
19
A Fault-Tolerant R~mote Procedure Call
System for Open Distributed Processing
Wanlei Zhou, School of Computing and Mathematics, Deakin University, Geelong, VIC
3217, Australia

This pnper is concerned mninly with the softwa.re a.sper.ts of a.chieving relia.ble opera.tions
on a.n open distributed proces.sing environment. A .sy.stem for .supporting fa.ult-tolerant a.nd
cro.s.s-tra.nsport protocol d·istribnted softwa.re de111dopment is described. The fa.nlt-tolerant
techniqne nsed is a. 110.ria.tion of the recovery blocks a.nd the distributed computing model
used is the remote procedure r.nll (RPC) model. The .system incorporate.s fa.ult tolera.nce
feature.~ a.nd cro.s.s-tra.n.sport protocol communica.tion fea.ture.s into the RPC .sy.stem a.nd
ma.kes them tran.spa.rent to users. Our sy.stem i.s srna.ll, simple, ensy to use a.nd a.lso hns the
a.dva.nta.ge of producing server a.nd dient driver progmm.s a.nd fina.lly execnta.ble progmms
directly from the sen1er definition files.
Keyword Codes: C.2.4, D.4.4, D.{5.
Keywords: Open distributed processing, Fnult-tolemnt computing, distributed systems,
remote procedure ca.ll.s, dientjsen1er model.

1 INTRODUCTION
The advances in computer technology ha.'l made it cost,-effect.ive t.o build dist.ributed sys­
tems in various applications. Many experts agree t.hat the future of open distributed
processin~ is the future of computing. The network i.s the computer ha.'! become a popular
phw;e (5J.

Remote Procedure Call (RPC) is perhaps the most popular model usd in today's
dist.ributed software development and ha.'l become a de fact.o standard for distributed
computing. To use it in an open distributed environment effectively, however, one ha.'! to
consider the cross-protocol communications because user programs built on top of different
RPC syst.ems cannot be intereonnected directly. Typical solutions to this problem are:

1. Black protocol boxes: prot.ocols used by RPC programs are left a.'! black boxes in
compiling time, and are dynamically determined in binding time (1].

2. Special interfaces (15] or RPC agent synthesis systems (7] for cross-RPC communi­
cations.

However, one issue is still outstanding in building RPC systems for open distributed
systems: the fault-t.olerance features.

An open distributed system consists of many hardware/software eomponents that are
likely to fail eventually. In many ca.'!es, such failures may have disa.'!trous re~mlt.s. With
the ever ii~e~ea..;;ing dependeneY: b~ing plaC;ed on open dist.ributed syst,ems, the number of
users reqmrmg fault tolerance IS likely to merea.'!e.

This paper is concerned mainly with the software a.'!peets of achieving reliable oper­
ations on an open distributed processing environment. A system for supporting fault­
tolerant and cross-transport protoeol distributed software development is described. The
system design is aimed toward application area.'! t.hat may involve heterogeneous environ­
ment and in which requirements for fault-tolerance are less severe than in, for example,
the aerospace field, but in which eontinuous availability are required in the ease of some

K. Raymond et al. (eds.), Open Distributed Processing
© Springer Science+Business Media Dordrecht 1995

246 Part Two Reviewed Papers

components failures [4]. The application areas could be, for example, kernel/service pool­
based distributed operating systems, supervisory and telecontrol systems, switching sys­
tems, process control and dat.a processing. Sueh systems usually have redundant hardware
resources and one of the main purpose of our system is to manage the software redundant
resources in order t.o exploit, the hardware redundancy.

The reminder of t.his paper is organised as following: In Section 2, we summary some
notable related work provide the rationale of our work. In Section 3, we describe the
architecture of the SRPC system. Then Section 4 describes the syntax and semantics of
t.he server definition files and the stub and driver generator. In Section 5, we present. an
example to show how this system can be used in supporting fault-tolerant, open distributed
software development. Section G is the remarks.

2 RELATED WORK AND THE RATIONALE
There have been many successful RPC systems since Nelson's work [11]. But. few of t.hem
consider fault tolerance and cross-protocol communication in their design, or they relay
on users to build up these features.

Notable works on incorforat.ing fault t.oleranee features int.o RPC systems are t.he Ar­
gus [10] and the ISIS [2] [3 . The Argus allows computations (including remote procedure
calls) to run as o.tomic tro.n.saction.s to solve the problems of concurrency and failures
in a distributed computing environment. Atomic transadions are serialisable and indi­
visible. A user can also define some atomic objects, such as atomic arrays and atomic
record, to provide the additional support needed for atomicity. All the user fault tolerance
requirements must. be speeified in t.he Argus language.

