19

A Fault-Tol t R te Procedure Call
Syst&g}n fog ?)rggn D?gilrs)ibuted Perocess(ijng

Wanlei Zhou, School of Computing and Mathematics, Deakin University, Geelong, VIC
3217, Australia

This paper is concerned masnly with the software aspects of achieving reliable operations
on an open distributed processing environment. A system for supporting fault-tolerant and
cross-transport protocol distributed software development is described. The fault-tolerant
technique used is a variation of the recovery blocks and the distributed computing model
used is the remote procedure call (RPC) model. The system incorporates fault tolerance
features and cross-transport protocol communication features into the RPC system and
makes them transparent to users. QOur system is small, simple, easy to use and also has the
advantage of producing server and client driver programs and finally ezecutable programs
directly from the server definition files.

Keyword Codes: C.2.4, D.4.4, D.4.5.

Keywords: Open distribuied processing, Fault-tolerant computing, distributed systems,
remote procedure calls, client/server model.

1 INTRODUCTION

The advances in computer technology has made it cost-effective to build distributed sys-
tems in various applications. Many experts agree that the future of open distributed
processing is the future of computing. The network is the computer has become a popular
phrase [5].

Remote Procedure Call (RPC) is perhaps the most popular model usd in today’s
distributed software development and has become a de facto standard for distributed
computing. To use it in an open distributed environment effectively, however, one has to
consider the cross-protocol communications because user programs built on top of different,
RPC systems cannot be interconnected directly. Typical solutions to this problem are:

1. Black protocol boxes: protocols used by RPC programs are left as black boxes in
compiling time, and are dynamically determined in binding time [1}.

2. Special interfaces [15] or RPC agent synthesis systems [7] for cross-RPC communi-
cations.

However, one issue is still outstanding in building RPC systems for open distributed
systems: the fault-tolerance features.

An open distributed system consists of many hardware/software components that are
likely to fail eventually. In many cases, such failures may have disastrous results. With
the ever increasing dependency being placed on open distributed systems, the number of
users requiring fault tolerance is likely to increase.

This paper is concerned mainly with the software aspects of achieving reliable oper-
ations on an open distributed processing environment. A system for supporting fault-
tolerant and cross-transport protocol distributed software development is described. The
system design is aimed toward application areas that may involve heterogeneous environ-
ment and in which requirements for fault-tolerance are less severe than in, for example,
the aerospace field, but in which continuous availability are required in the case of some

K. Raymond et al. (eds.), Open Distributed Processing
© Springer Science+Business Media Dordrecht 1995

246 Part Two Reviewed Papers

components failures [4]. The application areas could be, for example, kernel/service pool-
based distributed operating systems, supervisory and telecontrol systems, switching sys-
tems, process control and data processing. Such systems usually have redundant hardware
resources and one of the main purpose of our system is to manage the software redundant
resources in order to exploit the hardware redundancy.

The reminder of this paper is organised as following: In Section 2, we summary some
notable related work provide the rationale of our work. In Section 3, we describe the
architecture of the SRPC system. Then Section 4 describes the syntax and semantics of
the server definition files and the stub and driver generator. In Section 5, we present an
example to show how this system can be used in supporting fault-tolerant, open distributed
software development. Section 6 is the remarks.

2 RELATED WORK AND THE RATIONALE

There have been many successful RPC systems since Nelson’s work [11]. But few of them
consider fault tolerance and cross-protocol communication in their design, or they relay
on users to build up these features.

Notable works on incorporating fault tolerance features into RPC systems are the Ar-
gus [10] and the ISIS [2] [3]. The Argus allows computations (including remote procedure
calls) to run as atomic transactions to solve the problems of concurrency and failures
in a distributed computing environment. Atomic transactions are serialisable and indi-
visible. A wuser can also define some atomic objects, such as atomic arrays and atomic
record, to provide the additional support needed for atomicity. All the user fault tolerance
requirements must be specified in the Argus language.

