2

mentation, that leads to an deadlock or an undesired state change of both behaviours. In the case
of an synchronized action, a faulty absence of the synchronization has to be detected.

3. The derived test sequence

The test derivation method rests on the fault model discussed in section 2. Our goal is to t

short tests with high fault coverage (i. e. f\1ll coverage w.r.t. our fault model). As we want to get
short tests we don't subdivide the tests into tes't cases as demanded in [13]. This would rob us
of the opportunity to combine test events effectively in order to shorten the test.

Definition 4: Test sequences and test verdicts

A test sequence O"tE Act* is a sequence of actions. During the test the implementation under
test (JUT) has to perform this sequence of actions. If it does, the tester has to come to an OK­
verdict. If it does not, the tester has to pronounce a FAll..-verdict.

Defmition 5: Test sequences according to the Transition-Tour-Method [9]

The sequence O"t=<al, a2, ... , lin>, where aI, a2, ... , linE Act, is a test sequence of the determi­
nistic LTS <S,Act,T,sO> according to the TT-method, iff the transition tour encompasses all
transitions of the LTS:

3sl's2'··· ,sn E S: V { (si -1' ai' si)} = T
I :!>l:!>n

In the case of deterministic LTS, there exists exactly one sequence of states <so' sl, ... Sn>E Sn
that fulfils the condition. A non-deterministic LTS may refuse a transition tour. If we want to
derive tests for non-deterministic LTS, we can use other methods that incorporate an appropri­
ate conformance relation.

We focus now on the example of a system of two LTSs AI and A2 that are combined with an
interleaving operator. Such a behaviour will be given in section 4.

The first two points of the fault model FI and F2 consider faults of the sub-behaviours, B I and
B2. Faults in these behaviours have to be detected by means of known test derivation methods
for LTSs or FSMs. Here we want to fit the well-known transition tour method [9] to the LTSs
in our system ofLTS. That means, that a test sequence for aFSM must encompass all transitions
of the LTSs in the system.

We want to derive the test sequence for the whole behaviour of the system of interleaving LTSs
AI and A2. Therefore we have to define it in terms of a LTS A of the whole system. The states
of the LTS A are denoted as usual with pairs of the state denotations (si,], si,2)' where si,l is a
state denotation of Al and si,2 is a state denotation of A2.

Definition 6: Test sequences according to the fault model

The sequence of actions O"t=<al, a2, ... , lin> is a test sequence of a LTS
A = (S, Actl U Act2, T, (so I'sO 2» that represents the interleaving of the LTSs
AI = (S I' Actl' T I' So 1) and A2 '= (S2' Act2, T 2' So 2) according to the fault model de­
fined in section 2 combined with the transition tour method, iff there exists a sequence of
states «s I, I's I, 2)' (s2, I's2, 2)' ... , (so, I'so, 2» E Sn for that the following 5 conditions hold:

The exploitation of parallelism in a test generation method 329

Condition Cl: All transitions that have to be executed during the test must be transitions of A
and the test has to start with the initial state (SO,I,SO,2):

Condition C2: The test has to encompass all transitions of AI:

U {(si_ll,ai,sil)}=TI
I ,.::;i"::;n/\ (si_l, l;t\ 1 v (Si-l,2' ai' \ 2)f1' T2) , ,

Condition C3: Same as C2 with all transitions of Ai

Condition C4: In every state of A2 at least one transition of Al has to be executed during the
test:

Condition C5: Same as C4 with reversed roles of Al and A2.

Besides the condition Cl that ensure that the test is executable on all conforming implementa­
tions, there are the conditions C2 to CS. These conditions are related to the fault model defined
in chapter 2. Figure 1 shows this relation.

fault type
general example condition

E2 ---- Fl -- C2
------ F2 -- C3

El ---- F3 -- C4
------ F4 -- CS

E3 -- FS -- none

Figure 1: Relation between fault model and
test sequence

FS does not lead to a condition directly, because there is no synchronization between Al and A2
(interleaving) and therefore no synchronization points have to be checked. Since all actions
a E Act l U Act2 are checked such that only one LTS either Al or A2 can participate, any ad­
ditional synchronization would be detected surely, because this would cause a blocking of the
test sequence.