The ISIS toolkit is a distributed programming environment, induding a synehronous
RPC system, based on virtually synchronous process groups and group communication.
A special process group, called {a11.lt-tolero.nt proce.s.s group, is established when a group
of processes (servers and dients are eooperat.ing to perform a distributed computation.
Proeesses in this group can monitor one another and can then t.ake actions based on
failures, recoveries, or ehanges in t.he status of group members. A colledion of reliable
multicast. protocols are used in ISIS t.o provide failure atomicity and message ordering.

However,whe1i a server (or a guardian in t.he Argus) fails t.o function well, an atomie
transaction or an atomic RPC has to he aborted in t.hese systems. This is a violation of
our continuous eomput.at.ion requirement.. The fault-tolerant. process groups of the ISIS
can cope wit.h process failures and ean maintain continuous computation, but the ISIS
toolkit. is big and relatively complex to use.

Typical solutions to the cross-protocol communication in RPC systems are t.he black
prot.oeol boxes of the HRPC [1], the special protocol conversion interface [15] and the RPC
agent synthesis system [7] for cross-RPC communications.

The HRPC system defines five RPC components: the st.ub, t.he binding protocol, the
dat.a representation, the transport. protocol, and the control prot.oeol. An HRPC client.
or server and its associated stub can view each of the remaining components as a "black
box." These blaek boxes can be "mixed and matched." The set of protocols to be used is
determined at bind time long after the elient and server has been writ.t.en, t.he st.ub has
been generated, and the two have been linked.

The speeial protoeol conversion interface proposed in [(15]]uses an "interface server"
t.o receive a call from t.he source RPC component. (elient or server) and to convert. it int.o
the call format understood by the dest.ina.tion RPC component (server or r:liEnt).

The cross-RPC eommunieation agent synthesis system proposed in [[7]] assoeiates a
"elient agent." with the elient. program and a "server agent" with the server program. A
"link protocol" is then defined between the two agents and allow them t.o communicate.
The server and the client programs can use different RPC protocols and the associated
agents will be responsible of converting these dialect protocols into the link protocol.

But none of the above cross-protoeol RPC systems consider fauH-t.olerance issues. If
the server fails, the client simply fails as well.

Afault-tolerant remote procedure call system for ODP 247

Service Providing
Server ~

1 --------------~
~

(a) (b)

RPC call

Re-directed RPC call
·----------------·

Figure 1: Server types

Inr:orporating both fault t.oleranr:e and cmRs-protocol commmJication into RPC systems
is dearly an important issues for using RPCs efficient.ly and reliably in open distributed
environments. In this paper we describe a system, called SRPC (Simple RPC) system,
for supporting development of fault-tolerant, open distributed software. The SRPC incor­
porates fault toleranr:e features and protocol converters into the RPC system and makes
them transparent to users. A bnddy is set. up for a fault-tolerant server to he its alterna­
tive. When an RPC to a server fails, the system will automatically switch to the huddy to
seek for an alternate service. The RPC aborts only when both the server and its buddy
fail. The client.s and servers can use different communication protocols. To obtain these
fault. tolerance and automatic prot.ocol converting services, users only need to specify their
requirements in a descriptive interface definition language. All the maintenance of fault
tolerance and protocol conversion are managed by the system in a user transparent. man­
ner. By using our system, users will have confidence on their open distributed computing
without bothering with the fault tolerance details and protocol conversion. Our system is
small, simple, easy to use and also has the advantage of producing server and client driver
programs and finally executable programs directly from the server definition files.

3 SYSTEM ARCHITECTURE
The SRPC is a simple, fault-tolerant and cross-protocol remote procedure eall syst.em
[16]. The syst.em is small, simple, expandable and it. hR.'! facilities supporting fault-tolerant
computing and cross-protocol communication. It is easy to understand and easy to use.
The SRPC only contains the essential features of an RPC system, such as a location
server and a stub generator, among other things. The SRPC system hR.'! been used as a
distributed programming tool in both t.eaching and research projects for three years.

The SRPC system hR.'! another interesting feature. That is, the stub compiler (we call
it the stnb and dri11er genemtor, or SDG in short) not only produces the server and client
stubs, but. also creates remot.e procedures' framework, makefile, and driver programs for
both server and client. After using make utility, a user can test. the program's executahility
by simply executing the two driver programs. This feature will be more at.tradive when
a programmer is doing prototyping.

