
12
AI-based Trading in Open Distributed Environments

A. Puder, S. Markwitz, F. Gudermann and K. Geihs
{puder,markwitz,florian,geihs}«<informatik.uni-frankfurt.de

Department of Computer Science
University of Frankfurt
D-60054 Frankfurt, Germany

Abstract

An open distributed environment can be perceived as a service market where services are freely
offered and requested. Any infrastructure which seeks to provide appropriate mechanisms for such
an environment has to include mediator functionality (i.e. a trader) that matches service requests
and service offers. Commonly, the matching process is based upon some IDL-based service type
definition, and the types of the various services have to be "standardized" and distributed a priori
to all potential participants. We argue that such well defined "standards" are too inflexible and
even contradict the idea of an open service market. Therefore we propose a new type notation
based on conceptual graphs. The trader maintains a knowledge base about service types in form
of conceptual graphs. During the trader operations the service type knowledge evolves as it is
continuously refined and extended. Users of the trading service interact with the trader and for­
mulate queries in a corresponding notation that allows for a conceptual specification of the desired
service type. Adequate matching algorithms and protocols have been implemented.

Keywords: Trading, type specification, conceptual graphs.
Classification: C.2.4; D.1.5; I.2.4

1 Introduction

The emerging Reference Model of Open Distributed Processing (ODP) provides an architectural
framework for the standardization of distributed system technology. It defines abstract concepts
that are appropriate to reason about and specify general distributed systems.

The basic goal is to enable the interworking of heterogeneous systems. Furthermore, it is
addressing the question of application portability and distribution transparencies.

One of the functions that will be standardized as part of the ODP activities is the trading
function (see (IS094)). It is concerned with the matching of service requesters and service pro­
viders. The matching is done based on the notion of a service type, which (informally) is something
that expresses properties of an object. The trading function is provided by a component called
trader. A service provider exports its service offer to the trader (called service export). The trader
maintains a database of service exports. A service requester makes an inquiry to the trader for
a particular service offer and- if available- receives a reference to a suitable service exporter.
This is called service import.

K. Raymond et al. (eds.), Open Distributed Processing
© Springer Science+Business Media Dordrecht 1995

158 Part Two Reviewed Papers

The concept of a service type plays an important role in such environments. The notion of a
type is well known from conventional procedural programming languages, where types are used
in order to aid error checking and software maintenance. Static typing is the dominant approach
in these languages. In object-oriented languages the notion of a type is somewhat more flexible
because of subtype relationships (see [Ame90] and [BJ93]). Nevertheless, the programmer of an
application has a rather precise knowledge about what kind of types to be used.

In a general, large, open distributed system with a variety of different service providers, service
requesters and service types, there is much less knowledge about the set of (service) types that
will be available during the lifetime of an application program. Clearly, an application needs
to understand the basic semantics and the access rules of the services it is going to work with.
However, in an open service environment many different "flavors" of a particular service type
may be offered over time by different service providers using the same or very similar service
interfaces.

Consequently, in such dynamic environments service providers and requesters need means
to specify service types and to learn about new service types at runtime. We have developed
a notation for expressing the knowledge about service types and thus to support the trading
function in open distributed systems. Our approach is based on a knowledge representation
technique called conceptual graphs. A conceptual graph captures the knowledge about a service
type and allows the specification of a type using a powerful, extensible notation. The trader
matches service imports and exports using the information contained in the conceptual graphs.

This paper motivates our approach and demonstrates its strengths. In Section 2 we describe
our assumptions that result from the envisaged trading environment. Section 3 introduces the
conceptual graph technique. We present an example and a formal theoretical framework that is
adapted to the trading requirements. The specification of a type may evolve over time. Therefore,
an algorithm is presented describing how the interacting entities can incrementally acquire more
knowledge about a service type. In Section 4 we give an overview of the trading protocol which
allows for an interactive service type negotiation. A matching algorithm and protocol have been
implemented and are available. Section 5 contains further details as well as our conclusions.

2 Environment

We use a basic model called the object graph to motivate our definitions of type notations within
open distributed environments. The discussion of object graphs in this section serves as a starting
point for the conceptual graphs, which will be presented in the following sections.