The ISIS toolkit is a distributed programming environment, including a synchronous
RPC system, based on virtually synchronous process groups and group communication.
A special process group, called fault-tolerant process group, is established when a group
of processes (servers and clients) are cooperating to perform a distributed computation.
Processes in this group can monitor one another and can then take actions based on
failures, recoveries, or changes in the status of group members. A collection of reliable
multicast protocols are used in ISIS to provide failure atomicity and message ordering.

However,when a server (or a guardian in the Argus) fails to function well, an atomic
transaction or an atomic RPC has to be aborted in these systems. This is a violation of
our continuous computation requirement. The fault-tolerant process groups of the ISIS
can cope with process failures and can maintain continuous computation, but the ISIS
toolkit is big and relatively complex to use.

Typical solutions to the cross-protocol communication in RPC systems are the black
protocol boxes of the HRPC [1], the special protocol conversion interface [15] and the RPC
agent synthesis system 57] for cross-RPC communications.

The HRPC system defines five RPC components: the stub, the binding protocol, the
data representation, the transport protocol, and the control protocol. An HRPC client
or server and its associated stub can view each of the remaining components as a “black
box.” These black boxes can be “mixed and matched.” The set of protocols to be used is
determined at bind time long after the client and server has been written, the stub has
been generated, and the two have been linked.

The special protocol conversion interface proposed in [[15]] uses an “interface server”
to receive a call from the source RPC component (client or server) and to convert it into
the call format understood by the destination RPC component (server or clieat).

The cross-RPC communication agent synthesis system proposed in [[7]] associates a
“client agent” with the client program and a “server agent” with the server program. A
“link protocol” is then defined between the two agents and allow them to communicate.
The server and the client programs can use different RPC protocols and the associated
agents will be responsible of converting these dialect protocols into the link protocol.

But none of the above cross-protocol RPC systems consider fault-tolerance issues. If
the server fails, the client simply fails as well.

A fault-tolerant remote procedure call system for ODP 247

Simple Server Service Providing
Server
~ Buddy Server

(b)

RPC call

e-directed RPC call

i
Buddy Server j ________________ -

Figure 1: Server types

Incorporating both fault tolerance and cross-protocol communication into RPC systems
is clearly an important issues for using RPCs efficiently and reliably in open distributed
environments. In this paper we describe a system, called SRPC (Simple RPC) system,
for supporting development of fault-tolerant, open distributed software. The SRPC incor-
porates fault tolerance features and protocol converters into the RPC system and makes
them transparent to users. A buddy is set up for a fault-tolerant server to be its alterna-
tive. When an RPC to a server fails, the system will automatically switch to the buddy to
seek for an alternate service. The RPC aborts only when both the server and its buddy
fail. The clients and servers can use different communication protocols. To obtain these
fault tolerance and automatic protocol converting services, users only need to specify their
requirements in a descriptive interface definition language. All the maintenance of fault
tolerance and protocol conversion are managed by the system in a user transparent man-
ner. By using our system, users will have confidence on their open distributed computing
without bothering with the fault tolerance details and protocol conversion. Our system is
small, simple, easy to use and also has the advantage of producing server and client driver
programs and finally executable programs directly from the server definition files.

3 SYSTEM ARCHITECTURE

The SRPC is a simple, fault-tolerant and cross-protocol remote procedure call system
[16]. The system is small, simple, expandable and 1t has facilities supporting fault-tolerant
computing and cross-protocol communication. It is easy to understand and easy to use.
The SRPC only contains the essential features of an RPC system, such as a location
server and a stub generator, among other things. The SRPC system has been used as a
distributed programming tool in both teaching and research projects for three years.

The SRPC system has another interesting feature. That is, the stub compiler (we call
it the stub and driver generator, or SDG in short) not only produces the server and client
stubs, but also creates remote procedures’ framework, makefile, and driver programs for
both server and client. After using make utility, a user can test the program’s executability
by simply executing the two driver programs. This feature will be more attractive when
a programmer is doing prototyping.