Test sequence derivation

The conditions, the test sequence must fulfil, are stated above. The test derivation algorithm it­
self is a search algorithm that finds a sequence that fulfils the conditions. If the goal is to find
only one solution for this problem, a depth first search needs less space and time than a breath
first search, but the latter finds the shortest sequence fulfilling the conditions. The latter should
be preferred, if computer resources are sufficient.

Generally a test sequence becomes short, if the single transitions contribute to the fulfilling of
more than one condition. For instance, a single transition can add an element to the sets in the

330 Part Seven Short Paper Session 2

conditions C2 and C4, as well. As a result, it can contribute to the fulfilling of 2 conditions at
the same time, in this case the conditions C2 and C4.

4. Example

In this chapter, the test sequence for an example process B is discussed. Figure 2 shows the spe­
cification of the process B. Figure 3 illustrates the graphs of the LTSs for B and the locally de­
fined processes B I and B2. The bold circles denote the initial states.

process B[a,b,c,d,e,f,g] :=
BIIIIB2

where
process Bl[a,b,e,f] :=

a;e;b;f;Bl
endproc
process B2[c,d,e,g] :=

c;g;d;e;B2
endproc

endproc

Figure 2: Specification of the example

B 1 := a;e;b;f;B 1

~
B :=Blill B2

Figure 3: The LTSs of the example

The sequence O"t=<a, c, e, g, b, d, f, e> is a test sequence for B according to the fault model de­
fined in section 2 and the transition tour method. Exactly one sequence of states exist for O"t for
that the conditions from CI to C5 hold. The bold arrows in figure 4 show this sequence.

The test sequence contains only 8 steps. The shortest transition tour for B has 32 steps, because
the LTS of B has 32 transitions and the transition tour has to visit all. The effort for executing
the test, therefore, is reduced by the factor 4 in this example. The test, nevertheless, will discover
any fault described in the fault model.

5. Non-Determinism

We want to consider three types of non-determinism, here. Non-determinism in the subbehav­
iours, non-determinism in the whole behaviour and non-determinism due to the mapping ofLO­
TOS-actions to inputs and outputs of an implementation.

The method in the line-up described here is not able to deal with non-determinism in the subbe­
haviours of the specification. This follows from the use of the transition tour method for deriv-

The exploitation of parallelism in a test generation method 331

B:= Bll1l B2

Figure 4: The test sequence

Figure 5: Process B with non-determinism

ing tests for the sub-behaviours, because the transition tour method has not been designed for
non-deterministic state machines. If the test derivation has to deal with non-determinism the
method presented here has to be combined with a conformance relation, which defines how the
specified non-determinism may be mapped into the implementation, and a test derivation meth­
od for non-deterministic LTS.

The example of figure 2 contains non-determinism, because B I and B2 have one action in com­
mon. This is no problem, because we are able to avoid the critical state in the test sequence here,
but this is not possible in every case.

An example for this is the non-determinism due to the mapping of LOTOS-actions to inputs and
outputs. If we assume that a, b, c, d are inputs and e, f, g are outputs of an implementations, we
get the behaviour shown in figure 5, because the implementation may make any output instantly
after the guarding input has occurred. Therefore the tester has to tolerate the deviations
(.............) from the planned test sequence (........).

6. Conclusion

This paper has presented a new method for deriving test sequences from LOTOS specifications.
The goal was to get short test sequences that are feasible in practice. The method uses a fault
model, which deals with the parallelism in the specification especially. As a result the state­
space-explosion due to parallelism is avoided and the goal to get short test sequences is
achieved. It can be shown that the test sequence length grows only linear with the number of
subbehaviours in a parallel expression. Without the use of a fault model that exploits parallelism
the test sequence length would grow exponentially. A simple example was shown, where the
length of the test sequence was a quarter of the length of a test sequence generated by the tran­
sition tour method.