3.1 Server Types

The dientjser11er model [13] is used in the SRPC system. An SRPC program has two
parts: a server part and a client part. Usually the server provides a special service or
manages an object. The client requests the service or accesses the object by using the
remote procedures exported by the server.

There are three types of servers in the SRPC system: .~imple ser11ers, ser11ice pro11id·ing
.>er11ers and object managing ser11ers. Figure 1 depicts these three types of servers.

248 Part Two Reviewed Papers

A simple serw~r. (Figure l(a)) .is an ordinary ~erver possessing with no fault-tolerant
features. When a simple server fails, all RPCs to It have to be aborted.

A se1·vice providing server (Figure l(b)) has a buddy server running somewhere in t.he
network (usually on a host different with the server's), but, no communication between
the server and its huddy. When a service providing server fails, an RPC to this server
will he automatically re-direet.ed to its buddy server by the system. As object changes in
the server will not be available in its buddy, a service providing server usually is used in
applications such a'l pure comput.ation, information retrieval (no update), motor-driven
(no adion memory), and so 011. It is not suit.able to he used t.o manage any crit.ical object
that might, be updated and then shared by clients.

An object managing server (Figure l(e)) also has a buddy running in the network. It
manages a critical object that might he updated and shared among clients. An RPC to
such a server, if it will change the object state, is actually a nested RPC. That is, when
the server receives such a call from a elient, it first check..'! to see whether the call can be
execute~l successfully (e.g. if the necessary writt;-locks have been ohtaine.d or n'?t). If the
answer Ifl no, the cal! Is aborted. If the answer IS yes, then the server will call Its buddy
server to yerform the operation ao;; well. When the buddy returns successfully, the call
commits {the server and its buddy aetnally perform the call) and the result. returns to the
client. To ensure t.he consistency of the object.s managed by t,he server and its buddy, a
two-phao;;e commit protocol [G) is used when executing the nested RPC.

Like a serviee providing server, when an object managing server f?.ils, an RPC to this
server will be automatically re-directed to its buddy server by the system.

All buddy servers are simple servers. That means, when a server (service providing
or object managing) fails, its buddy server provides alternative service in a simple server
manner. Also, when a huddy server fails, a serviee providing server or an object managing
server wil! be rednced into a simple server.

3.2 The Architecture
The SRPC has the following three component,s: A Locat·ion Server (LS) and its buddy (LS
buddy), a 8V8tern l·ibra.ry, and a Stub and Dr-iver Generator (SDG). This section describes
the system architecture from a user's point of view. As server buddies are generally
transparent to users, we will omit their descriptions here.

From a programmer's viewpoint, after the SDG compilation (see Section 5), the server
part of an SRPC program is consisted of a server driver, a server stub, and a file which
implements all the remote pror:edures (called procednre file). The server buddies are trans­
parent to users. The server part (or a server program ao;; it, is sometimes called) is a "for­
ever" running program whieh resides on a host and awaits calls from clients. The client
part (or a client program) consists of a client driver and a client stub after the SDG emn­
pilation. It runs on a host (usually a different host from the server's host) and makes calls
to the server by using the remote procedures exported by the server.

When the client driver makes a call, it goes to the client stub. The client stub then,
through the system library, makes use of the client protocol for sending the calling message
to the server host. Because the dient and the server may use different communication
protocols, a client.-server protoeol eonverter is used to convert the client's protocol into
server's protocol. The calling message is then sent to the server. At the server host
side, the server's protocol entity will pass the calling message to the server stub through
the system library. The server stub then reports the call to the server driver and an
appropriate proeedure defined in the procedures file is exeeuted. The result of the call
follows the calling route reversely, through the server stub, the server protocol, the syst,em
library of the server host, the dient,-Rerver protoeol converter, the system library of the
elient, host, the client stub, back t,o the client driver. This is called a direct call ao;; the
pre-eondition of such a call is that the dient knows the 1l.ddress of the server before the
call.

Wit,h the help of the Location Server, the run-time address of a server can he ea'lily

A fault-tolerant remote procedure call system for ODP

Server Protocol

Syst:ou:n Library

Sezv~Host

Ac'tua.llCallir.J.g

Vinu.a.l Calling
..-;::::;;-------~

client Protocol

Syst.e:a:~,. Library

Figure 2: System architecture and a typical RPC

249

accessed. Figure 2 depicts the system architecture using a typical RPC. The dashed line
represents the RPCs from the user's viewpoint.