2.1 Object graph model

Our model is based upon the classical definition of an object, as it can also be found in the
ODP RM [IS093a], i.e. an object is characterized by its behaviour and, dually, by its state.
An object is distinct from any other object. Using this definition, a problem domain may be
decomposed as a set of interacting and co-operating objects. A snapshot of such an object­
based computation may be visualized as a directed graph, where nodes represent objects and
arcs represent references. A reference (or arc) is therefore a referral of an object's identity.
The direction of the arc determines whose identity is known to whom. For an object to hold a
reference to another object means to know about the existence of this particular instance, allowing
operation invocations (also commonly called method invocations). Thus a directed arc between
two nodes (objects) represents the ability to invoke operations along the direction of this arc (i.e.
the service provider is at the arc head, and the requester is at the tail). Service providers are also

Al-based trading in open distributed environments 159

called server objects and service requesters are called client objects. The directed graph will be
called an object graph. In terms of level of abstraction a client may be an object in the co=on
sense or a human user interacting with a client object. The terms client and user will be used
synonymously throughout this paper.

Figure 1: Trader object bridges the knowledge/visibility gap.

An important consequence of the object model is that an object encapsulates data and code.
The role of a type specification is therefore crucial in the sense that it should provide enough
information to describe an object's behavior, yet conceal any implementation specific details. We
assume that both references and objects are typed. Implementation details of a server object are
irrelevant to a client. From a client object's perspective (the one holding the reference) a reference
guarantees a treaty that the server object must fulfill. Polymorphism here occurs when the type
of the reference is a super-type of the object to which it points. The server object therefore is a
specialization to what the client expects, if it can fulfill the treaty1.

One can distinguish two different cases with respect to when a type specification is required: at
compile time or at runtime. For compile time type notations there exists a wide range of notations
based on interface signatures defined in some interface definition language (IDL for short). A
type specification written in some IDL commonly lists a set of methods which are implemented
by the server object. Special tools generate so-called stubs or proxies which eventually get linked
to the client object. In terms of level of abstraction, an IDL is intended for prograntmers and is
transparent for users of the client object at runtime.

In contrast a type specification notation used during runtime must build upon different mech­
anisms. The level of abstraction of the underlying objects is higher in the sense that the user
determines at runtime the kind of service he or she wishes to use. A common technique for
building such systems are generic client objects which are able to communicate with an a priori
unknown server. Examples for such systems are the World Wide Web (WWW), OLE2, OpenDoc
or COSM (see [BL +94], [Mic93], [Lab94] and [MML94] respectively).

All these systems have in co=on that different services can be provided at runtime without
the need for a specific service interface definition at compile time. Instead, a service provider has
means to dynamically convey its particular user interface to the client via some sort of graphical
user interface (GUI} descriptions. The generic client is able to interpret these descriptions and
to build and present an appropiate GUI for the end user. The user may interact with the generic

1 Polymorphism is often referred to as the "principle of substitutability" where an object of type A may be
substituted by an object of type B without anything "bad" happening.

160 Part Two Reviewed Papers

client to invoke operations and to provide parameters embedded as widgets such as edit fields or
checkboxes appearing in the GUI. These parameters are transfered to the service provider who
takes appropriate actions to perform the request. For example, within the WWW system a GUI
description is based on the hyperte:d markup language {HTML) which the generic client is able
to translate into a visual presentation.

Via such mechanisms there may be a rich variety of different services accessible. However,
there arise questions such as:

• How does a user specify its service requirement?

• How can a user find a suitable service provider for a desired service type?

It is not immediately clear what a notation for a type specification should look like. A type
specification in this environment is more abstract and vague than an IDL based specification. In
particular it should support the cognitive dorilain of the users and not of the programmers. In
the following sections we propose a technique, called conceptual graphs, which is appropriate for
runtime type specification.

2.2 Trading and the dualism of type definitions

In this section some consequences with regard to the role of a tr8.der will be discussed. We assume
the need for runtime type specifications as discussed above. Furthermore the object graph will
be seen in the context of an open distributed environment. By open we mean an environment
where all participating service providers are not known a priori. Thus, the object graph and
its modifications are to be seen as an abstraction of a service market, where services are freely
provided and requested by independent parties.

