
30

Quality of Service Management in Distributed Systems using
Dynamic Routation

Leonard J.N. Frankena, Peter Janssena,
Boudewijn R.H.M. Haverkortb and Gidi van Liempda

• PTT Research, P.O. Box 15000, 9700 CD Groningen, the Netherlands
b University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands

With the advent of multimedia in computing and communication systems, a new set of
requirements has been imposed. Because multimedia appliCations demand a guaranteed
Quality of Service (QoS), the sharing of resources, by means of allocating applications and
their communications on computing and communication resources, is an important issue.
In this paper, we address the issues of communication routing and process allocation in an
integrated way, the so-called mutations. It is only in such an integrated way that end-to-end
Quality of Service requirements of multimedia end-users can be fulfilled.

For the determination of a routation, we propose to use the A* algorithm, an intelligent
tree-search algorithm, in combination with a heuristic, H3". The A • algorithm always finds
an optimal solution if one exists, whereas the heuristic algorithm comes up with (sub)optimal
solutions. The heuristic, however, accomplishes the same task as the A* algorithm with
far reduced computational effort. With the combination, denoted as A*/ H3"(x), the A*
algorithm will, when time is available, find an optimal solution, and in case of limited time
the heuristic will calculate a suboptimal solution. This combination has been found suitable
for a real time multimedia environment by a thorough statistical analysis after testing the
heuristics on 1750 randomly generated test cases.

Finally, we present an experimental multimedia, ANSAware-based, distributed system
in which the routations take place using the heuristic we developed. To demonstrate the
capabilities of the routation algorithms the xallocator has been implemented. The xallocator
guarantees the QoS using heuristic routation algorithms and dynamic reconfiguration when­
ever a change in the distributed environment occurs.

Keyword Codes: C.2.4; D.4.4; D.4.5; G.l.6; I.2.0; I.2.8
Keywords: Quality of Service; Performance of Systems; Communications Management; Re­
liability; Optimization; AI General; Problem Solving, Control Methods and Search

K. Raymond et al. (eds.), Open Distributed Processing
© Springer Science+Business Media Dordrecht 1995

Quality of service management in distributed systems 385

1. INTRODUCTION

In large current-day distributed systems, such as e.g., multimedia telecommunication systems
like videophones, the sharing of resources, by means of allocating a wide variety of appli­
cations and their communications on a pool of computing and communication resources, is
an important issue for Quality of Service guarantees. Because computing and communica­
tions are both important for current-day discrete and continuous end-to-end applications,
we advocate an integrated approach towards the allocation of processes and the routing of
communications as well. In this paper we present this integrated approach by the use of a
so-called routation algorithm that can be used in the context of the performability manager
introduced by Franken et al. [1, 2].

The performability manager, a distributed system component, guarantees and maintains
the quality of service (QoS) requirements of an application in a distributed system [3]. On the
basis of a model-based procedure, the performability manager decides which configuration is
put into effect, thereby using dynamic reconfiguration facilities of the underlying supporting
computing platform. The ultimate goal in using a model-based reconfiguration approach
is to be sure that the reconfigurations performed do result in a desired change of the end­
user perceived QoS. This goal, however, is in general too ambitious to be reached in an
environment in which (mild) real-time requirements are present as well. It is simply infeasible
to evaluate all possible alternative configurations. Therefore, we split the generation process
of possible alternative configurations in two steps. We first generate a number of reasonable
alternatives, based on static system and application properties and constraints, i.e., in this
step we do not address issues related to queueing. The intend is, however, to create the
alternatives as reasonably as possible. Then, in a second and more time consuming step, we
automatically create queueing models for the candidates selected in the first step, evaluate
them, and decide then which alternative configuration has to be put into effect. This second
step has already partly been addrssed in [2].

This important issue of routing and allocation has been dealt with before [4, 3, 5, 6, 7].
However, we address the issues of routing and process allocation in an integrated way. This
is a desirable approach as it is often unpractical to separate these highly connected issues.
For the configuration creation we present routation algorithms based on an intelligent tree
search algorithm, the A* algorithm, known from artificial intelligence theory [8] as well as
some heuristics.