In this project, cross-protocol communication requires an individual converter for each
pair of different protocols. It ha.'! been noted that this solution is only rea..'lonahle for a few
protocols. For a large number of protocols, an intermediate protocol description would he
better.

3.3 The Location Server
One way of hiding out, the implementation details is the use of the Location Server (LS).
The LS is used to hide the server locations from users. It maintains a database of server.
locations and is exeeuted before any other SRPC program is started. After that, it resides
on the host and awaits ealls from servers and clients.

The Loeation Server is an objeet managing server and has a buddy of its own. It ha..'!
a well-known loeation, and this loeation can be easily changed when neeessary. The LS
itself is implemented by the SRPC system, using the direct calling method.

Usually there should be one LS (called local LS) running on eaeh host for managing
loeations of t.hat. host,, and these local LSs report to the "global LS" (like the NCA/RPC's
!'"!cal and glohalloeation brokers [141 [9])_. In that eas~ the ~~cations of all LSs can also he
Iudden from users. We have planned to Implement tins fae1hty.

The following eall is used by a server to register itself to the LS:

int registerServer(sn, buddy, imp)
char *sn; I* server name *I
char *buddy; I* buddy's name *I
struct iinfo *imp; I* implementation info. *I
where imp is a typ_e struct iinfo structure and eontains many implementation details,
sueh as the server's host name, protoeol, and so 011. Beeause the eall updates the LS
databa..'!e, it is also direeted to the LS buddy. If the eall returns OK, the loeation ha..'l been
registered and a elient can use the following call to find out the loeation of a server from
the LS:

int locateServer(sn, buddy, imp)
char *sn; I* server name *I

250 Part Two Reviewed Papers

SRPC Level

Remote Operation Level

Protocol Level

Communication
Entity & OS Kernel

Figure 3: Relationships of system library levels

char *buddy; I* server's buddy name *I
struct iinfo *imp; I* implementation info. *I
If the call returns OK, the location of the server sn is stored in imp and the name of the
server's buddy is stored in buddy for later use. This call does not affect the LS database
st.ate, so there is no hidden LS server and LS buddy communication here. Before a server
is shut down, the following call must be used to tm-register the server from the LS:

int unregisterServer(sn)
char *sn; I* server name *I
If the call returns OK, the server and its buddy (if any) are all deleted from the LS database.
The system also provides other LS calls for maintaining the LS database.

All the usages of these functions in a server or a client program are automatically
generated by the stub and server generator. A user does not need to look into the details
of these calls if he or she is satisfied with the generated program sections.

3.4 The System Library
The system library is another way of achieving transparency. The library <'.ontainR all the
low-level aJld system- and protocol-oriented calls. Its main functions are to make the low­
.level facilities transparent to the upper-level programs and make the system as portable
as possible.

The server and client programs must. be linked with the system library separately.
Reference [16] contains detailed dt>.scriptions of the library calls. All the library calls can
be divided into the following call levels and Figure 3 depicts their relationships:

1. SRPC Level: This is the highest level. It <'.ontains calls that deai with RPC-related
operations.

2. Remote Operation Level: It contains calls that deal with remote operations. These
remote operations follow the definitions of the 081 Applicat.ion level primitives (8].

3. Protocol Level: It contains calls that deal with protocol-specific operations.

4. Utility Calls: It contains all the utility calls used in different levels.

4 THE STUB AND DRIVER GENERATOR
4.1 Syntax
The purpose of the stub and driver program generator is to generate stubs and driver
pro&rams for server and client programs according t.o the Ser11er Definition File.~ (SDF).
Listmg 1 is the syntax of a server definition file.

We use a modified BNF to denote the syntax of definition fi!i!s. The "variable", "in­
teger", "string", "constant", and "declarator" have the san1e meanings as in the C pro­
gramming language. Comments are allowed in the definition file. They are defined the
same as in the C programming language (using I* and *1).