In a distributed environment the object graph will generally be partitioned2• A client object
has only a limited view on the object graph, as global knowledge of it's structure is generally
impossible to acquire. As references between objects induce a "knows-about-relation", it is also
clear that without appropriate support from an underlying infrastructure a client can't see beyond
a transitive closure of the references it holds (i.e. the partition of the object graph in which the
client is embedded).

These considerations have led to proposals like the ODP Trader or COREA's Request Broker
(see [IS093b) and (Gro91) respectively), which serve as a mediator between service requesters
and service providers and therefore bridge the knowlegdefvisibility gap. The trader matches
service requests with previously stored service offers and thereby helps to establish references
in the object graph. The match process heavily depends on the precise definition of the type
specification notation. With respect to the categorization made in the previous section, current
traders primarily match compile time type information.

It is important to think about the role of a type in such an environment. In order for the
match algorithm within the trader to succeed, a type description must conform to a kind of
"standard", which all participating parties have to agree upon a priori. This standard has to be
defined well enough to be matched unambiguously against other types. Current traders, like the
aforementioned ODP Trader, base their match algorithm mainly upon syntactic features of the
interface. The implication is that the exact syntactic structure of a particular service signature
must be communicated to all parties.

'Note that in one address space object systems the usual approach is that all except one designated root
partition are subject to a garbage collector, as in Smalltalk.

AI-based trading in open distributed environments 161

The requirements of the definition of type specification notations can therefore be characterized
as follows:

1. A notation should be based upon a precisely defined syntax to avoid ambiguities.

2. A notation should be open enough to avoid the need for an a priori standardization of service
descriptions.

The first requirement originates from the fact that the trader must have solid grounds for a
matching algorithm. This leads to an explicit definition of an object's type which necessarily must
be known by all potential clients in advance. The second requirement on the other hand stems
from a pragmatic point of view, whereas a client object should not need the a priori knowledge on
how a server object has chosen to describe its type. This leads- contrary to the first requirement
- to an implicit definition of a server object's type. The latter requirement clearly would be
desirable as it would avoid the need to standardize every object type in advance.

We call the obvious contradiction the duality of the requirements of the notation for a type
specification in open distributed environments. We have previously proposed a formal framework
to solve this duality for compile time type notations (see (Pud94)). In the following section,
we present a notation suitable for runtime typing, which in particular addresses the dualism
mentioned above.

3 Towards AI-based trading

In contrast to compile time types, which are handled by a programmer, a type specification
suitable for runtime represents an information artifact which is dealt with by a user. A notation
therefore must adhere to the world of discourse of the user community with much less precisely
defined syntax. On the other hand the notation should be flexible enough to allow for a broad
expressiveness for a large variety of services as the experience with the WWW has shown.

Our approach- which copes with the aforementioned dualism- is based upon techniques
which originated in the field of machine learning. There exists a wide range of literature on ma­
chine learning and various proposals have been made (see [Bol87] for an overview). Concerning
the problem of AI-based trading, we have decided to build our framework upon a knowledge
representation method called conceptual graphs (see [Sow84)). We have devised our own theor­
etical framework for conceptual graphs to suit the particular needs of a trader. In the following
subsection the notion of a conceptual graph and a machine learning algorithm will be presented
from a pragmatic point of view. Then a formal specification will be given.

3.1 AI-based trading: a pragmatic example

Conceptual graphs have been developed to model the semantics of natural language. Service
descriptions based on conceptual graphs are therefore intuitive in the sense that there is a close
relationship to the way human beings represent and organize their knowledge. From an abstract
point of view a conceptual graph is a finite, connected, directed, bipartite graph. The nodes of
the graph are either concept or relation nodes. Due to the bipartite nature of the graphs, two
concept nodes may only be connected via a relation node.

A concept node represents either a concrete or an abstract object in the world of discourse. As
for the context of service types a concept may be a concrete object such as PRINTER, COMPILER
or DATABASE including specific instances (e.g. HP-Laserjet, GCC, Ingres, etc), as well as an

162 Part Two Reviewed Papers

abstract object such as PRINTING-SPEED or PROGRAMMING-LANGUAGE with no physical represent­
ation. Whereas concepts model objects of our perception, a relation node expresses a specific
relationship between concept nodes. In the following examples a concept node is surrounded by
square brackets and relations by round brackets, respectively.