This paper is further organized as follows. In Section 2 we present and evaluate (test)
the A* algorithm and the derived heuristics. In Section 3, we discuss a prototype imple­
mentation of a routation component in an ANSA ware-based distributed environment using
a videophone application. Section 4 concludes the paper.

2. COMBINED ROUTING AND ALLOCATION: ROUTATION

We start this section with the explanation of the basic terminology for routation algorithms
in Section 2.1. After that, we discuss the algorithms we used and tested their performance
on the 1750 test cases in Sections 2.2 and 2.3 respectively.

386 Part Two Reviewed Papers

2.1. Notation and terminology

When determining a valid routation for a distributed environment, properties and constraints
of the elements of the distributed environment are to be used. The elements are the appli­
cation components, dataflows, devices, communication links and communication paths. In
Figure 1, we graphically present a small distributed environment. The rectangles full of lines
represent the application components, and the arrows between them the logical interaction
between application components. Application components are executed on devices, which
are interconnected via a transport network.

The properties and constraints of the elements of the distributed environment provide
the algorithms with sufficient information for the search to a routation. When trying to find
an optimal routation, an objective function is needed. We define these here as follows 1:

property A property is a statement about a characteristic of an element, which can be identified by
examining the element.

constraint A constraint is a statement about an element that restricts the routation of one set of elements
(e.g. applications) onto another set of elements (e.g. computing and communication resources)). H a
certain routation violates a constraint, that routation is an invalid mapping.

objective function An objective function assigns a value to each. routation in such a way that. a more
preferred routation is assigned a higher (or lower) value. Objective functions thus rank routations.

To each element in Figure 1 a descriptor is attached which contains the name of the
element, the properties of the element (given in the left half of the descriptor) and the possible
constraints on it (given in the right half of the descriptor). The following properties and
constraints are used (the subscript x denotes the element to the which property/constraint
belongs):

Properties: et~: execution time, er.: execution rate, 1~: load, s.: size (memory required), pr.: precedence
relations, v.: volume, pol.: processing overhead local communications, por.: processing overhead re­
mote communications, t.: type (certain device type required), m.: memory available, pc.: processing
capacity, /r.: failure rate, rr.: repair rate, c.: cost, tr.: transmission rate, td~: transit delay, cl~:
number of communication links.

Constraints: d0 : device (specific device required), rt.: response time required, rei.: reliability required,
av~: availability required, c.: max cost allowed, cl.: number of communication links required, lb.:
lower bound load, ub~: upper bound load, m~: available memory on a device, ac~: upper bound on
number of application components, d.f~: upper bound on number of dataflows.

The objective of the optimization algorithms is to maximize the probability that a failure
does not occur while the devices and communication paths are active. For every device the
probability that it does not fail when it is processing the application components assigned to
it is computed. For example, the time that an application component ac is using a device d
is defined by etAc(ac, d) = •tAc<;~"[d)c(ac). For device d under routation nA this probability
~(RA) is equal to (with Xac,d equal to 1 if application component ac is assigned to device
d, and 0 otherwise):

(1)

1 In the literature, many different terms are used to indicate characteristics of an element (e.g., parameter
[9, 10]), limitations on assignments (e.g., constraint [5, 11] or requirement [12]) and functions that need to
be optimized (e.g., cost function [4, 13] or performance goal [4]).

Quality of service management in distributed systems 387

----;:··:.---------..:'-------------------'

Figure 1: View on distributed environments with respect to routations

For the processing overhead for (local and remote) communications, expressed by Rr>on
and communication paths transporting data, expressed by Rep, a similar expression can be
derived [6, 7, 14, 15]. Since for an infinite time horizon these probability tend to zero, they
are calculated for a certain time period. Using these probabilities, R(RA) represents the
probability that a failure does not occur during the period of length t in which the devices
and communication paths are processing or transmitting the application components and
datafl.ows assigned to them by routation RA. The total reliability R(RA) can then be
calculated as follows (under the assumption these probabilities are independent and the
failure times are exponentailly distributed):

IDI IDI JCPJ
R(RA) (II Ro(RA))(II Rpor(RA))(II Rcp(RA)),

cp-;1

exp(-FR(RA)). (2)

Maximizing the probability R(RA) is equivalent to minimizing the function FR(RA). The
function FR(RA) is the objective function our algorithms try to minimize in order to find
an optimal routation.

