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Abstract 
A product form approximation, based on the principle of maximum entropy (ME), is 

characterised for arbitrary open discrete time queueing network models (QNMs) of 
shared buffer ATM switches under the departures ftrst (DF) buffer management policy. 
Traffic entering and flowing in the network is assumed to be bursty and is modelled by a 
Compound Bernoulli Process (CBP) with geometrically distributed bulk sizes. Entropy 
maximisation implies decomposition of the network into individual shared buffer 
switches which are analysed to obtain cell loss probabilities and mean delays. The ME 
queue length distribution of a single shared buffer queue under DF policy, together with 
closed form expressions for the ftrst two moments of the effective flow, play the role of 
building blocks in the solution process. Typical numerical results are included to 
demonstrate the utility and computational efftciency of the ME procedure. Comments 
on current work, involving discrete time ftnite capacity queues with space priority and 
correlated traffic, are included. 

Keywords: discrete time queue, queueing network model (QNM), maximum entropy (ME) 
principle, compound Bernoulli process (CBP), asynchronous transfer mode 
(ATM) networks, shared buffer ATM switch. 

1. Introduction 
In fast packet switching architectures of Broadband Integrated Service Digital Networks 

(B-ISDNs) (c.f. Tobagi [1]) messages are decomposed into ftxed length blocks which are 
individually transmitted through the network. As a consequence, trafftc in such networks is 
essentially discrete and basic operational parameters are known via measurements obtained at 
discrete points of time. Thus, discrete time queueing network models (QNMs) are natural and 
realistic tools for representing B-ISDNs and optimising their performance. In this context, 
arrivals and departures of cells are allowed to occur at the boundary epochs of slots while, 
during a slot, no cells enter or leave the system . 
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Asynchronous Transfer Mode (ATM) switch architectures, the preferred solution for B­
ISDN, have R input and R output interconnected ports. Of particular importance are shared 
buffer ATM switches, incorporating a single memory of fixed size which is shared by all 
output ports [2]. A finite shared buffer stores incoming cells when the output ports are busy. 
Cells destined for the same output port can be linked together by an address chain or their 
addresses can be stored in a FCFS buffer associated with a particular output port. A cell will 
be lost if, on arrival, it finds either the shared buffer full or the address buffer full. An example 
of such a switch architecture is the Prelude architecture proposed by CNET [2]. For other 
examples see [3,4]. 

Performance approximations for queueing models of shared buffer ATM switch 
architectures have been suggested in the literature [3-9]. However, there are difficulties and 
open issues associated with the study of these models, especially in the discrete time domain, 
due to the simultaneous occurrence of events, including bulk arrivals and departures, at the 
boundary epochs of slots. Consequently, these models are not analytically tractable except in 
some trivial or restricted cases. Usually it is necessary to resort to either simulation or 
numerical methods: simulation is time consuming and cannot easily yield the great precision 
needed for some rare events, such as cell loss, whilst numerical methods are severely limited 
in scope - even at the switch level - as system size increases. Thus, there is a great need to 
consider alternative methodologies leading to both credible and cost effective approximations 
for performance evaluation of ATM switches and networks. 

The principle of Maximum Entropy (ME), a probability inference method [10], has been 
applied successfully, in conjunction with queueing theoretic mean value constraints, to 
approximate analysis of both continuous time and discrete time QNMs of arbitrary 
configurations of single general queues with finite or infinite capacity [11-18]. In particular, 
the principle has been utilised in the study of general multibuffered and shared buffer queues 
and closed form expressions have been obtained for queue length distribution, cell loss 
probability and mean delay [15-17]. Inthe afore mentioned studies the arrival process at each 
queue has been assumed to be bursty and was modelled by a compound Bernoulli process 
(CBP) with geometrically distributed bulk sizes [18]. In this context, the burstiness of the 
arrival process is captured by the squared coefficient of variation of the arrival process and, 
subsequently, the size of the incoming bulk. This particular CBP implies a generalised 
geometric (GGeo) interarrival time distribution, of which the pseudo-memoryless properties 
facilitate analysis of complex discrete time queues and networks [16,17]. 