The following conceptual graph labeled as CG1 describes an object oriented language called
C++3. The informal semantic of the concept is: "Something which is a superset of a programming
language called C, supports classes which themself consist of methods and a state. Furthermore
the methods describe the behaviour of classes." The syntax of the following examples is accord­
ing to a grammar which we have defined for AI-based trading and can be processed by our
implementation.

CGl: [00-LANGUAGE:{"C++"}] -
-> (SUPERSET-OF)-> [PROGRAMMING-LANGUAGE:{"C"}],
-> (SUPPORTS) -> [CLASSES] -

->(HAVE)-> [METHODS]-> (DESCRIBE)-> [BEHAVIOR],
->(HAVE)-> [STATE].

A concept can be recursively defined via subconcepts. The concept CG1 is therefore explained
by two subconcepts which are connected to the root concept C++ with the relations SUPERSET-OF
and SUPPORTS. A concept node itself is divided into a type and a possibly empty list of instances
for that type. The root concept of CG 1 therefore defines C++ as. an instance of type 00-LANGUAGE.
If the concept CG1 is regarded as a service which is offered by some provider, then the following
conceptual graph would represent a query which matches with the previous service description:

CG2: [SOMETHING:*] -> (SUPPORTS) -> [CLASSES]

The informal semantics of CG2 is: "I need something which supports classes." As CG1 has
previously been defined as something which actually does support classes, the trader would match
these two descriptions. It should be noted that queries and service descriptions are formulated
using the same notation. The root concept of CG2 [SOMETHING:*] introduces two new notions.
The asterisk "*" denotes a generic object which will be matched with any other object. On the
other hand it is not clear how SOMETHING is to be matched with DO-LANGUAGE. A concept node is a
typed entity which may have arbitrary number of instances. In our notation a type is written left
of a colon whereas the(possibly empty) instance list is written inside curly brackets to the right
side. The set of all types T form a lattice with a partial ordering $r which denotes specialization.
The type lattice used for this example is shown in figure 2.

The type SOMETHING as the top element of the lattice is generic in the sense that all other
types are specializations of it. The matching process that the trader must perform can specialize
types in a query. In order to match CG1 and CG2, the type SOMETHING is specialized or reduced to
DO-LANGUAGE. Next consider a different query called CG3:

CGJ: [SOMETHING:*] -> (ENCAPSULATE) -
-> [STATE],
->[BEHAVIOR].

Some client wishes "something which encapsulates state and behaviour." As can been seen
easily, even after a proper reduction of the root concept [SOMETHING: *] , the requirement formu­
lated in CG3 does not match CG1 although from a intuitive point of view they should. There is no

3For the purpose of this example we assume no further refinement of this service description (i.e. whether the
service CGl represents a language reference, product information or other).

AI-based trading in open distributed environments 163

SOMBTIIING

PROGRAMMING-LANGUAOB

~
BEHAVIOUR 00-LANGUAGE LOGIC-LANGUAGB STATE

NOTillNG

Figure 2: A possible explication of a type lattice.

way the trader can possibly match those two concept graphs because it doesn't have any notion
of the underlying semantics. But if the trader were told that the two descriptions denote the same
concept, then it could enhance CG1 by learning the new features of the concept called C++:

CG4: [00-LANGUAGE:{"C++"}] -
-> (SUPERSET-OF)-> [PROGRAMMING-LANGUAGE:{"C"}],
-> (SUPPORTS) -> [CLASSES] -

-> (HAVE) -> [METHODS] -
->(DESCRIBE)-> [BEHAVIOR].,

->(HAVE)-> [STATE].,
-> (ENCAPSULATE) -

-> [STATE],
-> [BEHAVIOR].

Obviously the query CG3 will match the description in CG4. Next consider a different service
provider registering a new service called Objective-C. The initial concept graph describing the
service might look like:

CG5: [00-LANGUAGE:{"Objective-C"}] -
-> (SUPERSET-OF)-> [PROGRAMMING-LANGUAGE:{"C"}].