2.2. The algorithms and their performance

For an efficient and effective solution of the routation problem we present a smart combina­
tion of a heuristic and the A* algorithm. We first preseent the A* algorithm, then a smart
heuristic and then a combination of these two.

The A* algorithm The A* algorithm searches for an optimal routation by representing
it as the (intelligent) search for a minimal-cost path in a tree [8]. Each node in the search

388 Part Two Reviewed Papers

tree represents a different, partial (not all application components and dataflows are yet
assigned), routation. An edge along the path represents the assignment of an application
component or dataflow.

In the partial routation the first components and the first dataflows are assigned. This
implies that the set of applications and dataflows are ordered. We assume that not every
mapping exists, but that only those exist in which all dataflows that are assigned are used
by already assigned application components.

The root node represents an empty routation, i.e. no application components nor dataflows
assigned, all leaf nodes represent complete routations, i.e. all application components and
dataflows have been assigned. The basic cycle of operations of the A* algorithm starts with
the selection of a node from a set of not yet expanded nodes, called the OPEN set. Initially,
only the root node is in OPEN.

If the node selected is a leaf node, we have found a complete routation. Under a certain
condition on the selection mechanism (see below), we can guarantee that the first leaf node
encountered represents an optimal routation, at which point the A • algorithm may terminate.

If the selected node is not a leaf node, A* will expand the node, i.e., generate all children
of that node. A child node represents the partial routation of the parent node, with an extra
application component or dataflow assigned. We take care.to generate only child nodes that
do not violate constraints. The children are then inserted into the OPEN set, and A* will
select the next node to expand.

Choosing the node to expand is done using a heuristic evaluation (objective) function
f(n) (our FR(RA)), which is calculated for every node n upon generation. The node in
OPEN that has currently the lowest value for f(n) is called the most promising node, and
this is the node that A* selects for expansion next. Note that the nodes in the set OPEN do
not have to be all of the same level, and that the most promising node is not always one of
the nodes of the deepest level in OPEN. This implies that backtracking is allowed. In our
application, f(n) represents an estimate of the cost of a complete optimal routation.[6, I4]

The heuristic H3" algorithm The H3" algorithm is based on two other algorithms, the
HI" and the H2" algorithm. H3" first determines two routations, one in the way algorithm
HI" does, the other in the way H2" does. From these two routations the best is chosen.
These algorithms themselves are derived fro~ the HI' and the H2' algorithm which again
are derived from HI and the H2. In this section we start with the HI and the H2 algorithm,
which are based on algorithm 4 of Shatz [6] and describe the succesive improvement made
whichs lead to the H3" algorithm. The details of this improved versions are presented by
Franken et al. [I4].

The HI routation algorithm first sorts the application components in decreasing order
of total volume of communication with other application components. The second heuristic
routation algorithm, H2, sorts the application components in decreasing order of execution
time per second. Hereby, we treat both communication and processing-oriented applications
in a fair way. Algorithms HI, H2 sort the application components and assign the appli­
cation components and the dataflows one by one to the devices and communication paths.
Backtracking is not allowed, so once a decision has been made, it cannot be turned back. At
each decision point that pair of device and set of communication paths is chosen that has
the minimum increase in the objective function and that does not violate any constraint.
But it could be that in this way a device d is already occupied, by a number of application
components that do not have to be assigned to d, at the moment an· application component

Quality of service management in distributed systems 389

ac having a device constraint dAc(ac) = d will be assigned. In such a case, the algorithms
can not determine a valid routation although one might exist.