In this paper, a new product form approximation is characterised, based upon the principle 
of Maximum Entropy (ME), for arbitrary open queueing networks of FCFS (first come, first 
served) shared buffer queues under the departures first (DF) buffer management policy. As in 
earlier studies, the traffic in the network is assumed to be bursty and it is represented by a 
CBP with geometrically distributed bulk sizes. Entropy maximisation implies a 
decomposition of the network into individual shared buffer queues of GGeo type. These 
queues are solved in isolation and, together with GGeo type formulae for the first two 
moments of effective flow [18], play the role of effective building blocks in the process of 
solving the complete network. The credibility of the ME solution of a single shared buffer 
GGeo type queue and that of GGeo type flow formulae has been verified by extensive 
simulation and numerical results have been reported in [16] and [17], respectively. Thus, the 
main objective of this paper is creation of a new and cost effective algorithm for 
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computational implementation of the ME product form approximation for arbitrary networks 
of shared buffer queues. 

The ME formalism is introduced in Section 2. The GGeo distribution model is described in 
Section 3. An outline of the ME solution for a single shared buffer queue is given in Section 
4. The product form approximation for an arbitrary network of shared buffer queues together 
with formulae for the first two moments of effective flow within the network are presented in 
Section 5. The ME algorithm for a network of shared buffer queues is determined in Section 
6. Finally, numerical results and concluding remarks follow in Sections 7 and 8, respectively. 

Remarks 
Arrivals first (AF) and departures first (DF) buffer management policies for discrete 

time queues stipulate how a buffer is filled or emptied in the case of simultaneous 
arrivals and departures at a boundary epoch of a slot [19]. In such cases, according to 
AF policy, arrivals take precedence over departures while, under DF policy, the opposite 
effect is observed (see figure 1). Such buffer management policies may play a 
significant role in determination of blocking probabilities in discrete time finite capacity 
queues [19,20]. 
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Figure 1. Effects of AF and DF buffer management policies at slot boundary epoch. 

2 Maximum Entropy Formalism 
Consider a system Q which has a set S of possible discrete states {So, SI' S2' ... } which 

may be finite or countably infinite and state Sn' n = 0,1,2, ... may be specified arbitrarily. 
Suppose that the available information about Q places a number of constraints on peSo), the 
probability distribution that the system Q is in state Sn' Without loss of generality, it is 
assumed that these constraints take the form of mean values of suitable functions {fl(So)' 
f2(So)' ... , fm(So)}' where m is less than the number of possible states. The principle of 
maximum entropy [10] states that, of all distributions which satisfy the constraints, the 
minimally biased distribution is the one which maximises the system's entropy function 

R(p) = - LP(SJlnp(SJ (2.1) 
s,eS 

subject to the constraints 
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(2.2) 

I/k(S.)P(S.) = (fk)' k = 1,2, ... ,m (2.3) 
SII ES 

where {(fk )} are the prescribed mean values defined on the set of functions {fk(SJ}, 

k=1,2, ... ,m. The maximisation of (2.1), subject to the constraints (2.2) and (2.3), can be carried 
out using Lagrange's method of undermined multipliers and leads to the solution 

p(S.) = ~exp(-t~k fk(SJ) 
Z k=1 

(2.4) 

where {~k}, k=1,2, ... ,m, are the Lagrangian multipliers determined from the set of constraints 

(2.3) and Z, known in statistical physics as the "partition function", is given by 

Z = exp(~o) = ~exp( - ~~k fk(SJ) (2.5) 

where {~o} is the Lagrangian multiplier determined by the normalisation constraint (2.2). 

Jaynes [21] has shown that, if the prior information includes all constraints actually 
operative during a random experiment, the distribution predicted by entropy maximisation can 
be realised in overwhelmingly more ways than by any other distribution. The principle of 
maximum entropy has also been shown, by Shore and Johnson [22], to provide a "uniquely 
correct self-consistent method of inference" for estimating probability distributions based on 
the available information. 

Maximum entropy formalism can be used in the performance analysis of queueing systems 
because expected values of various distributions of interest are usually known in terms of 
moments of the interarrival and service time distributions. Earlier applications of entropy 
maximisation for approximate analysis of some continuous time queueing systems and 
networks can be seen in [11-15]. 

3. The GGeo-Type Distribution 
Consider a discrete time random variable (rv) W representing the interarrival time or the 

service time of a stable single server queue. Let E[W] = Yv be the mean and C~ be the SCV 

of W. The GGeo discrete time distribution [18] is defined by 

{
1-'t n=O 

Pr[W = n] = 'to'(1- 0')"-1 n ~ 1 (3.1) 

where 

't= )1C~+I+V)' 0<'t::;1, (3.2) 

0'= 'tV, 0<0'<1, (3.3) 

and 11- vi::; C~ (see Figure 2). 
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I-t= C2 -I+v 
C2 +I+v 

• 
2 

t=--­
C2 +l+v 

Figure 2. The GGeo distribution with parameters 't and 0" (0 < 't,0" ~ 1). 