A fault-tolerant remote procedure call system for ODP 251

Listing 1. Server definition file syntax

<SDF> : := BEGIN
<HEADER>
[<CONST>
<FUNCS>

END

<HEADER> : := Server Name: variable;
Comment: string;

[Using: <LANGUAGE>;]
Server Protocol: variable;
Client Protocol: variable;
[<BUDDY>]

4.2 Semantics

<BUDDY> ··=Buddy <BDYTYPE>: variable;
Using: <LANGUAGE>;

<BDYTYPE> ::= Auto I Forced
<LANGUAGE> : := C I Pascal
<CONST> : : = constant
<FUNCS> ::= RPC Functions: <RPCS>
<RPCS> : : = <RPC> { <RPC> }
<RPC> ::=Name: string [Update];

<PARAMS>
<PARAM>
<CLASS>

<PARAMS>
: : .. { <PARAM> }
::= Param: <CLASS>: declarator;
: := in I out

Most of the dt>~'lcriptions of Listing 1 are self-explanatory. We only highlight the following
points:

1. The server's name is defined a..'! a variable in the C language. This name will be
used in many placP.s. For example, it is the key in the LS databa.'!e to store and
access server entities. When the client asks the LS to locate a server, it providt>~'l the
server's name defined here. The nan1e is also used as a prefix in naming all the fiiP.s
generated by the SDG. The default language used in the server is the C language.

2. Different protocols can be defined for the server and the client respectively. The
buddy, if it is defined, uses the same protocol a.'! the server does. Currently, only three
protocols are allowed: Internet_datagram (the UDP protocol), Internet_stream
(the TCP protocol), and XNS_datagram (the XNS packet exchange protocol).

3. The <BUDDY> part is optional. If it is not specified, the generated server will be a
simple server, otherwise it will be a service providing server or an object managing
server, according to some definitions in the <RPCS> part (dt>.scribed below). The
<BUDDY> part ha..'l a buddy definition and a language definition. The buddy defini­
tion defines that whether the buddy's name and execution is to be determined by
the system (Auto) or to be determined by the programmer (Forced). If Auto is
defined, the system will generate the buddy server's name (ServerNameBdy, used for
registering and locating it), the buddy's driver and stub files as well a.'! the makefile,
and will treat the following variable a.'! the name of the buddy's procedure file.
Then, the buddy program will be compiled and executed together with the server
program. The host of the buddy program will be determined by the system at run
time.

If Forced is defined, the generator will not generate any buddy's program file and
will treat the following variable as the name of the buddy server used for registering
and locating. The programming and execution of the buddy server will also be the
programmer's responsibility.

The language definition Us in~ within the BUDDY part defines which language does the
buddy program use. The key Issue of software fault-tolerant is the design diver.~ity or
version independent, and one way of ar1Iieving design diversity is through the use of
multiple programming languages [12]. Currently only the C programming language

252

Server Definition
Flies

'I'

Part Two Reviewed Papers

Executable Flies

Figure 4: Processing structure of the stub and driver generator

is supported in the SRPC system. We have planned to support t.he Pa.'!callanguage
implementation soon.

4. The <FUNCS> part defint>.s the remote procedures of t.he server. At. least one remote
procedure must be defined. Each remote procedure is defined as a name part and a
parameter (<PARAMS>) part. The name of a remote procedure is simply a variable,
with an optional Update definition. The latter definition distinguishes an object
managing server with a service providing server. That is, if the <BUDDY> part is
defined and the Update is defined in any one RPC definition, the server is an object
managing server. If only the <BUDDY> part is defined but no Update part is defined
in any RPC definition, the server is a service providing server. The meaning of the
Update definition is: if an Update is defined following an RPC procedure name, that
procedure must be maintained as a nt>.sted RPC affecting both the server and the
buddy by the server program (See Section 3.1).
There can be zero or several parameters in a procedure, each c.onsisting of a class
and a declaration. The class can be in or out, which tells t.he SRPC system that
the parameter is used for input or output, rt>.spectively. The declaration part is the
same a.'! in the C language. In this version, only simple character string is allowed
in parameter definitions. Fi1rther extensions are under way.

4.3 Implementation Issues
Aft.er a programmer sends a server definition file to the generator, the generator first. doE>.s
syntax checking. If no errors are found, several program source files and a makefile are
generated. The subsequent processing is specified by the makefile. That is, when using
the make utility, the executable files of bot.h the server and client will be generated. Figure
4 indicates the structure of the processing, The da.'!hed lines represent optional actions.

At least. one server definition file must be input to the SDG. If there are more than
one server, their SDFs can be input to the SDG simultaneously. If there is only one SDF
file, then the generated client driver can execute the server's procedures one by one. If
t.he buddy part is also specified, the generated client can also call the buddy procedures
directly (this is useful in testing the client-buddy communication).