For application components having a device constraint we can use advance reservations.
Adding these reservations to algorithms H1, H2 and H3 results in the enhanced heuristic
algorithms H1', H2' and H3' for which many of the device-constraint related problems
in the basic algorithms can be circumvented. Running the enhanced heuristic algorithms
on a number of cases showed that using reservations for application components having a
device constraint resulted indeed in a higher number of solved cases. But in cases that an
application component ac has a device type constraint tAc(ac) and it was assigned as one of
the last application components, it could be that all devices of the required type or types
were already occupied by other application components, not depending on these devices.
Using reservations will not solve this completely, since an application component could still
be assigned to more than one device.

A solution is the use of a possible set for each application component. This set contains
all devices to which an application component can still be assigned. First for each appli­
cation component the possible set is determined, using all constraints on the application
components. Then, at each decision point all possible sets are checked and reservations are
made for those application components having a possible set containing just one device.
After each decision, all possible sets are adjusted according to the assignment made. This
is another form of constraint propagation [16, 17]. Adding possible sets to algorithms H1',
H2' results in there-enhanced heuristic algorithms H1", H2" and H3".

The combined algorithm: A' I H3"(x) The A' algorithm determines optimal routations,
but it has an exponential worst case time complexity and sometimes it runs out of memory.
Algorithm H3" has a polynomial time complexity, but it determines (sub)optimal routations
and it does not always find a routation, although one exists. If a (sub)optimal routation
does not have to be determined as fast as possible, but an algorithm is allowed to spend a
certain time searching for an optimal routation, a combination of algorithms A' and H3",
denoted as A* I H3"(x), can be used to find a routation. If the A* algorithm finds a routation
within x seconds, this routation will be the result of algorithm A* I H3"(x). If after x seconds,
however, the A* algorithm does not find a routation, it is stopped and a routation will be
determined by algorithm H3".

2.3. Results

The algorithms have been tested on 1750 cases. These cases were divided into seven classes
of 250 cases, each class having a specific number of application components (4, 6 and 8) and
a specific number of devices (3, 4 and 5). The properties and constraints were, within a range
of allowed values, completely randomly generated for each case. Giving every application
component and dataflow every possible constraint would result in a high number of cases
for which a routation does not exist. Therefore we used probabilities for the existence of
every (application component , constraint)-pair and (dataflow , constraint)-pair during the
generation of the cases. For the same reason the cost constraints cAc and coF were not
used. In [14] the ranges of allowed values for all properties and constraints, together with
the mentioned probabilities, are given. For the comparison of the algorithms we use the
following criteria ; the number of found routations, the quality of the determind routations,

390 Part Two Reviewed Papers

and the time needed to determine routations. For the comparison of the quality we use the
relative error d(H). Thie relative error for algorithm His equal to

{
R('RAA·)- R('RAH) .

d(H)= R('RAA·)-R('RAA.)' ~R('RAA·)~R('RAA.),'
0, if R('RAA·)"' R('RAA.),

(3)

where A • is an adjusted version of the A • algorithm that determines the valid routation with
the highest instead of the lowest value for the objective function. The relative error d(H)
ranges from 0 to 1, and is equal to 0 if algorithm H determined an optimal routation, and
equal to 1 if algorithm H determined the worst case routation.

The numberof routations found by the algorithms A*, H3" and A*/H3"(x) for the
various classes of cases are given in Table 1. For A*/H3"(x) we vary x over to 1, 2, 5, 10,
and 15.

Table 1: Number offound routations by A*, H3" and A*/H3"(x)

I
lAC I = 4, IDI = 3
IACI = 6, IDI = 3
lAC I = 8, IDI = 3
IACI "'6,IDI"' 4
lAC I = 8, IDI = 4
IACI = 6, IDI = 5
IACI = 8,IDI = 5

A*
194
135
45

180
132
194
162

H3"
188
111
36

166
107
189
155

:c-1 :C-2
193 193
125 127
38 39

173 175

1081
109

189 190
155 155

A*/H3 :c)
:c-5 :c-10 :c -15

193 193 193
129 130 130
40 41 41

177 178 180
112 116 117
192 194 194
155 156 158

I Total I 1042 I 952 I 981 I 988 I 998 I 1008 I 1013 I

The relative errors d(H) of the routations found by algorithm H3" and A*/ H3"(x) are given
in Table 2 as well as the percentage of the found routations that have a relative error d(H)
of at most 10%.