Since rv W can realise a value of zero, it is implied that the GGeo distribution 
accommodates bulk arrivals or departures. In essence, the GGeo distribution corresponds to a 
CBP with rate 0", whilst the number of events (i.e. arrivals or departures) in a slot (i.e. the 
bulk size) is distributed geometrically with parameter 't . Thus, the GGeo pattern comprises a 
sequence of bulks with independent and identically distributed non-negative integer valued 
rv's {Wd, where Wk' k=1,2 •... is the number of events occurring at the k,lh slot, with a fixed 
probability distribution given by 

{
l-O" l =0 Pr[w. -l]-

k- - O"'t(l-'tt' l;?:l 
(3.4) 

It clearly follows that the mean event (arrival or departure) rate is equal to v = % events per 

slot. The GGeo( 't, 0") distribution is versatile, possessing some interesting properties, for 
example: 

i) the remaining interevent time of a GGeo( 't, 0") distribution is geometric with parameter 0" 
(the "pseudo memoryless" property); 

ii) the GGeo('t,O") distribution is an extremal member of the family of two parallel phase 
geometric distributions with the same mean and SCV, where one of the phase rates bursts 
("mathematically") to +00 with probability (1- 't) ; 

iii) the underlying renewal process of a GGeo('t,O") distribution has, as the counting process 
for the total number of events in n consecutive slots, a compound binomial distribution 
with parameters (n, 't, 0"). 

For C~ < 11- vi, the GGeo distribution cannot be interpreted physically as a stochastic 
model. However, it can be considered meaningfully as pseudo-distribution function of a flow 
model approximation to an underlying stochastic model in which negative branching pseudo­
probabilities (or weights) are permitted. In this sense, all analytical GGeo results, both exact 
and approximate, which are obtained for discrete time queueing systems and networks when 
C~ ;?: 11- vi, may be used also as useful heuristic approximations when C~ < 11- vi. Note that 
the utility of other types of pseudo-distributions in systems modelling has been suggested by 
various authors (cf [23,24]). 
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In the context of an ATM switch architecture, due to the fixed cell size and the nature of 
the associated output links, transmission times are assumed to be deterministic, with SCV=O. 
It is interesting to note in this case that, if v = 1, then 't = 1 and a = 1 and the GGeo( 't, a) 
distribution reduces to a true deterministic CD) distribution. 

4. ME Analysis of a Shared Buffer Queue: An Outline 

4.1. Model Formulation and Notation 

Consider a general queueing model of a shared buffer switch with bursty arrivals and DF 
buffer management policy, depicted in Figure 3. The queueing model consists of R parallel 
single server queues, where R is the number of output ports. Each server represents an output 
port and each queue corresponds to the address queue for the output port. There are R bursty 
and heterogeneous arrival streams of cells, one stream to each of R input ports. Each stream is 
described by a GGeo( 'tai,a..} distribution with mean arrival rate Ai cells per slot and SCV of 

interarrival time C~i for stream i, i=1,2, ... ,R. Similarly, the transmission Cor service) time of a 

cell at queue i follows a GGeo( 't,i' a...} distribution with mean rate J.Li cells per slot and SCV 

of interdeparture time C;i for stream i, i=1,2, ... ,R. Let N be the size of the total shared buffer. 

A cell is lost if it arrives at a time when there are a total of N cells in the R queues. Without 
loss of generality, it is assumed that any of the R queues may attain the maximum size N. 

Incoming Links Output Ports r-----------------, 

fJR,C;R 
BUFFER CAPACITY N 

Figure 3. The SRxRCGGeo/GGeo/l)/N queueing model of a shared buffer switch. 

The queueing model of the shared buffer switch is denoted by SRxRCGGeo/GGeo/l)/N, 

such that 
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i) the overall (merged) interarrival times and service times at a RxR switch queue are 
heterogeneous and GGeo distributed, 

ii) each output port has a single server, 

iii) the total buffer capacity of the switch is N. 

Finally, let the state of the system at any time be represented by a vector n = (~,n2, ... ,nR)' 

where nj is the number of cells in queue i, i=1,2, ... ,R. 