If there are more than one SDF file, then for ear.b. server, the SDG will generate one
set of server files, one set of client files, and one set of buddy files (ifthe buddy is defined),
respectively. These files are the same as the servers being processed in single file input
described above. One additional set of client filt>.s, the multi-seruer client program, will
also be generated in this case. The client driver is called a mnlti-ser11er client dri11er. It
can call all the procedures of all the servers one by one. A further improvement is under
way t.o let the client call these procedures in parallel.

The performance of an RPC in the SRPC system varies, acr.ording to which server
type is used. Table 1 lists the null RPC performance on a network of HP and SUN
workstations, where the server program runs on an HP 715/33 workstation and the server
buddy and the client run on two separate SUN 4/75 ELC (33MHZ) workstations. The
server (and t.he buddy, of course) uses the Internet_datagram protocol and the client uses
the Internet_stream protocol. We are still invE>A'!t.igating the system performance under
various circumstances.

Afault-tolerant remote procedure call system for ODP 253

Table 1: Null RPC Performance

5 AN APPLICATION EXAMPLE
We use a simple example to show the application of the SRPC system. Suppose we have
a server definition file called sf .def. It. defines a "send-and-forward" system in that the
server acts a.'! a message storage and the client acts as both message sender and receiver.
Next is t.he server definition file:

Listing 2. Server definition file example

I• Store and forward: server definition file •I

BEGIN
Server Name: sf;
Comment: Store and forward system;
Server Protocol: Internet_datagram;
Client Protocol: Internet_stream;
Buddy Auto: sfBdyOps.c;

Using: C;

#define MXNAML 64
#define MXMSGL 500
#define MXSTRL 80

RPC FUil~;tions:
Name: storeMsg Update;
Param: in receiver: char re~eiver[MINAML];
Param: in mag: char msg[MXMSGL];
Param: out stat: char stat[MXSTRL];

Name: forwardMsg Update;
Param: in receiver: char receiver[MXNAML];
Param: out msg: char msg[MXMSGL];

Name: readMsg;
Param: in receiver: char receiver[MXNAML];
Param: out msg: char msg[MXMSGL];

Name : listMsg;
END

When this file is input to the generator, the following files will be generated:

sf.h Header file, must be included by ~erver,
its buddy and client drivers and stubs.

sfSer.c Server driver file.
sfStubSer.c Server stub file.
sfOps.c Frameworks of server procedures.
sfCli.c Client driver file.
sfStubCli.c Client stub file.
sfBdy.c Server buddy driver file.
sfStubBdy.c Server buddy stub file.
makefile Make file.

After using the make utility (simply use "make" command), three executable files are
created:

sfSer
sfCli
sfBdy

Server program.
Client program.
Server buddy program.

254 Part Two Reviewed Papers

Note that the sfOps. c file only defines the frameworks of the remote procedures
(dummy proeedures). Their details are to he programmed hy the programmer. The
sfBdyOps. c file should he the same &9 the sfOps . c file (t.he only possible difference hap­
pens when the server huddy uses another programming language such &9 the Pascal, t.hen
the affix of the file would he . pas).

The server driver is simple. It. does the initialisation first. Then it registers with the
LS and invokes the huddy program on a neighbouring host. because the huddy is defined
a.'l Auto in the SDF file. After that it loops "forever" to process incoming calls until the
r:lient. issues a "shutdown" call. In that ease the server till-registers from the LS and exits.
The "till-register" call will automatically till-register the huddy from the LS &'! well. The
ineoming calls are handled by the server stub and underlying library functions. Following
is the pseudocode listing of the server driver:

Listing 3. Server driver pseudocode
Initialisation (including invoke the buddy);
I* Register the server to the LS *I
registerServer("sf", "sfBdy", imp);
while (1) {

wait for client calls;
I* comes here only if a client called *I
fork a child process to handle the RPC;
if the call is "shutdown"

break;
}
unregisterServer("sf");

The server huddy driver works in t.he same way as the server program, exeept that it
does not invoke a huddy program. Also the buddy is a simple server and all calls to the
huddy will not he nested.