Table 2: Average d(H) and percentage d(H) :5 0.1 of algorithms H3" and A*/H3"(x)

A'/H3"(;c)
H3" ~=1 r&=2 :r=5 ., = 10 :r= 15

ct(H) :S 0.1 ct(H) :S 0.1 d(H) :S 0.1 d(H) :S 0.1 d(H) :S 0.1 d(H) :S 0.1
IACI = 4,IDI = 3 0.0168 96% 0.0023 99% 0.0005 100% 0.0002 100% o.oooo 100% o.oooo 100%
fACf = 6,fDf = 3 0.0602 79% 0.0144 95% 0.0082 97% 0.0045 98% 0.0029 99% 0.0027 99%
AC 8, D 3 0.0963 64% 0.0613 80% 0.0592 81% 0.0505 84% 0.0229 91~_ 0.0176 94~

!A~J 6,!DI 4 0.0704 78~ 0.0459 87:1b 0.0320 90~ 0.0200 93~ 0.0106 96~ 0.0054 98~
IACI =8,IDI = 4 0.1144 62% 0.1031 64% 0.0962 65% 0.0656 76% 0.0410 85% 0.0291 89%
lAC!= 6, IDI = 5 0.0469 83% 0.0364 87% 0.0320 88% 0.0222 91% 0.0097 97% 0.0055 98%
IACI = 8, IDI = 5 0.0849 71% 0.0832 71% 0.0821 71% 0.0724 73% 0.0541 78% 0.0374 85%

1 Total 1 o.o594 1 8o% 1 o.o4o8 1 86% 1 o.o352 1 88% 1 o.o261 1 91% 1 o.o16o 1 94% 1 o.o1o1 1 96% 1

From these tables it follows that for larger distributed environments, the increase in the
quality of the determined routations is less than for smaller distributed environments, when
x increases. This could be expected, since the larger the distributed environments, the more

Quality of service management in distributed systems 391

time the A• algorithm needs to find a routation, i.e., the A* algorithm exceeds in more cases
its time limit. This means that in more cases the routation determined by algorithm H3" is
used, which determines suboptimal routations.

Table 3: Average time in seconds needed to find a routation by A•, H3" and A•fH3"(x)

A*/H3"(x)
A* H3" X= 1 X= 2 3: = 5 3: = 10 3: = 15

lAC I = 4, IDI = 3 1.193 0.029 0.129 0.160 0.214 0.271 0.322
IACI = 6, IDI = 3 37.369 0.045 0.537 0.795 1.281 1.891 2.350
lAC I = 8, IDI = 3 120.010 0.056 0.887 1.519 3.167 5.236 6.836
IACI = 6, IDI = 4 14.754 0.086 0.773 1.202 2.023 2.810 3.364
lAC I= 8, IDI = 4 276.780 0.113 1.086 1.987 4.149 6.734 8.617
lAC I = 6, IDI = 5 13.399 0.161 0.968 1.560 2.826 4.140 4.967
IACI = 8, IDI = 5 128.626 0.200 1.185 2.132 4.761 8.551 11.678

I Total I 70.349 I 0.105 I 0. 758 I 1.260 I 2.441 I 3.900 I 5.006 I

The times needed to find a routation by algorithms A", Jj3" and A*/H3"(x) are given in
Table 3 (in seconds). From this table it follows that the larger the distributed environments
become, the more algorithm A*/H3"(x), on average, approaches or even exceeds its time
limit allowed for algorithm A •. If, on average, the time limit is exceeded, this indicates that
the routation determined by algorithm H3" is often the result. A careful choice of the time
limit is therefore necessary in order to use the advantages of algorithm A*/ H3"(x).