The previous concept graph is a subgraph of CG4 and therefore the trader will ask the new
service provider whether Objective-Cis merley another instance of the type DO-LANGUAGE along
with C++. If this should be the case, the trader will simply add the new instance to the root
concept node. For the purpose of this example the service provider considers C++ different
from Objective-C. In doing so he must augment his original conceptual graph by appropriate
subconcepts which distinguish it from CG4. This augmentation results in the following graph CG6
which states that "Objective-Cis a superset of C and supports class objects":

CG6: [00-LANGUAGE:{"Objective-C"}] -
->(SUPERSET-OF)-> [PROGRAMMING-LANGUAGE:{"C"}],
-> (SUPPORTS)-> [CLASS-OBJECTS].

As the subconcept [CLASS-OBJECTS] distinguishes the two concepts, it is added as a counter
example to CG4 which yields the following new conceptual graph for C++:

164 Part Two Reviewed Papers

CG7: [00-LANGUAGE:{"C++"}] -
->(SUPERSET-OF)-> [PROGRAMMING-LANGUAGE:{"C"}],
-> (SUPPORTS) -> [CLASSES] -

-> (HAVE) -> [METHODS] -
->(DESCRIBE)-> [BEHAVIOR].,

->(HAVE)-> [STATE].,
-> (ENCAPSULATE) -

-> [STATE],
-> [BEHAVIOR].,

->(NOT SUPPORTS)-> [CLASS-OBJECTS].

As the previous discussion suggests, a conceptual graph explains through an amalgamation of
examples and counter examples. The trader can increase the quality of a concept over time as it
incorporates new subconcepts. The quality of the matching process performed by the trader will
therefore increase in the same way.

3.2 Formal Specification

The previous subsection has presented an extended example to demonstrate the power of a trader
employing AI-techniques. In this section a formal framework for conceptual graphs, the join of
two graphs as a learning mechanism and finally a match of two graphs will be given. We will
start by defining the basic sets of the formal model:

Types T: Let T be a set of all types. The types in T and the partial ordering :5T form a lattice
(T, :5T) with SOMETHING E T the top element and NOTHING E T the bottom element.

Relations R: Let R be the set of all relations. The relations R and the partial ordering :5R form
a lattice (R, :5R) with LINK e R the top element and NO-LINK e R the bottom element.

Objects 0: Let 0 be the set of objects of our perception. The objects are to be seen as instances
of one or more types from T.

Concepts Cn: Let Cn = T x 2° the set of all concepts. A concept is a tuple of a type and a
subset of the set of all objects. The generic object (denoted by *) is a representative for any
object and defined as 0 for formal reasons.

The set of relations is also organized in terms of a lattice with the partial ordering :5R· This
will allow greater flexibility for the match operation. The set of all concepts may not be true with
respect to the world of discourse. Therefore we introduce a conformity relation which provides
a link to a higher order knowledge base. The relation Conf is not meant to be implemented,
rather as a formal framework to argue about the truth of concepts. But there are nevertheless
some properties which must hold. The decision of the meaningfulness of a concept eventually can
only be decided outside the scope of the trader.

Conformity Relation: Conf: Cn -t {true, false}

Let (t,o) E Cn with t E T and o E 2°.

1. (conf((t,o)) =true)=} (vt! E T: (t :5 t') =} (Conf((t',o)) =true)).

2. Conf((SOMETHING,o)) =true.

Al-based trading in open distributed environments 165

3. Conf((NOTHING, o)) =false.

4. Conf((t, *)) = true.

5. Conf((t, 0)) =false.

If an object is an instance of a type, then it must also be an instance of all it's super types

(i.e. more general types). All objects are instances of the top type SOMETHING and no object is

an instance of the bottom type NOTHING. Finally every type has at least the generic object as an

instance.
One important transformation of concept nodes is that of a restrict operation. A restrict

specializes two concepts to their least common ancestor in terms of their types and instance lists.
It is important to note that the restrict operation does not necessarily preserve truth (i.e. the

result of a restrict operation on two true concept nodes, with respect to the conformity relation,

must not necessarily be true). The join and match operation will use the restrict to transform a
query for building maximal common subgraphs of two concepts.