The generated client driver ean exeeute the server's remote procedures one by one. If
t.he server driver is running and t.he elient driver is invoked, t.he elient driver first. lists all
the remote proeedures provided by the server, and asks the user to chose from the list.
The following is the menu displayed for this example:

Available calls:
0 sf$Shutdown
1 sf$storeMsg(receiver, msg, stat)
2 sf$forwardMsg(receiver, msg)
3 sf$readMsg(receiver, msg)
4 sf$listMsg()

Your choice:

After the selection, the input parameters of the named remote proeedure are then input
fi·om the keyboard. After that, the driver program does some initialisation and the remote
procedure is executed and returned results displayed. The aetna! calling and displaying
are handled by the client stub and underlying library functions. The format of all the four
RPCs in the client program are the same as the the format listed in the above menu. That
is, if the client wants to send a message to a receiver, it does the following eall after the
reeeiver's name and the message are input. into receiver and msg variables, respeetively:

sf$storeMsg(receiver, msg, stat);

Not.e that the remot,e procedure's name is named a.'l a eomposition of the server's name
sf, a $ sign, and the remote proeedure's name storeMsg in the SDF file. Similarly, if
the r:lient wants to reeeive messages, it does the following call after the receiver's name
receiver is obtained:

A fault-tolerant remote procedure call system for ODP 255

sf$forwardMsg(receiver, msg);

Before eaeh RPC, a locateServer("sn", buddy, imp) eall is issued to the LS to
return the loeation of the server and the name of its buddy. The server loeation is stored
in imp and the buddy name is stored in buddy.

The fault-tolerant feature of t.he system is eompletely hidden from the user. For this
example, all the remote procedure calls from the dient program will be first handled by
the server. A nested RPC is issued if _the incoming cal_! i~ either sf$storeMsg(receiv_er,
msg, stat) or sf$forwardMsg(rece1ver, msg). Tins IS because the two RPC functwns
are marked as UJ?date in the SDF file. The nested RPC will ensure that actions of the
incoming call will be made permanent. on both the server and its buddy if the call is
successful, and no actions of the ineoming eall will be performed if the call fails. Other
two incoming ealls, sf$readMsg(receiver, msg) and sf$listMsg(), will he handled by
the server only.

If the server fails (that is, the RPC to the server returns an error), the client program
will send the RPC to the server's buddy. The location of the buddy will be determined
by another eall to the LS:

locateServer(buddy, "", imp)

where buddy is the server buddy's name obtained during the first call to the LS, and imp
stores the location of the buddy.

The cross-protocol communication is also hidden from the user. All the interfaces to
the protocol converters (client-LS, dient-server, and server-LS) are generated by the SDG
(in the stub files) ?-nd used aut.omatically by t._!Ie stubs. If a user only deals with the R;PC
level, he or she will never notice t.he underlymg protoeols used by the server and chent
programs.

6 REMARKS
A system for supporting fault-tolerant, open distributed software development is described
in this paper. The system is simple, easy to understand and use, and has the ability of
accommodat.ing multiple communication protocols and tolerat.ing server failures. It. also
has the advantage of producing server and client driver programs and finally executable
programs direct.ly from t.he server definition files. The syst.em has been used a.o;; a tool of
distributed computing in both third year and graduate level teaehing, and ha.'! been used
by some students in their projects.

In tolerating server failures, similar efforts can he found in the RPC systems that
provide replieated server faeilities, sueh a.'! NCA/RPC (14]. But in t.hese systems, the
user, instead of the system takes the responsibility of maintaining and programming the
functions for object consistency. This is a difficult job for many programmers. Our
approach in achieving fault tolerance is similar to the approach used in the ISIS toolkit
(of course, ours is more simplified and less powerful). But our system is simple, easy to
underst.and, and ea.o;;y to use. In our syst.em, we provide a server buddy to tolerant the
server's failure. When the server fails, the client, instead of aborting, can access the server
buddy to obtain the alternative service. Also in our system, it is the system, instead of
the user, that is responsible of maintaining the consistency of the managed objects.

Providing server and driver programs directly from the server definition file (similar
to the interface definition files of other RPC systems) is also an interesting characteristic
of our system .. It. is related to the rapid prototyping of _RPC programs (1_7]. The driver
programs are simple, but. yet. have the advantages of testmg the executab1hty of the RPC
program immediately after the designing of the SDF file. It is especially useful if the user
makes some changes in the SDF file or the procedure file. In that ca.'!e, t.hese changes will be
automatically ineorporated into other related program files if the program is re-generated
by the stub and driver generator. This will avoid a lot of troubles in the maintenanee of
consistency of program files.

256 Part Two Reviewed Papers

References
(1] D. ::-1. Dershad, D. T. Ching, E. D. La'l:owska, J. Sanislo, and).1. Schwa.rt.'l:. A remote proce­

dure call facility for interconnecting heterogeneous computer systems. IEEE 11nn.mt:tion.Y
on Softul(m'. Engineering, 13(2):880-894, August 1987.