3. ROUTATION IN A MULTI-PARTY VIDEO-PHONE

To demonstrate some of the capabilities of the heuristic routation algorithm H3" the xallo­
cator has been implemented in an experimental distributed system providing a multi-party
videophone service. The experimental distributed system is described in Section 3.1 and the
xallocator is described in Section 3.2.

3.1. The distributed environment of the multi-party video-phone

The multimedia application used in the demonstration is a multi-party video-phone. This
application has been implemented using ANSA ware. Video recorded at one computer system,
using a video camera and a special video card, is sent to two other computer systems, which
perform a similar task. For this test we equipped three computer systems. At each computer
all three video streams are displayed.

The application consists of a number of application components: three video-phones,
three duplicators, a stream manager and a stream factory. These application components and
the datafl.ows between them are shown in Figure 2.

At each computer to which a video camera is attached, a· video-phone resides. Each
video-phone sends the video signal it records to a duplicator, which sends this data to the
other two video-phones. The stream manager and the stream factory are used for managing

392 Part Two Reviewed Papers

I stream manager I I stream factory I
Figure 2: The application components and the dataflows of the multi-party video-phone

the video streams between the video-phones and the duplicators, but have, after starting up
the application, no interaction with the other application components.

The properties of the application components are shown in Table 4. These properties
are theoretically determined approximations of the real properties; actual monitoring of
the application components has not been performed. The three video-phones have equal
properties, just like the three duplicators.

Table 4: Properties of the application components

etAc (ms) er Acl/s) lAc(/ B) sAc(Kbytes)
video-phone 20 20 0.4 3072
duplicator 10 20 0.2 1024
stream manager 1 1 0.001 1024
stream factory 1 1 0.001 1024

Except for the video-phones, the application components originally do not have any con­
straints. The video-phones all have a device constraint dAc, since they interact with the user
of a specific device. Reconfiguring the distributed environment according to a new routation
means migrating one or more application components and/or dataflows. Since the only ap­
plication components that can be migrated are the duplicators, we assign a device constraint
dAc to the stream manager and the stream factory. The dataflows all have identical proper­
ties and no constraints. Since each frame has a size of at most 8 Kbytes, the volume VoF of
each dataflow is equal to 160 Kbytefs. The processing overhead porvF for each dataflow is
assumed to be 40 ms/s.

The distributed system used for the demonstration consists of a number of different Sun
workstations connected by an Ethernet. The properties of and the constraints on these
devices as used in the demonstration are given in Table 5. Note that the devices do not
have a cost property c0 . The memory constraint m'v is set to 1, meaning that all memory
present is available.
The values presented in these table do not intend to represent the actual properties of and
constraints on the devices. The devices are fully connected, i.e., a communication path exists
between each pair of devices. The properties of and constraints on these communication
paths allow all possible routings for the dataflows of the multimedia application.

Quality of service management in distributed systems 393

Table 5: Properties of and constraints on the devices

to mv (Kbytes) PCD fro(/s) ubo acv
I sun012/015/039 Spare10/Parallax 16384 5.0 5-• 0.8 16
I sun027 /029 Spare IPC 8192 1.0 5-• 0.8 16