The result of Restrictc is the minimal common subtype (i.e. the least subtype which can be
obtained by specializing two types). Restricta denoting the minimal common relation is defined

analogously.

Restrictc : Let Restrictc : Cn x Cn -+ Cn where

{
(t, o)

Restrictc((ti. o1), (t2, 02)) =df

(NOTHING, 0) :

(t ~T t1 At ~T t2) A ((V'd E T)
((d ~T t1 Ad ~T t2) => d ~T t)) and
with t of NOTHING and o = o1 n 02
otherwise

Restrict a : Let RestrictR : R x R -+ R where RestrictR(s, t) = u iff u ~R s and u ~R t and

('v'w E R)((w ~R sAw ~R t) => w ~R u).

The first major definition is that of a conceptual graph as a graph containing concept and
relation nodes.

Conceptual graph G: Let N ~ lN be a finite, not empty set of node numbers and K be a set

consisting of concepts and relations with K ~ Cn U R. There must be at least one concept
inK and K is finite (Cn n K of 0 and IKI < oo). Let m : N -+ K be a total, not necessarily
surjective numbering function. Let V ~ N x N be a set of vertices.

Let G = (N, K, V, m) be a rooted, connected, acyclic and bipartite digraph with

(i) (V'(n1, n2) E v) (/{(n, nr)l(n, n1) EVAn EN}/ ~ 1)
(ii) (:3 n E N)(/{(nt,n)l (n1,n) E V An1 EN}/= o) (n is called the root node number

of the conceptual graph (root(G)= n))

(iii) (V'(n1, n2) E v) ((m(ni) E Cn A m(n2) E R) V (m(ni) ERA m(n2) E Cn))

(iv) (V'(ni, n2) E v) (/{(n2, n)l(n2, n) E VAnE N}/ = 0 => m(n2) E Cn).

The set of all conceptual graphs is denoted by CG.

166 Part Two Reviewed Papers

The join operation which is defined next merges two conceptual graphs into one. The join
is not possible if the root concept nodes of the two graphs can't be restricted. Otherwise the
resulting graph is obtained by recursively trying to overlay subconcepts as much as possible. The
merging of two graphs is minimal in the sense that the joined graph is the smallest possible. The
join operation is the basis for a machine learning algorithm. It should be noted that the result
of a join necessarily has to be checked against the conformity relation. A join of two graphs can
therefore only be a tool provided by the trader to aid a service provider augmenting and refining
one of his or her service descriptions.

Join operation Join : CG x CG --+ CG U {nil}. The result of Join(Gt,G2) with G; =
(N;,K;, V;,m;), w.l.o.g. Nt n N2 = 0, n; = root(G;), k; = m;(n;) the root concept node of
G;, i = 1,2 is:

(i) nil if Restrictc(k1, k2) ={NOTHING, 0) or

(ii) GJ = (NJ,KJ, VJ,mJ). k = Restrictc(kt,k2) the new root node of G, and ii =
max{Nt U N2 } + 1 the new root node number.

(a) NJ=dfNtUN2U{ii}\{nt,n2}·
(b) K, =df Kt U K2 U {k}.
(c) V, =dt V1 U ~ U {(ii,n)j3(nt,n) E Vt V 3(n2,n) E V2} \ {(n,n)j(n = n1 V n =

n2) II n E N1 U N2}.
(d) Define m, as follows:

(iii) Set n = ii.

nENt\{nt}
nEN2\{n2}
n=ii

(iv) If there exists direct successor nodes of n: for all direct successors n1, n2 of n:

(a) if m,(n) E Cn and RestrictR(m,(n1), m,(n2)) = k' f NO-LINK then define
m,(nt) =df k' and connect all direct successors of n2 with n1. Define m,(n2) =df
undef. n = n1 . Go to (iv).

(b) if m,(n) E Rand Restrictc (m,(n1), m,(n2)) = k' i= (NOTHING, 0) then define
m,(nt) =dt k' and connect all direct successors of n2 with n1. Define m,(n2) =df
undef. n = n1. Go to (iv).

The match operation is one of the key mechanisms of the AI-based trading concept. A match
takes two conceptual graphs as input and produces their intersection.