3.1 Server Types

The client/server model [13] is used in the SRPC system. An SRPC program has two
parts: a server part and a client part. Usually the server provides a special service or
manages an object. The client requests the service or accesses the object by using the
remote procedures exported by the server.

There are three types of servers in the SRPC system: simple servers, service providing
servers and object managing servers. Figure 1 depicts these three types of servers.

248 Part Two Reviewed Papers

A simple server (Figure 1(a)) is an ordinary server possessing with no fault-tolerant
features. When a simple server fails, all RPCs to it have to be aborted.

A service providing server (Figure 1(b)) has a buddy server running somewhere in the
network (usually on a host different with the server’s), but no communication between
the server and 1ts buddy. When a service providing server fails, an RPC to this server
will be automatically re-directed to its buddy server by the system. As object changes in
the server will not be available in its buddy, a service providing server usually is used in
applications such as pure computation, information retrieval (no update), motor-driven
(no action memory), and so on. It is not suitable to be used to manage any critical cbject
that might be updated and then shared by clients.

Ap object managing server (Figure 1(c)) also has a buddy running in the network. If
manages a critical object that might be updated and shared among clients. An RPC to
such a server, if it will change the object state, is actually a nested RPC. That is, when
the server receives such a call from a client, it first checks to see whether the call can be
executed successfully (e.g. if the necessary write-locks have been obtained or not). If the
answer is no, the call is aborted. If the answer is yes, then the server will call its buddy
server to perform the operation as well. When the buddy returns successfully, the call
commits (the server and its buddy actually perform the call) and the result returns to the
client. To ensure the consistency of the objects managed by the server and its buddy, a
two-phase commit protocol [6] is used when executing the nested RPC.

Like a service providing server, when an object managing server fails, an RPC to this
server will be automatically re-directed to its buddy server by the system.

All buddy servers are simple servers. That means, when a server (service providing
or object managing) fails, its buddy server provides alternative service in a simple server
manner. Also, when a buddy server fails, a service providing server or an object managing
server will be reduced into a simple server.

3.2 The Architecture

The SRPC has the following three components: A Location Server (LS) and its buddy (LS
buddy), a system library, and a Stub and Driver Generator (SDG). This section describes
the system architecture from a user’s point of view. As server buddies are generally
transparent to users, we will omit their descriptions here.

From a programmer’s viewpoint, after the SDG compilation (see Section 5), the server
part of an SRPC program is consisted of a server driver, a server stub, and a file which
implements all the remote procedurss (called procedure file). The server buddies are trans-
parent to users. The server part (or a server program as it is sometimes called) is a “for-
ever” running program which resides on a host and awaits calls from clients. The client
part (or a client program) consists of a client driver and a client stub after the SDG com-
pilation. It runs on a host (usually a different host from the server’s host) and makes calls
to the server by using the remote procedures exported by the server.

When the client driver makes a call, it goes to the client stub. The client stub then,
through the system library, makes use of the client protocol for sending the calling message
to the server host. Because the client and the server may use different communication
protocols, a client-server protocol converter is used to convert the client’s protocol into
server’s protocol. The calling message is then sent to the server. At the server host
side, the server’s protocol entity will pass the calling message to the server stub through
the system library. The server stub then reports the call to the server driver and an
appropriate procedure defined in the procedures file is executed. The result of the call
follows the calling route reversely, through the server stub, the server protocol, the system
library of the server host, the client-server protocol converter, the system library of the
client host, the client stub, back to the client driver. This is called a direct call as the
prﬁ-conditiou of such a call is that the client knows the address of the server before the
call.

With the help of the Location Server, the run-time address of a server can be easily

A fault-tolerant remote procedure call system for ODP 249

Location Server Host

Client-Server Protocol Client-LS Protwocol
Converter +_Converter

:
H
|
: ;
.
Server oot [;
H
H
|
,
.
.
.