4.2. A ME Solution for the SRxR(GGeo/GGeo/I)/N Queueing Model 

The form of the ME solution p(n) , 

n E S(N,R) = {n = (~,nz, ... ,nR): tnj $, N, 0 $, nj $, N,i = 1, ... ,R} of a SRxR(GGeo/GGeo/l)/N 

queueing model has been characterised in [16] subject to normalisation and the constraints: 
server utilisation Ub O<Ui<l; mean queue length Li, Ui'5.L,<.N; aggregate probability CPi of full 

buffer with nj > 0, O<CPi<l, i=1,2, ... ,R, and is given - by the method of Lagrange's 

undetermined multipliers - as 

1 R 
p(n) =zl~g;,,(n)x;",y/,(n), 'in E S(N,R) 

where Z is the normalising constant 

and si(D) and fi(D) are the auxiliary (indicator) functions 

{
I ni >0 

sj(n) = 0 
otherwise 

f,(n) = {: 

R 

I,nj = N t\si(n) = 1 
j=l 

otherwise 

(4.1) 

(4.2) 

and {gi' Xi' Yi : i = 1,2, ... ,R} are the GGeo type Lagrangian coefficients corresponding to the 

constraints {Ui,L"CPi: i = 1,2, .. . ,R}. 

The GGeo Lagrangian coefficients {gj' Xi: i = 1,2, ... , R} are obtained by making asymptotic 

connections with the GGeo/GGeo/l queue [18], namely 

gi=Pj(1-X), xi=4:::Pi, i=1,2, ... ,R, 
xi(1-P) L, 

where Ii is the mean queue length of the GGeo/GGeo/l queue and is given by 

_ p. ( C2 +p.C2 ) L.=......!.. 1+·' '.<1 wherep.=A./II .. 
'2 I-Pi' " ... , 
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The GGeo type Lagrangian coefficients {Yi: i=1.2 •...• R} can be computed by 

i) focusing on the flow balance equations 
Aj (l-1tJ=J.1Pi' i=1.2 •...• R (4.3) 

where 1t j is the cellioss probability for attempted arrivals to the queue for output port i. 

ii) deriving recursive expressions for 1t j and Ui. 1.2 •...• R. and 

iii) solving numerically the resultant non-linear simultaneous equations. 

The normalising constant can be determined by applying the generating function approach 
[25] and can be computed recursively as shown below. 

N-I 

Z= 2,CI (v)+C2(N) (4.4) 
v=o 

where {C1 (V): v = 0.1 •...• N-l} and C2 (N) are determined via the following recursive 

formulae. 

C1(V)=C1R(V). v=0.l....N-1 

C2(N) = ~R(N) 
where 

B ={gr 
r grYr 

k=1 

k=2 

for k = 1.2. r = 2 •...• R. v = 1.2 •...• N-2+k. with initial conditions 

V=o 
v = 1.2 •...• N-2+k 

k = 1.2. r = 2 •...• R. 

Similarly the utilisation Ui can be expressed as 

Uj = .!.(I: qi)(v) + qi)(N»). i = 1.2 •...• R 
Z v=1 

where 

qj)(v) = (l-Bj)xjqil(v-l)+BjxjCk(v-l). v=2 •...• N-2+k. k=I.2. i=l •...• R. 

with initial conditions C!j)(I) = Bjxj. 

(4.5) 

The marginal state probabilities can be determined by using ME solution (4.1) and the 
recursive expressions (above) for C!j)(v). Let n(i) be the random variable for the number of 

cells at queue i. i = 1.2 •...• R. Then the marginal state probabilities are given by [16] 

Pr[ n(i) = I;] = Pr[ n(i) ~ t;] - Pr[ n(i) ~ lj + 1] (4.6) 

where 



A product form approximation for arbitrary discrete time networks 373 

Pr[ n(i) ~ Z;] = X/,-l (I C1(jl(V-Ij + 1)+ CJil(N -Ij + 1)) 
Z v=l, 

i= I,2, ... ,R, Ij = I,2, ... ,N. 

Moreover, by focusing on a stable SRxR(GGeo/GGeo/i)/N queue under DF policy and by 

using GGeo type probabilistic arguments, the marginal cell-loss probabilities are seen to be 
[16] 

(4.7) 

where 

and 
N-l N-l 

F;(N) = ~jL C;(v)(I_'t)N-V +((I-~J(I-crJ-cr.,j~j't.JL qil(V)(I-'taJ-v, i = 1,2, ... , R. 
\1=0 v=1 

The GGeo type Lagrangian coefficients Yj can be determined numerically by substituting 