Match operation Match: CG x CG--+ CG: Let Gs be a conceptual graph for a service de­
scription, Gq a conceptual graph for a query. Match(Gs,Gq) = GM the match graph is
constructed as follows:

(i) GM =dt Gq, n; = root(G;),i E {S,M}

(ii) If ms(ns) E Cn then

(a) if there exists direct successor nodes of ns:

Al-based trading in open distributed environments

if the number of direct successor nodes of nM is greater 0 then for all direct
successor nodes nM of nM: if there exists no node n5 (direct successor of
ns) with RestrictR(ms(n5), mM(nM)) ,P NO-LINK then delete nM and all
existing successor nodes of nM else set ns = n5 and nM = nM, go to (ii)

167

(b) else delete all existing successor nodes of nM; if Restrictc(ms(ns), mM(nM)) =
(NOTHING, 0) then delete nM.

(iii) If ms(ns) E R then

(a) if there exists direct successor nodes of ns:
if the number of direct successor nodes of nM is greater 0 then for all direct
successor nodes nM of nM: if there exists no node n5 (direct successor
of ns) with Restrictc(ms(n5), mM(nM)) ,P (NOTHING, 0) then delete nM
and all existing successor nodes of nM else set ns = n$ and nM = nM, go
to (ii)

(b) else delete all existing successor nodes of nM; if RestrictR(ms(ns), mM(nM)) =
NO-LINK then delete nM.

The trader decides the quality of a match by evaluating the result of a match operation
according to some metric (for an in-depth discussion on this topic see [PMG95]). As we have just
finished a prototype of the AI-based trader, this metric will be subject to modifications as we
gain more experience. It should he clear that wrong answers to a query are possible if the quality
of the service description or the query itself isn't sufficient. This will he discussed in greater detail
in the following section.

4 AI-trading protocol

In this section we focus upon the trading protocol which embeds the trader as well as client and
server objects into one framework. The justification for a designated protocol becomes clear when
compared with the traditional task of service trading based on compile time type notations. The
proposed type notation, introduced as conceptual graphs, does not rule out that the trader may
make mistakes due to unprecise service descriptions. The interaction with a trader therefore goes
beyond the one time matching of service requests. An AI-based trader may have to backtrack
and refine previously stored descriptions through learning of new concepts and offering a client
different services. It should be noted that a human user (i.e. not some software component) even­
tually recognizes a wrong service which may lead to further interaction with the trader providing
a refined description.

We will discuss the protocol only on an informal level. Three distinguished roles may be
identified which participate in the trading process: a client (respectively a user), a server and thtl
trader itself. Each of these roles will be discussed separately.

Trader: Conceptually the trader maintains a database of all service providers who have registered
themselves previously. The database holds tuples each containing a conceptual grnph as one
argument and addresses of one or more server objects providing the service described by the
conceptual graph as another. If a match of a request and a service offer succeeds, the trader
uses the address to construct a reference which will be given to the client as the result. The
precise structure of an address lies outside the framework.

Service provider: A service provider implements some service and wishes to export it through
the trader. A suitable service description is formulated as a conceptual graph. The service

168 Part Two Reviewed Papers

provider may have to adjust his or her concept upon request from the trader. Eventually
the quality of the service description will increase as the conceptual graph is refined over
time.

Service requester: A service requester seeks a particular service and consults the trader for an
appropriate reference. The desired service is specified again via a conceptual graph. As the
trader's knowledgebase is incomplete initially, a service requester may not get what he or
she intended. In this case the user has to further interact with the trader.

With respect to the Al-based trading protocol there are two distinct interactions with the
trader: the export of a new service and the import of a particular service. A service provider
initially exports a conceptual graph describing the service along with an address. The trader
tries to match this graph with those already stored in its database. The service provider is
presented a list of possible matches, i.e. services which are similar. The service provider either
has to refine his initial description to increase the semantic distance to those matches or can decide
that his service is just another instance of a service already registered.

A service requester formulates a query in terms of a conceptual graph which the trader tries
to match with those services previously stored in its database. If there is no match the requester
has to browse all services manually. If this search leads to the desired service, the trader then
forwards the original query to the provider. It is the provider's task to augment his own conceptual
graph accordingly, such that the formerly unsatisfied query will produce a match. In this case the
learning process occurs on the side of the service provider.