[Server-LS Protocol Converter I

System Library

System Library
Proced ! J
| [oumy 3 Cttont
Server Server Smb | - _
RPC Cally = 4 — —~ = — H
[SomecDmees e = =i— == 0 T e TTmS T T e
Server Driver Client Host

Figure 2: System architecture and a typical RPC

accessed. Figure 2 depicts the system architecbure using a typical RPC. The dashed line
represents the RPCs from the user’s viewpoint.

In this project, cross-protocol communication requires an individual converter for each
pair of different protocols. It has been noted that this solution is only reasonable for a few
protocols. For a large number of protocols, an intermediate protocol description would be
better.

3.3 The Location Server

One way of hiding out the implementation details is the use of the Location Server (LS).
The LS is used to hide the server locations from users. It maintains a database of server.
locations and is executed before any other SRPC program is started. After that, it resides
on the host and awaits calls from servers and clients.

The Location Server is an object managing server and has a buddy of its own. It has
a well-known location, and this location can be easily changed when necessary. The LS
itself is implemented by the SRPC system, using the direct calling method.

Usually there should be one LS (called local LS) running on each host for managing
locations of that host, and these local LSs report to the “global LS” (like the NCA/RPC’s
local and global location brokers [14] [9]). In that case the locations of all LSs can also be
hidden from users. We have planned to implement this facility.

The following call is used by a server to register itself to the LS:

int registerServer(sn, buddy, imp)

char *sn; /* server name */

char *buddy; /* buddy’s name */

struct iinfo *imp; /+# implementation info. */

where imp is a type struct iinfo structure and contains many implementation details,
such as the server’s host name, protocol, and so on. Because the call updates the LS
database, it is also directed to the LS buddy. If the call returns 0K, the location has been
riegisﬂ,gted and a client can use the following call to find out the location of a server from
the LS:

int locateServer(sn, buddy, imp)
char *sn; /* server name */

250 Part Two Reviewed Papers

SRPC Level

Remote Operation Level

Protocol Level
Communication
Entity & OS Kernel

Figure 3: Relationships of system library levels

Utility Calls

char *buddy; /* server’s buddy name */
struct iinfo *imp; /* implementation info. */

If the call returns 0K, the location of the server sn is stored in imp and the name of the
server’s buddy is stored in buddy for later use. This call does not affect the LS database
state, so there is no hidden LS server and LS buddy communication here. Before a server
is shut down, the following call must be used to un-register the server from the LS:

int unregisterServer(sn)
char *sn; /* server name */

If the call returns 0K, the server and its buddy (if any) are all deleted from the LS database.
The system also provides other LS calls for maintaining the LS database.

All the usages of these functions in a server or a client program are automatically
generated by the stub and server generator. A user does not need to look into the details
of these calls if he or she is satisfied with the generated program sections.

3.4 The System Library

The system library is another way of achieving transparency. The library contains all the
low-level and system- and protocol-oriented calls. Its main functions are to make the low-
level facilities transparent to the upper-level programs and make the system as portable
as possible.

The server and client programs must be linked with the system library separately.
Reference [16] contains detailed descriptions of the library calls. All the library calls can
be divided into the following call levels and Figure 3 depicts their relationships:

1. SRPC Level: This is the highest level. It contains calls that deal with RPC-related
operations.

2. Remote Operation Level: It contains calls that deal with remote operations. These
remote operations follow the definitions of the OSI Application level primitives [8].

3. Protocol Level: It contains calls that deal with protocol-specific operations.

4. Utility Calls: It contains all the utility calls used in different levels.

4 THE STUB AND DRIVER GENERATOR
4.1 Syntax

The purpose of the stub and driver program generator is to generate stubs and driver
programs for server and client programs according to the Server Definition Files (SDF).
Listing 1 is the syntax of a server definition file.

We use a modified BNF to denote the syntax of definition filas. The “variable”, “in-
teger”, “string”, “constant”, and “declarator” have the same meanings as in the C pro-
gramming language. Comments are allowed in the definition file. They are defined the
same as in the C programming language (using /* and */).