332 Part Seven Short Paper Session 2

It has also been shown that a specification that is detenninistic in the LOTOS world can contain
concealed non-detenninism. This non-detenninism is revealed when LOTOS-actions are
mapped to input and output events in a real world implementation and reasonable assumptions
about the scheduling of these events are made. The paper has shown how to deal with this non­
detenninism.

Data structures have been ignored. One question is how to check the implementation of the ab­
stract data types. For this a fault model has to be developed and incorporated into our test deri­
vation method. The other question is how to consider the influence of the data on the behaviour.
Predicates in the specification may inhibit a behaviour part. Sometimes such a predicate can
never be satisfied. As a result a test sequence may be infeasible. Although the detection of pred­
icates that can never be satisfied is known as an incomputable problem, in practice, it should be
possible to detect these predicates in most cases. In the opinion of the author, it should be pos­
sible to find variable settings that fulfil certain predicates in most cases of practical interest au­
tomatically.

In our complete test derivation method are some additional conditions concerning non-deter­
minism and resources. These conditions have been left out here, for reasons of conciseness and
clarity. The notion of resources does not exist in the LOTOS-world, but we have some heuristics
to derive possible resources needed by an implementation. Thus the testsequence examines
some critical situations more thorough.

References

1. ISO, "LOTOS - A Formal Description Technique Based on the Temporal Ordering of Ob­
servational Behaviour", International Standard ISO 8807, Geneve 1989.

2. E. Brinksma, "A theory for the derivation of tests" in PSTV VIII, North Holland, Amster­
dam 1988, pp. 63-74.

3. P. Tripathy, B. Sarikaya, ''Test Generation from LOTOS Specifications", IEEE Trans­
actions on Computers, Vol. 40, No.4, Apri11991, pp. 543-552.

4. P. Sidhu, T.IK. Leung, "Formal Methods for Protocol Testing: A Detailed Study", IEEE
Transactions on Software Engineering, Vol. 15, No.4, Apri11989 pp. 413-426.

5. A. Petrenko, G. v. Bochmann, R. Dssouli, "Conformance relations and test derivation" in
IWPTS VI, IFIP, 1993, pp. 161-182.

6. S. T. Vuong, J. Alilovic-Curgus, "On Test Coverage Metrics for Communication Proto­
cols" in IWPTS IV, North-Holland, Amsterdam 1992, pp. 31-45.

7. A. Ulrich, H. Konig, "Test Derivation from LOTOS using Structure Information" in
IWPTS VI, 1993, pp. 283-297.

8. R. J. Velthuys, J. M. Schneider, G. ZOrntiein, "A test derivation method based on exploiting
structure information" in PSTV XII, Florida, June 1992.

9. S. Naito, M. Tsunoyama, "Fault-Detection for Sequential-Machines by Transition-Tours"
in: Proceedings of the Eleventh Annual International Symposium on Fault-Tolerant Com­
puting, IEEE, Portland 1981.

10. A. Gill, "Introduction to the Theory of Finite State Machines", McGraw Hill, 1962.
11. G. v. Bochmann, A. Das, R. Dssouli, M. Dubuc, A. Ghedamsi, G. Luo, "Fault Models in

Testing" in IWPTS IV, North Holland, Amsterdam 1992, pp. 17-30.
12. J.-P. Wu, S. T. Chanson, "Translation from LOTOS and Estelle Specifications to Extended

Transition System and its Verification" in FORTE '89, Elsevier Science Publishers B. V.,
North-Holland, Amsterdam 1990, pp. 533-549.

13. ISO, "OSI Conformance Testing Methodology and Framework", International Standard
ISO DP 9646, Geneve 1991.