sun035 Spare ELC 8192 0.75 5-• 0.8 16

3.2. Overview of and experiences with xallocator

The xallocator is an application that allows the user to view the current allocation of the
application components of the multimedia application, change the properties of and the con­
straints on the devices and simulate the presence of other applications in the distributed
environment, by changing the usage of the devices. After one or more changes to the dis­
tributed environment have been made, a routation is determined using algorithm H3". If the
current routation is no longer valid or the just determined routation has a higher reliability,
the distributed environment is reconfigured according to this new routation. In Figure 3,
an example view of the main screen of xallocator is shown .. This screen contains the current
allocation of the application components and a number of buttons. A description, in terms
of properties and constraints, of an application components or a device will be shown after
selecting it. Note that the allocation of two other application components is shown as well:
that of the trader and the xallocator itself.
After using xallocator some time, we noticed that the possible assignment of the duplicators
to other devices after changing one or more values very well visualizes what a routation
algorithm is capable off. The time needed for a migration is considerably larger than the
times needed to determine a new routation. In all cases the time needed for a reconfiguration
should be minimized and un-noticable by the users. However, there will always be a trade-off
between serious QoS degradation and a short unavailability (because of a reconfiguration).
Futhermore, despite the fact that, considering the changes in the properties and constraints,
only one duplicator had to migrate, sometimes a new routation was determined for which all
three duplicators had to migrate. The reason for this is that when there is more than one
device that increases the objective the least, the algorithm chooses the first of these devices
to assign an application component to.

One possible solution to this problem is to exchange the first device in the set of devices
with the device to which application component ac is currently assigned, just before assigning
application component ac when determining the new routation.

4. CONCLUSIONS AND FURTHER RESEARCH

In this paper we have addressed the issues of routing and allocation in distributed systems. In
particular, we addressed these issues in an integrated way, the so-called routations, in order
to ensure an optimal realization of the end-to-end quality of service. We then proposed an
optimal routation algorithm based on the A* algorithm and a heuristic, H3", derived from
the A* algorithm. A smart combination of the A* algorithm with the H3" heuristic gives
us a very good routation algorithm, called A*/ H3"(x) . This algorithm can be used in an

394 Part Two Reviewed Papers

r vl4-*"'•• 1 vid~2 v.ldf!OPhoJte 3 dupUc.t. ... 1 dupllc«...- t du,u-.~ Jl
....o12o15r.l!oJ!o:l!oo•

IL,.._ -cr 1tr ... ftt'11 11' 111all.ocM.or

....m.!m! oun02' oun02!

Ho pro,....Uoo ii D , ull(.......... l .. IIAC eorct.rohou llvtd-000 Ullto ll e~. ,

·:.
I Col ... lot. 1/RollhoEk I~

Pressing a button results in the following actions: D properties: An overview of the properties of the devices
will be shown. Selecting one of these properties allows the user to modify this property; D constraints: An
overview of the constraints on the devices will be shown. Selecting one of these constraints allows the user
to modify this constraint; AC properties: An overview of the properties of the application components
will be shown. These properties cannot be modified; AC constraints: An overview of the constraints on
the application components will be shown. These constraints cannot be modified; Video-phone usage:
An overview of the usage of the devices by the application components of the multi-party video-phone is
shown; Other usage: An overview of the usage of ·the devices by the other, simulated, applications in
the distributed environment is shown. Selecting one of these usages allows the user to modify this usage;
Calculate A routation for the current settings of the distributed environment is determined. If no routation
can be determined, or if the current routation is still valid and has a reliability equal to the reliability
of the just determined new routation, this is reported. If a new routation is determined that is closer to
optimal than the current routation or the current routation is no longer valid, the distributed environment
is reconfigured according to this new routation. The dynamic reconfiguration is performed; Rollback The
changes made to the distributed environment since the last determination of a valid routation are discarded.
Quit Terminates xallocator.

Figure 3: An example view of the main screen of xallocator

environment with real-time requirements. This claim is proven to be true by a statistical
analysis of 1750 randomly selected test cases. The lower the timing requirements, the more
this algorithm operates as a normal A* algorithm, i.e., the better it becomes. Also, the
higher the timing requirements, the more it acts as a pure heuristic algorithm. In this way,
this algorithm combines the best of both worlds, in an adaptable fashion.

We applied the H3" algorithm on an ANSA ware-based videophone application using the
xallocator. It appeared that routation is useful but more work is needed on the algorithms
as well as on the migration aspect of application components .

As topics for future research , we envisage the following. The current routation algorithms
optimize only one objective function . Different applications, however, will have different
QoS requirements. Therefore, research is needed to allow for the use of different objective
functions for different applications during the creation of a single routation.