A fault-tolerant remote procedure call system for ODP 251

Listing 1. Server definition file syntax

<SDF> 1= BEGIN <BUDDY> ::= Buddy <BDYTYPE>: variable;
<HEADER> Using: <LANGUAGE>;
[<CONST>] <BDYTYPE> 1= Auto | Forced
<FUNCS> <LANGUAGE> ::= C | Pascal
END <CONST> constant
<FUNCS> RPC Functions: <RPCS>
<HEADER> ::= Server Name: variable; <RPCS> <RPC> { <RPC> }
Comment: string; <RPC> Name: string [Update];
<PARAMS>
[Using: <LANGUAGE>;] <PARAMS> ::= { <PARAM> }
Server Protocol: variable; <PARAM> = Param: <CLASS>: declarator;
Client Protocol: variable; <CLASS> := in | out
[<BUDDY>]
4.2 Semantics
Most of the descriptions of Listing 1 are self-explanatory. We only highlight the following
points:

1.

The server’s name is defined as a variable in the C language. This name will be
used in many places. For example, it is the key in the LS database to store and
access server entities. When the client asks the LS to locate a server, it provides the
server’s name defined here. The name is also used as a prefix in naming all the files
generated by the SDG. The default language used in the server is the C language.

. Different protocols can be defined for the server and the client respectively. The

buddy, if it is defined, uses the same protocol as the server does. Currently, only three
protocols are allowed: Internet_datagram (the UDP protocol), Internet_stream

3

the TCP protocol), and XNS_datagram (the XNS packet exchange protocol).
g

. The <BUDDY> part is optional. If it is not specified; the generated server will be a

simple server, otherwise it will be a service providing server or an object managing
server, according to some definitions in the <RPCS> part (described below). The
<BUDDY> part has a buddy definition and a language definition. The buddy defini-
tion defines that whether the buddy’s name and execution is to be determined by
the system (Auto) or to be determined by the programmer (Forced). If Auto is
defined, the system will generate the buddy server’s name (ServerNameBdy, used for
registering and locating it), the buddy’s driver and stub files as well as the makefile,
and will treat the following variable as the name of the buddy’s procedure file.
Then, the buddy program will be compiled and executed together with the server
program. The host of the buddy program will be determined by the system at run
time.

If Forced is defined, the generator will not generate any buddy’s program file and
will treat the following variable as the name of the buddy server used for registering
and locating. The programming and execution of the buddy server will also be the
programmer’s responsibility.

The language definition Using within the BUDDY part defines which language does the
buddy program use. The key 1ssue of software fault-tolerant, is the design diversity or
version independent, and one way of achieving design diversity is through the use of
multiple programming languages [12]. Currently only the C programming language

252 Part Two Reviewed Papers

Server Definition Server Buddy
Files - os ~
\4

//

Server Files '
= Client Files

Makefile

Executable Files
SDG Generator e

Figure 4: Processing structure of the stub and driver generator

is supported in the SRPC system. We have planned to support the Pascal language
implementation soon.

4. The <FUNCS> part defines the remote procedures of the server. At least one remote
procedure must be defined. Each remote procedure is defined as a name part and a
parameter (<PARAMS>) part. The name of a remote procedure is simply a variable,
with an optional Update definition. The latter definition distinguishes an object
managing server with a service providing server. That is, if the <BUDDY> part is
defined and the Update is defined in any one RPC definition, the server is an object
managing server. If only the <BUDDY> part is defined but no Update part is defined
in any RPC definition, the server is a service providing server. The meaning of the
Update definition is: if an Update is defined following an RPC procedure name, that
procedure must be maintained as a nested RPC affecting both the server and the
buddy by the server program (See Section 3.1).

There can be zero or several parameters in a procedure, each consisting of a class
and a declaration. The class can be in or out, which tells the SRPC system that
the parameter is used for input or output, respectively. The declaration part is the
same as in the C language. In this version, only simple character string is allowed
in parameter definitions. Further extensions are under way.