U j of (4.5) and 1t j of (4.7) in the flow balance conditions (4.3) and solving the resulting 

system of R non-linear equations with R unknowns {yj: i = 1,2, ... , R}, namely 

(4.8) 

for all i = I,2, ... ,R and~2. 
System (4.8) can be solved by applying the numerical algorithm of Newton-Raphson, 

which is generally expected to give quadratic convergence. One significant limitation of this 
method is the requirement that the partial derivatives of the Jacobian matrix must be 
calculated at each iteration. However, this requirement may be avoided by applying an 
efficient recursive scheme (cf [15]). Thus, because of the recursive nature of the z-transforms 
which are used in the computational implementation of the ME solution, the 
SRXR (GGeo / GGeo / 1) / N queueing model can be used as an effective building block in the 
analysis of large discrete time queueing networks of shared buffer ATM switches. The 
construction of such computational procedure is the subject of the following section. 

5. Arbitrary Open Queueing Networks of GGeo Type Shared Buffer 
Switches 

Consider an arbitrary discrete time open queueing network at equilibrium consisting of M 
nodes, as depicted in Figure 4. Each node i, i = 1,2, ... , M, is a RjxRj shared buffer queueing 
model with finite capacity Nj (see Figure 3). At any given time, the joint state of the network 

is denoted by n = (np n 2 , ... ,nM ) where nj = (n jp nj2 , ... ,njR ) is the joint state of shared buffer 

queueing system i and njj is the number of cells queueing for output portj, j=I,2, ... ,Rj • 

Moreover, let p( n) be the joint state probability of the network. 
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Figure 4. A network configuration of shared buffer switches. 

The form of the ME solution, p(n), for a FCFS GGeo type open queueing network, subject 
to normalisation and the marginal constraints of shared buffer queueing systems used in 
Section 4, namely utilisation, Uij, O<Uij<l, mean queue length, Lij, Uij<Lij<N;, and aggregate 
full buffer probability with nij>O, (jlij' 0 < (jlij < 1, j = 1,2, ... , Ri , i = 1,2, ... , M, is given - by 

the method of Lagrange's undetermined multipliers - as 

(5.1) 

where Z is the normalising constant and {gij,xij'Yij) are the Lagrangian coefficients 

corresponding to constraints {Uij' Lij,(jlij } respectively. The form of ME solution (5.l) clearly 

suggests a product form approximation, namely 
M 

p(n)= IIp{n.} (5.2) 
i=l 

where p{n.} is determined by the ME solution (4.1) of each shared buffer 

SRXR(GGeo/GGeo/l)/ Ni queueing model, i=I,2, ... ,M. 
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The ME solution (5.1) can be implemented computationally by decomposing the network 
into individual building blocks of SRixRlGGeo/GGeo!1)INj queues, i=1,2, ... ,M, each of 

which can be solved in isolation by determining iteratively the first two moments of the 
overall flows in the network. Appropriate GGeo type flow formulae have been derived in [18], 
whilst Generalised Exponential (GE) type flow formulae and numerical approximations can 
be seen in [11] and [26], respectively. 

In the sequel, routing of cells through the network is based upon the notion of the virtual 
circuit (VC). A VC has a fixed path through the network. All cells that belong to a particular 
VC flow along its path. A number of different VCs will exist across the network. It is 
assumed that the first two moments of the external flow of each VC as it arrives at the 
network is known. To this end, GGeo type ME solution and GGeo flow formulae can be 
applied in a similar fashion to that established in [17]. However, the flow of cells belonging to 
VCs must be converted to flows through each switch/port, and from one switch/port to 
another. Due to finite buffer sizes cell loss will occur at switches and thus within a VC the 
flow of cells will reduce at each link composing its path. Because cell flows are attenuated, it 
is not possible to calculate apriori the flows required in the GGeo flow formulae. 

The path a VC can be represented as an ordered and finite list of switch/port pairs, 

(0,0) ~ (i,a) ~ (j,b) ~ (k,c) ~, .. ,(n,f) ~ (0,0) 

where (0,0) represents the outside world. Figure 5 shows two VCs, namely 
(0,0) ~ (1,3) ~ (2,1) ~ (0,0), and (O,O)~ (1,1) ~ (2,2) ~ (3,2) ~ (0,0) following 

predefined routes through three 3x3 switches. 

Figure 5. Routes of VCs across a Network of ATM Switches. 