(2] K. P. Dirrna.r1 a.r1d T. A. Joseph. Reliable comrrnmication in the presence of failures. ACM
11-tm.Ytu:tion.Y on CornznJ.teT Sy.Ytem.Y, 5(1):47-76, Febn1a.r-y 1987.

[3] K. P. Dirrna.r1, A. Schiper, and P. Stephenson. Lightweight causal a.rHl atomic group multi­
cast. ACM Tmn.Ym:tion.Y on Compute1· Systems, 9(3):272-314, August 1991.

(4]).1. Doa.r·i, :Yl. Ciccott.i, A. Conadi, a.rHl C. Salati. An integrated environment. to suppmt.
constmct.ion of reliable distributed applications (CO::-TCORDIA). In Pnmllel Pmce.Y.Ying tL7ttl
Applicntion.Y, pages 467-4 73. Elsevier Science Publishers (::-Tmt.h Holland), 1988.

[5] D. Cemt.t.i. The network is computer. In D. Cemtti a.rHI D. Pierson, editors, Di.Ytrilnttetl
Co1rqmting E1wimnrnent.Y, pages 17-26.).kGraw-Hill, ::-lew York, 1993.

(6] J. Gray and A. Reuter. Tnm .. Ytu:tion Proce.Y.Ying. :Yiorga.r1 Kaufrna.rm Publishers, Sa.r1 :Yiat.eo,
California, USA, 1993.

(7] Y.-:Yl. Huang a.rHl C. V. Ravishankar. Designing a.r1 agent synthesis system for cross-rpc
cornrnunication. IEEE Tmnstu:tion.Y on Soft'llltL1'l'. Enginee1ing, 20(3):188-198, :Yla.r·ch 1994.

(8] D. ::-1. Jain and A. K. Agrawala. Open Sy.Ytern.Y Inten:onnet:tion: It.Y An:hitet:tnTe tmtl P·ro­
tocol.Y. Elsevier Science Publishers D.V., The ::-Tetherlands, 1990.

(9]).1. Kong, T. H. Dineen, P. J. Leach, E. A. :Yla.rt.in, ::-1. \V. :Ylishkin, J. ::-1. Pato, and G. L.
\Vyant. Netwm·k Corrqnding Sy.Ytem Refe'f'l'.nt:e Mnmwl. Prentice-Hall, Englewoods Cliffs,
::-lew Jersey, 1990.

(10] D. Liskov. Di:;t.ributed progra.rning in ARGUS. Cornrrt1L11.iwtion.Y of the ACM, 31(3):300-312,
:Yla.r·dl 1988.

(11] D. J. ::-Telson. Remote procedure call. Tedmieal Report CSL-81-9, Xerox Palo Alto Research
Cent.re, May 1981.

(12] J. :Yl. Pmt.ilo a.rHl P. Jalot.e. A system for suppmt.ing multi-language versions for software
fault. tolerance. In Pmceetling.Y of the 19th InteTnntional Symzm.Yi'ILrn on Fnult Tolemnt Corn­
zmting, pages 268-274, Chicago, USA, 1989.

(13] A. Sinha. Client-server computing. Cornm11.nimtion.Y of the ACM, 35(7):77-98, July 1992.

(14] L. Zalm, T. H. Dineen, P. J. Leach, E. A. :Hartin, ::-1. W. :Yiishkin, J. X Pato, a.rHl G. L.
Wya.r1t. Net'lllm·k Comzmting An:hitet:tut-e. Prentice-Hall, Englewoods Cliffs, ::-lew Jersey,
1990.

(15] \V. Zhou. A rernote procedure call interface for heterogeneous computer sy:;terns. In Pm­
t:eetlings of the Open Di.Ytrilmtetl Pmce.Y.Ying Wm·k.Yiwp, Sydney, Au:;tralia, Ja.rmary 1990.

(16] \V. Zhou. The SRPC (Sim]Jle Remote Procedure Call System) Reference MtLn'IULL De­
partment of Information Sy:;terns and Computer Science, ::-Tational University of Singapore,
1992.

(17] \V. Zhou. A rapid prototyping system for dist.ribut.ed informat.ion sy:;tem application:;. The
JmJ.nwl of Sy.Ytern.Y nntl Softwa1·e, 24(1):3-29, 1994.