4.3 Implementation Issues

After a programmer sends a server definition file to the generator, the generator first does
syntax checking. If no errors are found, several program source files and a makefile are
generated. The subsequent processing is specified by the makefile. That is, when using
the make utility, the executable files of both the server and client will be generated. Figure
4 indicates the structure of the processing, The dashed lines represent optional actions.

At least one server definition file must be input to the SDG. If there are more than
one server, their SDFs can be input to the SDG simultaneously. If there is only one SDF
file, then the generated client driver can execute the server’s procedures one by one. If
the buddy part is also specified, the generated client can also call the buddy procedures
directly (this is useful in testing the client-buddy communication).

If there are more than one SDF file, then for each server, the SDG will generate one
set of server files, one set of client files, and one set, of buddy files (if the buddy is defined),
respectively. These files are the same as the servers being processed in single file input
described above. One additional set of client files, the multi-server client program, will
also be generated in this case. The client driver is called a multi-server client driver. It
can call all the procedures of all the servers one by one. A further improvement is under
way to let the client call these procedures in parallel.

The performance of an RPC in the SRPC system varies, according to which server
type is used. Table 1 lists the null RPC performance on a network of HP and SUN
workstations, where the server program runs on an HP 715/33 workstation and the server
buddy and the client run on two separate SUN 4/75 ELC (33MHZ) workstations. The
server (and the buddy, of course) uses the Internet_datagram protocol and the client uses
the Internet_stream protocol. We are still investigating the system performance under
various circumstances.

A fault-tolerant remote procedure call system for ODP 253

Server Type Time

Simple 3.224£0.02ms
ervice-providing | 3.37£0.02ms

Object-managing | 5.12£0.04ms

Table 1: Null RPC Performance

5 AN APPLICATION EXAMPLE

We use a simple exampie to show the application of the SRPC system. Suppose we have
a server definition file called sf.def. It defines a “send-and-forward” sysiem in thai the
server acts as a message storage and the client acts as both message sender and receiver.
Next is the server definition file:

Listing 2. Server definition file example

/* Store and forward: server definition file */

BEGIN RPC Fuactions:
Server Name: sf; Name: storeMsg Update;
Comment: Store and forward system; Param: in receiver: char receiver [MXNAML];
Server Protocol: Internet_datagram; Param: in msg: char msg[MXMSGL];
Client Protocol: Internet_stream; Param: out stat: char stat[MXSTRL];
Buddy Auto: sfBdylps.c; Name: forwardMsg Update;
Using: C; Param: in receiver: char receiver [MXNAML];
Param: out msg: char msg[MXMSGL];
#define MANAML 64 Name: readMsg;
#define MXMSGL 500 Param: in receiver: char receiver [MXNAML];
#define MXSTRL 80 Param: out msg: char msg[MXMSGL];
Name: 1listMsg;
END

When this file is input to the generator, the following files will be generated:

sf.h Header file, must be included by server,
its buddy and client drivers and stubs.

sfSer.c Server driver file.

sfStubSer.c Server stub file.

sf0ps.c Frameworks of server procedures.
sfCli.c Client driver file.

sfStubCli.c Client stub file.

sfBdy.c Server buddy driver file.

sfStubBdy.c Server buddy stub file.
makefile Make file.

Aftier using the make utility (simply use “make” command), three executable files are
created:

sfSer Server program.
sfCli Client program.
sfBdy Server buddy program.

254 Part Two Reviewed Papers

Note that the sfOps.c file only defines the frameworks of the remote procedures
(dummy procedures). Their details are to be programmed by the programmer. The
sfBdyOps. c file should be the same as the sfOps.c file (the only possible difference hap-
pens when the server buddy uses another programming language such as the Pascal, then
the affix of the file would be .pas).