The mean rate of cells flowing on a link, say (j,b ),(k,c), of the path of VCI is given by 

Av~1 = (1 - 1t. . )AV~f . 
(),b).(k,c) (1,a),(),b) (1,a),(),b) (5.3) 

where A~~,~).(j,b) is the mean overall arrival rate of cells on the link (i,a),(j,b) of VCI and 

1t(i,a).(j,b) is the cell loss (or blocking) probability that cells from switch/port (i,a) are lost on 

arrival to switch/port (j,b), It can be shown, by using GGeo type probabilistic arguments (as in 
the case of a network with ordinary finite capacity queues [17]), that probability 1t( i ,a),(j ,b) can 

be obtained by equation (4.7) with the subscripts of parameters changing to (i,a),(j,b) to 
reflect that arrivals to switch/port (j,b) are considered from one stream emanating from 
switch/port (i,a) instead of the merged stream of all arrivals, Once all the blocking 
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probabilities are known the flow on each link of each VC can be calculated (starting with 
A~~~o),(i,a)' the known external arrival rate of VCl) by repeated application of equation (5,3). 

The mean flow of cells generated by switch/port (i,a) upon VCl and entering switch/port 
U,b) is referred to as the mean effective rate A~~'~I.(j,bl' This is the same as the mean rate of 

cells ofVCl that leave switch/port U,b), As this is the overall mean rate on the next link (k,c) 
of the path of VCl, it follows that 

Ave I = Ave I 
(i,a),(j,bl (j,b),{k,C) (5.4) 

If VCl enters the network at switch/port (i,a), its mean overall external arrival rate is denoted 
by A~~~o).(i,a)' and its SCV by C(~b).(i,")' The mean effective arrival rate at switch/port (i,a), 

obtained via equation (5,3), is A~:,:),U,h)' By using the GGeo split flow formulae [18], the SCV 

of the effective external interarrival time at switch/port (i,a) is clearly given by 

cVel = It + C vel . (I-It ) 
(O,O),Ii,a) (O,O),(i,") (0,0),("") (O,O),Ii,") 

(5.5) 

The overall mean rate of cells that flow between upstream switch/port (r,s) and switch/port 
(k,j) is given by 

(5,6) 

wheres""l.{k,J) is the set of all VCs (l) having (r,s),(k,j) as a link on their path, Moreover, the 

overall mean arrival rate of cells at switch/port (k,j) is given by 

(5,7) 

where SI',J) is the set of all upstream switCh/ports {(r,s)} linking to switch/port (k,j), 

To simplify notation, in what follows the suffix (k,j) for port j of switch k is represented by 
i and the suffix (r,s) for port s of switch r is represented by j, 

The SCV of effective interarrival times at output port i is given by the merging of effective 
GGeo type streams [18] 

(5.8) 

where s~ is the set of VCs that enter the network at port i, A(i) is the set of all upstream ports 
immediately connected to port i, A~~l and C~~I are the effective mean rate and SCV, 

respectively, of the interarrival times of cells entering the network at port i upon VCl, (cf, 
(5.4), (5,5» and C a~i is the SCV of the effective stream of cells that leave port j and enter 

port i, Clearly, 
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Aji = (l-7tjJAji' j=O,l, .. ,M, i=1,2, .. ,M (5.9) 

where 7tji is the blocking probability determined by (4.7) with parameters Ajiand Cd~i the 

latter being the SCV of the interdeparture time of the overall stream of cells from port j to port 
i. 

The SCV of the overall interarrival times at output port i is clearly given by the merging of 
overall GGeo type streams [18], namely [ l

~ 

"I A .. 
C:i=-l-Ai+ L. (N.Oi r L. 2 J' ,j=O,l, .. ,M; i=1,2, .. ,M(5.1O) 

IEs:Ai C~:I+A'~:+l jEA(i) Ai(Cdji+Aji +1) 

The departure rate from (or the effective arrival rate to) an output port j is a non-linear 
function of the traffic characteristics of the switching node and is given by the sum of the 
rates from that port to all downstream destinations 

Aj=L.A';~+ L.Aji'j=1,2, .. ,M;i=1,2, .. ,M (5.11) 
IsS:; ieD(j) 

where S,; is the set of VCs that leave the network at port j and A~~l is the rate at which cells 

leave the network from port j upon VCl and D(j) is the set of all downstream ports 
immediately connected to port j. Moreover, the SCV of the interdeparture time Cd; can be 

approximated by analysing the departure process of a stable GGeo/GGeoll queue with infinite 
capacity and effective revised arrival rate, Ai and is given by [18] 

2 -2 2 - -2 -2 
Cdi =Pi (C,i+lli-l)-Pi(Cai+Ai-l)+Cai ,i=1,2, .... M (5.12) 

h - A were Pi =---1.. 
Ili 

The splitting of the interdeparture times at each output port j with parameters (A ji' C d ~i) can 

be made dynamically via computational iteration which necessitates the estimation of 
transition probabilities a ji that a departing cell from port j will go to port i. Probabilities 