If the service requester notices that an inadequate service was given to him or her then the
query has to be re-formulated and posted again to the trader. Eventually the service requester
will get the desired service. The learning process here occurs on the requester's side who has
learned to precisely define what he or she wants. This scenario suggests that in terms of machine
learning terminology the trader assumes the role of a teacher as well as a student (when new
service descriptions are being taught), the client assumes the role of a student and the server may
both act as a teacher and as a student.

5 Conclusion and outlook

Open distributed environments may be seen as a service market where services are freely offered
and requested. The mediation of these services is done by a designated system component known
as a trader. Current traders primarily base their matching algorithm of services upon IDL­
based type notations. In this paper we have proposed a new type notation which allows for
abstract descriptions of arbitrary services. This notation - building upon techniques from the
domain of machine learning- supports the cognitive domain of the users. The trader maintains a
knowledgebase which is refined over time as the trader learns various ways of describing a service.
The quality of a match therefore increases in the same sense, thus solving what we call the dualism
of type notations.

We have implemented the algorithms and the protocol described in this paper. The complete
source, using various C++ PD-class libraries, are placed in the public domain and may be
obtained from the first author. Our implementation of an AI-based trader maintains a database
of uniform resource locators (URL) of the World Wide Web. Future work will include a more
comfortable GUI-based front end for conceptual graphs as well as experiments with various
metrics for the match algorithm.

AI-based trading in open distributed environments 169

Acknowledgements

We thank Scott M. King (Thinkage LTD, Canada) and an anonymous referee for their comments
and discussions on this article.

References

[Ame90] P. America. Designing an object oriented programming language with behavioural
subtyping. In REX School/Workshop, LNCS 489. Springer, May/June 1990.

[BJ93] B. Liskov and J. Wing. A new definition of the subtype relation. In 0. M. Nierstrasz,
editor, ECOOP'93: Object-Oriented Programming. Springer, 1993.

[BL +94] Tim Berners-Lee et al. The World-Wide Web. Communication of the Association for
Computing Machinery, 37(8):76-82, August 1994.

[Bol87] Leonard Bole, editor. Computational Models of Learning. Springer, 1987.

[Gro91] Object Management Group. The Common Object Request Broker: Architecture and
Specification Revision 1.1. 1991.

[IS093a] ISO/IEC. Information Technology- Basic Reference Model of Open Distributed Pro­
cessing- Part I. ISO/IEC COMMITTEE DRAFT ITU-T RECOMMENDATION
X.902, 1993. ISO/IEC CD 10746-2.3.

[IS093b] ISO/IEC. ODP-Trader, Document Title ISO/IEC JTC 1/SC 21 N 8192. 1993.

[IS094] ISO/IEC. Working Document - ODP Trading Function, January 1994. ISO/IEC
JTC1/SC21 N8409.

[Lab94] Component Integration Laboratories. Shaping tomorrow's software (white paper).
Technical report, cil.org:/pub/cilabs/tech/opendoc/OD--overview.ps, 1994.

[Mic93] Microsoft. OLE 2.0 Design Specification. Technical report, ftp.microsoft.com
/developr/drgfole-info/OLE-2.01--docs/OLE2SPEC.ZIP, 1993.

[MML94] M. Merz, K. Miiller, and W. Lamersdorf. Service trading and mediation in distributed
computing environments. In Proceedings of the International Conference on Distributed
Computing Systems {ICDCS '94). IEEE Computer Society Press, 1994.

[PMG95] A. Puder, S. Markwitz, and F. Gudermann. Service trading using conceptual struc­
tures. In 3rd International Conference on Conceptual Structures '(ICCS'95}, Santa
Cruz, University of California, 14-18 August 1995. Springer.

[Pud94] Arno Puder. A Declarative Extension of IDL-based Type Definitions within Open
Distributed Environments. In OOIS'94: Object-Oriented Information Systems, South
Bank University, London, 1994. Springer.

[Sow84] John F. Sowa. Conceptual Structures, information processing mind and machine.
Addison-Wesley Publishing Company, 1984.