The server driver is simple. It does the initialisation first. Then it registers with the
LS and invokes the buddy program on a neighbouring host because the buddy is defined
as Auto in the SDF file. After that it loops “forever” to process incoming calls until the
client issues a “shutdown” call. In that case the server un-registers from the LS and exits.
The “un-register” call will automatically un-register the buddy from the LS as well. The
incoming calls are handled by the server stub and underlying library functions. Following
is the pseudocode listing of the server driver:

Listing 3. Server driver pseudocode
Initialisation (including invoke the buddy);
/* Register the server to the LS */
registerServer("sf", "sfBdy", imp);
while (1) {

wait for client calls;

/% comes here only if a client called */

fork a child process to handle the RPC;

if the call is "shutdown"

break;

unregisterServer ("sf");

The server buddy driver works in the same way as the server program, except that it
does not invoke a buddy program. Also the buddy is a simple server and all calls to the
buddy will not be nested.

The generated client driver can execute the server’s remote procedures one by one. If
the server driver is running and the client driver is invoked, the client driver first lists all
the remote procedures provided by the server, and asks the user to chose from the list.
The following is the menu displayed for this example:

Available calls:

0 sf$Shutdown

1 st$storeMsg(receiver, msg, stat)
2 st$forwardMsg(receiver, msg)

3 sf$readMsg(receiver, msg)

4 st$listMsg()

Your choice:

After the selection, the input parameters of the named remote procedure are then input
from the keyboard. After that, the driver program does some initialisation and the remote
procedure is executed and returned results displayed. The actual calling and displaying
are handled by the client stub and underlying library functions. The format of all the four
RPCs in the client program are the same as the the format listed in the above menu. That
is, if the client wants to send a message to a receiver, it does the following call after the
receiver’s name and the message are input into receiver and msg variables, respectively:

sf$storeMsg(receiver, msg, stat);

Note that the remote procedure’s name is named as a composition of the server’s name
sf, a § sign, and the remote procedure’s name storeMsg in the SDF file. Similarly, if
the client wants to receive messages, it does the following call after the receiver’s name
receiver is obtained:

A fault-tolerant remote procedure call system for ODP 255

sf$forwvardMsg(receiver, msg);

Before each RPC, a locateServer("sn", buddy, imp) call is issued to the LS to
return the location of the server and the name of its buddy. The server location is stored
in imp and the buddy name is stored in buddy.

Tge fault-tolerant feature of the system is completely hidden from the user. For this
example, all the remote procedure calls from the client program will be first handled by
the server. A nested RPC is issued if the incoming call is either sf$storeMs§>(receiver,
msg, stat) or sf$forwardMsg(receiver, msg). This is because the two RPC functions
are marked as Update in the %DF file. The nested RPC will ensure that actions of the
incoming call will be made permanent on both the server and its buddy if the call is
successful, and no actions of the incoming call will be performed if the call fails. Other
two incoming calls, sf$readMsg(receiver, msg) and sf$listMsg(), will be handled by
the server only.

If the server fails (that is, the RPC to the server returns an error), the client program
will send the RPC to the server’s buddy. The location of the buddy will be determined
by another call to the LS:

locateServer(buddy, "", imp)

where buddy is the server buddy’s name obtained during the first call to the LS, and imp
stores the location of the buddy.

The cross-protocol communication is also hidden from the user. All the interfaces to
the protocol converters (client-LS, client-server, and server-LS) are generated by the SDG
(in the stub files) and nsed automatically by the stubs. If a user only deals with the RPC
level, he or she will never notice the underlying protocols used by the server and client
programs.

6 REMARKS

A system for supporting fault-tolerant, open distributed software development, is described
in this paper. The system is simple, easy to understand and use, and has the ability of
accommodating multiple communication protocols and folerating server failures. It also
has the advantage of producing server and client driver programs and finally executable
programs directly from the server definition files. The system has been used as a tool of
distributed computing in both third year and graduate level teaching, and has been used
by some students in their projects.

In tolerating server failures, similar efforts can be found in the RPC systems that
provide replicated server facilities, such as NCA/RPC [14]. But in these systems, the
user, instead of the system takes the responsibility of maintaining and programming the
functions for object consistency. This is a difficult job for many programmers. Our
approach in achieving fault tolerance is similar to the approach used in the ISIS toolkit
(of course, ours is more simplified and less powerful). But our system is simple, easy to
understand, and easy to use. In our system, we provide a server buddy to tolerant the
server’s failure. When the server fails, the client, instead of aborting, can access the server
buddy to obtain the alternative service. Also in our system, it is the system, instead of
the user, that is responsible of maintaining the consistency of the managed objects.