{ a ji} can be determined by observing that each output port i experiences a virtual arrival 

process of cells complying with a random routing policy and is clearly given by 

Aji 
a··=-

J' Aj 

The SCV of interdeparture time for the overall flow is given by 

Cd~i = l+aAcd~-l), j = 1,2, .. ,M; i = O,l, .. ,M 

whilst, the SCV of effective interarrival time at port i from port j can be expressed by 

Ca~i =7tji+Cd~i(l-7tjJ, j=1,2, .. ,M; i=1,2, .. ,M 

(5.13) 

(5.14) 

(5.15) 
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6. A ME Algorithm for the Analysis of an Arbitrary Open Network of 
Shared Buffer GGeo Type Queues 

This section presents an algorithm for the solution of a FCFS open network of shared 
buffer switches. The building blocks of the ME algorithm are based upon 

i) the ME solution of the SRXR (GGeo I GGeo 11) I N shared buffer queuing model, 

ii) the GGeo type flow approximation formulae for calculation of the mean and SCV of the 
interarrival and interdeparture times at each output port and 

iii) the mean flow rates of VCs on each link of their paths. 

The steps of the algorithm, which broadly follow those established by the ME methodology 
as applied to simpler types of networks of ordinary finite queues [14,17], are presented below. 

Step O. Read in input parameters and routes of VCs and service time parameters of output 
port queues. 

Step 1. Initialise all cell loss probabilities to zero. Set SCV of interdeparture times to 1. 

Step 2. Compute the mean flows rates for each VC on each link in their paths using equation 
(5.3) and calculate effective flows of each VC as it enters the network using 
equations (5.3) and (5.5). 

Step 3. Calculate the overall and effective mean arrival rate to each output port from all other 
output ports and the overall mean departure rate from each output port to all other 
output ports using equations (5.4), (5.6), (5.7), (5.9) and (5.11). 

Step 4. Obtain the routing probabilities via equation (5.13). 

Step 5. Utilise the routing probabilities to obtain the SCV of interdeparture times from each 
output port to other output ports via equations (5.14). 

Step 6. Calculate the SCV of the merging streams (overall and effective) at each output port 
using equations (5.8), (5.10) and(5.15). 

Step 7. Obtain the queue length distribution of the SRXR(GGeo/GGeoll)1N as described in 

Section 4 (cf equations (4.1, 4.8)) with the overall interarrival time parameters 
obtained in steps 3 and 6. 

Step 8. Compute the blocking probabilities using equation (4.7). 

Step 9. Estimate the overall SCV of the interdeparture time of each output port using 
equation (5.12). 

Repeat steps 2-9 until convergence of the calculated value of the SCV of the interdeparture 
time. 

Step 10. Obtain cell loss probability and mean delay for each output port in the network. 

Remarks 

The main computational cost of the ME algorithm is the calculation of cell loss 
probabilities at the output ports of the shared buffer switch, which must be obtained at 
each iteration (step 8). Kouvatsos et al [16] have shown experimentally, using a Sun 
work station, that the computational cost for solving a SRXR (GGeo I GGeo /1) I N queue 
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remains extremely small due to the recursive nature of the z-transforms used in 
implementation of the ME solution. For example, for R=50 and N=100 the cost just 
approaches 37 seconds of CPU time! Thus, using the SRXR (GGeo / GGeo 11) / N queue 
as an effective building block, the performance analysis of quite complex networks of 
shared buffer queues can be performed in a few minutes. 

The existence and uniqueness of the solution of the system of non-linear equations 
(4.8) cannot be proved analytically due to the complexity of the expressions involved. 
Moreover, no rigorous mathematical justification can be given for convergence of the 
Cd: 'so Nevertheless, there has been no incidence of numerical instability and no lack of 
convergence in the many experiments which have been performed. 

7. Numerical Results 
In this section, typical numerical results are included in order to demonstrate the utility and 

computational efficiency of the ME algorithm, as applied to arbitrary open networks of shared 
buffer queues in the discrete time domain. Notably, the credibility of the building blocks, 
namely 

i) the ME solution of each SRXR (GGeo / GGeo / 1) / N queue in isolation and 

ii) the GGeo type flow formulae for the first two moments of the interdeparture, split and 
merge processes within an arbitrary FCFS open network of ordinary single server finite 
capacity GGeo type queues under DF policy 

have been experimentally verified earlier in [16] and [17], respectively, against simulation at 
95% confidence intervals by making use of the Queueing Network Analysis Package 
(QNAP-2) [27]. 