Another topic of interest is the use of incremental or adaptable routations. The aim
of these is to allow for the (stepwise) addition or removal of new applications without re­
routating, i.e., reallocating and rerouting, the existing environment, thereby still satisfying
all QoS requirements.

With respect to the dependability and reliability aspects of the QoS requirements, re­
search is needed towards strategies for the routation of replicated applications [18].

A final topic we would like to mention is research towards distributed or decentralised
routation algorithms. The algorithms described in this paper are fully centralised. In order

Quality of service management in distributed systems 395

to achieve acceptable performance in larger systems, decentralisation might be a good way
to go.

References
[1] L.J.N. Franken and B.R.H.M. Haverkort. The Performability Manager. IEEE Network: The Magazine

of Computer Communications, Special Issue on Distributed Systems for Telecommunications, 8(1):24-
32, Januari 1994.

[2] L.J.N. ·Franken, R.H. Pijpers, and B.R. Haverkort. Modelling Aspects of Model Based Dynamic QoS
Management by the Performability Manager. In G. Haring and G. Kotsis, editors, Computer Perfor­
mance Evaluation. Mode !ling Techniques and Tools. Proceedings of the 7th International Conference,
Vienna, Austria, pages 89-110. Lecture Notes in Computer Science, Springer-Verlag, Volume 794, May
1994.

[3] T.C.K. Chou and J.A. Abraham. Load Balancing in Distributed Systems. IEEE Transactions on
Software Engineering, SE-8(4):401-412, July 1982.

[4] N.S. Bowen, C.N. Nikolaou, and A. Ghafoor. On the Assignment Problem of Arbitrary Process Systems
to Hetrogeneous Distributed Computer Systems. IEEE Transactions on Computers, 41(3):257-273,
March 1992. ·

[5] W.W. Chu, L.J. Holloway, M. Lan, and K. Efe. Task Allocation in Distributed Processing. IEEE
Computer, 13(11):57-69, November 1980.

[6] S. M. Shatz, J. Wang, and M. Goto. Task Allocation for Maximizing Reliability of Distributed Computer
Systems. IEEE Transactions on Computer, 41(9):1156-1168, December 1992.

[7] C.M. Woodside and G.G. Monforton. Fast Allocation of Processes in Distributed and Parallel Systems.
IEEE Transactions on Parallel and Distributed Systems, 4(2):164-174, February 1993.

[8] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1990.

[9] D.P. Anderson. Metascheduling for Continuous Media. ACM Transactions on Computing, 11(3):226-
252, August 1993.

[10] K.G. Shin, C.M. Krishna, andY. Lee. Optimal Dynamic Control of Resources in a Distributed System.
IEEE Transactions on Software Engineering, 15(10):1188-1197, October 1989.

[11] K. Efe. Heuristic Models of Task Assignment Scheduling in Distributed Systems. IEEE Computer,
15(6):50-56, June 1982.

[12] J. P. Huang. Modeling of Software Partition for Distributed Real-Time Applications. IEEE Transactions
on Software Engineering, 11(10):1113-1126, 1985.

[13] S.M. Shatz and J-P. Wang, editors. Tutorial: Distributed Software Engineering. IEEE Computer Society
Press, 1989.

[14] L.J.N. Franken, P. Janssens, B.R.H.M. Haverkort, and E.P.M. Van Liempd. Dynamic Routation in
Distributed Environments. Submitted for publication, 1994.

[15] J. Laprie and K. Kanoun. X-Ware Reliability and Availability Modeling. IEEE Transactions on Software
Engineering, 18(2):130-147, February 1992.

[16] V. Kumar. Algorithms for Constraint-Satisfaction Problems: A Survey. AI Magazine, 13:32-44, Spring
1992.

[17] P. Meseguer. Constraint Satisfaction Problems: An Overview. AI Communications, 2(1):3-17, March
1989.

[18] L.J.M. Nieuwenhuis. Fault Tolerance Through Program Transformation. PhD thesis, University of
Twente, 1990.