Providing server and driver programs directly from the server definition file (similar
to the interface definition files of other RPC systems) is also an interesting characteristic
of our system. It is related to the rapid prototyping of RPC programs [17]. The driver
programs are simple, but yet have the advantages of testing the executability of the RPC
program immediately after the designing of the SDF file. It is especially useful if the user
makes some changes in the SDF file or the procedure file. In that case, these changes will be
automatically incorporated into other related program files if the program is re-generated
by the stub and driver generator. This will avoid a lot of troubles in the maintenance of
consistency of program files.

256 Part Two Reviewed Papers

References

[1] B. N. Bershad, D. T. Ching, E. D. Lazowska, J. Sanislo, and M. Schwartz. A remote proce-
dure call facility for interconnecting heterogeneous computer systems. IEEE Transactions
on Software Engineering, 13(2):880-894, August 1987.

[2] K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM
Transactions on Computer Systemns, 5(1):47-76, February 1987.

[3] K. P. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multi-
cast. ACM Transactions on Computer Systems, 9(3):272-314, August 1991.

[4] M. Boari, M. Ciccotti, A. Corradi, and C. Salati. An integrated environment to support

construction of reliable distributed applications (CONCORDIA). In Parallel Processing and

Applications, pages 467-473. Elsevier Science Publishers (North Holland), 1988.

==

[5] D. Cerutti. The network is computer. In D. Cerutti and D. Pierson, editors, Distributed
Computing Environments, pages 17-26. McGraw-Hill, New York, 1993.

[6] J. Gray and A. Reuter. Transaction Processing. Morgan Kaufrnann Publishers, San Mateo,
California, USA, 1993.

[7] Y.-M. Huang and C. V. Ravishankar. Designing an agent synthesis system for cross-rpc
communication. IEEE Transactions on Software Engineering, 20(3):188-198, March 1994.

[8] B. N. Jain and A. K. Agrawala. Open Systems Interconnection: Its Architecture and Pro-
tocols. Elsevier Science Publishers B.V., The Netherlands, 1990.

[9] M. Kong, T. H. Dineen, P. J. Leach, E. A. Martin, N. W. Mishkin, J. N. Pato, and G. L.
Wyant. Network Computing System Reference Manual Prentice-Hall, Englewoods Cliffs,
New Jersey, 1990.

[10] B. Liskov. Distributed programing in ARGUS. Communications of the ACM, 31(3):300-312,
March 1988.

11] B. J. Nelson. Remote procedure call. Technical Report CSL-81-9, Xerox Palo Alto Research
I T)
Centre, May 1981.

[12] J. M. Purtilo and P. Jalote. A systemn for supporting multi-language versions for software
fault tolerance. In Proceedings of the 19th International Symposium on Fault Tolerant Comn-
puting, pages 268-274, Chicago, USA, 1989.

[13] A. Sinha. Client-server computing. Comnunications of the ACM, 35(7):77-98, July 1992.

[14] L. Zahn, T. H. Dineen, P. J. Leach, E. A. Martin, N. W. Mishkin, J. N. Pato, and G. L.
Wyant. Network Computing Architecture. Prentice-Hall, Englewoods Cliffs, New Jersey,
1990.

[15] W. Zhou. A remote procedure call interface for heterogeneous computer systems. In Pro-
ceedings of the Open Distributed Processing Workshop, Syduney, Australia, January 1990.

[16] W. Zhou. The SRPC (Simple Remote Procedure Call System) Reference Manual De-
partment of Information Systems and Computer Science, National University of Singapore,
1992.

[17] W. Zhou. A rapid prototyping system for distributed information system applications. The
Journal of Systems and Software, 24(1):3-29, 1994.