The ME algorithm for arbitrary FCFS open discrete time queueing networks of shared 
buffer ATM switches under DF policy was implemented on a Sun workstation. The bursty 
nature of the interarrival time at each output port queue is approximated by a GGeo 
distribution. The constant transmission (service) time distributions are represented by GGeo 
pseudo-distributions with C;, = 0 and Il, = 1 . 

The utility of the ME algorithm is shown in Tables 1-2, representing a queueing network 
of three shared buffer switches with input data and output performance metrics in terms of cell 
loss and mean delay. It is assumed that only one link exists between one switch and the next. 
The ME algorithm has also been employed to investigate the behaviour of a single shared 
buffer switch within various open GGeo type queueing networks with arbitrary configurations. 
It has been verified experimentally that, as in the case of a single independent shared buffer 
switch [16], the ME results exhibit the following features: 
i) for "small" cell loss probabilities (e.g. 10.1, 10.2, ... ), the relationship between cell loss 

probability and buffer capacity is log-linear, as expected; 
ii) for a target cell loss probability (say 10-6), the relationships between interarrival time SCVs 

and 
a) optimal buffer capacity and 
b) mean delay 

are linear. 
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Table 1. Service parameters and output statistics of the three 3x3 shared buffer switches 

input data output statistics 

switch port 11 C2 ., cell loss prob. mean delay 

1 1.0 0 0.119 3.195 
1 2 1.0 0 0.018 1.635 

3 1.0 0 0.097 3.468 
1 1.0 0 0.295 4.076 

2 2 1.0 0 0.037 1.891 
3 1.0 0 0.329 4.026 
1 1.0 0 0.215 3.447 

3 2 1.0 0 0.030 2.601 
3 1.0 0 0.304 3.575 

Table 2. VC external traffic characteristics (mean rate Ao, SCV C~) and paths across the 
network. (Key (i,j): (switch i, ouput portj). 

VC Ao C2 
0 

PathofVC 

1 0.2 10 (1,2) 

2 0.3 10 (2,2) 

3 0.4 10 (3,2) 

4 0.2 10 (2,1) ~ (3,2) 

5 0.12 20 (1,3) ~ (3,3) ~ (2,2) 

6 0.13 30 (2,1) ~ (3,1) ~ (1,2) 

7 0.14 40 (2,3) ~ (1,3) ~ (2,2) 

8 0.3 50 (3,1) ~ (1,1) ~ (2,2) 

9 0.16 60 (3,3) ~ (2,3) ~ (1,2) 

10 0.17 15 (1,1) ~ (2,2) 

11 0.18 20 (1,3) ~ (3,2) 

12 0.09 10 (2,1) ~ (3,2) 

13 0.2 15 (2,3) ~ (1,2) 

14 0.01 100 (3,1) ~ (1,2) 

15 0.11 130 (3,3) ~ (2,2) 
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Thus, it is implied that the optimal buffer capacity and mean delay within a network can be 
determined easily for even smaller cell loss probabilities for any given SCVs of interarrival 
times. 

Finally, Figure 6 shows the low computational cost of implementing the ME algorithm 
against the number of shared buffer switches in an arbitrary FCFS open network. 
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Figure 3. CPU time (seconds) of ME algorithm against number of 8x8 shared buffer switches 
of arbitrary QNMs. 

8. Conclusions 
A ME product form approximation is proposed for arbitrary FCFS open discrete time 

QNMs of GGeo shared buffer queues. Analytic ME solutions for a shared buffer 
SRXR (GGeo / GGeo /1) / N queueing model in conjunction with GGeo type formulae for the 
first two moments of the discrete time flows at each queue play the role of building blocks in 
the decomposition process of the network. The low computational cost of the ME algorithm 
makes it practical to analyse arbitrarily complex ATM networks of shared buffer switches. 

The ME algorithm can be extended to analyse shared buffer ATM switch architectures 
under different buffer management simultaneity policies and multiple class streams of arriving 
cells at each output (or input) port. Entropy maximisation can also be applied to analyse ATM 
switches with push-out space priorities. Moreover, closed form performance expressions for 
discrete time queueing models of ATM switches with bursty and correlated traffic can be 
derived based on batch renewal processes and the GGeo bulk time distribution . Extensions of 
this kind are the subject of current study. 
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