
8

Extending View Technology for Complex Integration Tasks!

Matthew C. Jones and Elke A. Rundensteiner
Software Systems Research Laboratory

University of Michigan, Ann Arbor, MI48109-2122
e-mail: mjones@eecs.umich.edu.rundenst@eecs.umich.edu

Abstract
In this paper, we present extensions to the MultiVU!w object-oriented database view system that

improve its ability to integrate electronic computer-aided design (EeAD) tools. Using an object-pre­
serving algebra as the view definition language, the MultiVU!w system sup parts data transformations to
suit the needs of individual tools. However. an object-preserving algebra alone is not powerful enough
to express recursive transformations such as transitive path derivations and the flattening of hierarchi­
cal structures. In order to provide these capabilities, we extend the view definition language with oper­
ators that permit complex transformations of the data. To achieve performance essential for EeAD
tools, we introduce the mediator class as a general strategy for the materialization of these complex
views. We compare the bounds on query and update performance of our set-based mediator class for
the symmetric transitive closure with a more traditional object-based materialization strategy.

1 Introduction
Object-Oriented Databases (OODBs) are typically chosen to implement ECAD databases because they sup­

port the modelling of complex data [1,3,14,16]. Although integrated ECAD tools benefit from these database ser­
vices, such as data integration and access control, these tools often employ different internal representations of
design data. A schematic editor, for example, represents graphical entities hierarchically in the design schematic,
including information about position and orientation. On the other hand, an analysis tool might represent the
design as nodes and edges in a flattened graph. Even with current integration standards [4,6) the burden of trans­
forming design data to and from the central database fOlIDat falls upon the tool developer. This manual and often
ad-hoc transformation process is labor-intensive and error prone. An integration system should provide a means
for automating these data transformations. Additionally, if tools are to operate cooperatively and concurrently,
tools are needed to simplify the communication of data changes between tools.

Recently, OODB view systems have been presented as a means for providing automatic reorganization of cen­
tral data that has been customized according to a high-level restructuring request (i.e., a query). In this model, the
tools in the system are view users, using central data that has been automatically organized by the view system.
Our OODB view system, MultiView, [14] provides a view definition language (VDL) capable of restructuring
data for each tool in the system. As such, it automates the transformation of data between the central format and
the tool specific formats. In addition, the system provides the services necessary to maintain consistency between
the central and derived data [11]. MultiView assures the correctness of data transformations and reduces undes­
ired coupling between integrated tools. As a consequence, it increases the productivity of tool developers and
integrators. However, the MultiView system is currently not capable of performing complex data transformations,
such as the computation of closure, the traversal of paths, or the flattening of hierarchical graph structures.In this
paper we present new operators for the VDL of the MultiView system. These operators permit it to fill the role of
a central data store in a tool integration environment supporting complex data transformations. To provide the
performance essential for ECAD applications, we introduce the mediator class, our abstraction for storing and
maintaining the results of the transformation associated with a view operator. We address the design and perfor­
mance of the mediator class associated with the computation of the symmetric transitive closure (STC) derivation.

In Section 2, we present view technology as the basis for tool integration. In Section 3, we discuss the MuItiV­
iew system. In Section 4 we present the TC/STC operators and describe characteristics of the base and derived
data. In Section 5 we explain the implementation of both an object-based and our mediator-based strategy for
materializing the STC operation. We compare the performance of the mediator with the more general object­
based materialization strategy in Section 6. We briefly describe other types of mediators in Section 7, and cover
related woIt and conclusions in Sections 8 and 9.

1. This work was supponed in pan by NSF NYI HIRI·9457609, NSF RIA HIRI·9309076, Intel, and Digital Equipment Corporation.

F. J. Rammig et al. (eds.), Electronic Design Automation Frameworks
© Springer Science+Business Media Dordrecht 1995

Extending view technology for complex integration tasks 77

2 Applying Object-Oriented View Technology to Tool Integration

Object-oriented view mechanisms [1, 14] have been proposed as a means to provide customized data reorgani­
zation allowing access to centrally stored and managed data (base data) that is automatically restructured or
derived into a preferred format. The view is considered updatable if changes to the derived data produce corre­
sponding changes in the base data. Recently there has been considerable research into OODB view technology.
However, with the exception of the 02 system [3] in alpha-test. commercial OODBS are not currently providing
support for views.

Figure 1 illustrates the use of a view system as the basis for tool integration. A data server manages centrally
stored data. A view system produces customized views in the form of derived data, generated by the view system
for each tool (view user) in the environment. If the view system is distributed, each of the views is implemented
by a client called the view maintainer that provides the view user access to the derived data and communicates
changes between the data server and the view. -----

Figure 1: OOOS View System as Integration Environment.
The view system may operate as a vehicle for the check-in and check-out of tool data - providing reorganiza­

tion when tools read and write data. It may also act as a run-time integration system by propagating changes back
to the base data (and subsequently to other active views) as changes are made to derived data.

The implementation of such a system requires solutions to many problems in data modelling, database views,
and distributed systems. We identify key requirements for a view-based integration environment below, and
describe where they fit within the scope of our work.

1. The tool integrator must be able to specify how data is to be reorganized. This view definition is usually
specified using a view definition language (VDL). The VDL must be expressive enough to define complex
views appropriate for ECAD applications. Our work extends the MultiView VDL accordingly.

2. The system must be able to create the view as defined by the tool integrator and provide the view user with
access to the derived data. The access can be via a materialized view (implemented as actual view objects
derived from base objects in the central database), or non-materialized view (implemented as an interface to
base objects). Because performance is crucial in many ECAD applicatious, and because it is possible to
express complex data transformations with the VDL, we present a solution that supports the materialization
of derived data by the view maintainer.

3. If the view user makes changes to derived data. the system must propagate these changes to the base data
(view update). The problem of view consistency, i.e., propagation of base data updates to views, only occurs
when views are materialized. In such a case, the central data server must notify the view maintainer to make
the appropriate changes to the derived data. We assume the existence of a notification mechanism, and
accomplish view consistency by notifying the view maintainer through an update request which has been
appropriately transformed for the associated view.

4. The tool integrator must be able to specify when and if updates are propagated to and from a view. This is
accomplished using update contracts. Update contracts will be discussed in a future paper.

In this paper, we present an extended query language for defining complex view transformations, as well the
development of a key abstraction for the materialization and maintenance of these complex views.

3 MultiView: The Object View System

At the University of Michigan, we have an on-going research project funded by NSF and Intel for the develop­
ment of an object-oriented view support system, called MultiView [14]. MultiView has been successfully used to
integrate ECAD tools in the domain of behavioral synthesis [15]. It is particularly suited to integration tasks such
as hiding unneeded details from a tool, simplifying application specific processing by augmenting a view with
customized functions, and precompiling information which is frequently needed by the tool.

For example, a simple placement tool may only be interested in adjacencies between components rather than
the complete circuit nellist as stored in the central database. A view defined in MultiView can abstract away the
component pins and explicit pin and net connections, and provide a derived attribute that models the adjacency

78 Part Three Data Types

relationship. In this case, MultiView is biding the unnecessary details of the pins, simplifying processing by
encapsuIating the adjacency attribute, and precompiling the adjacency infonnation needed by the placement tool.

The MultiView system currently employs an object-preserving algebra as a query language for view defini­
tions. Among its unique features, MultiView: (1) provides for full property inheritance for both base and virtual
classes, (2) automates integration of virtual classes into a global schema, and (3) supports generation of complete
view schemata rather than just virtual classes. The first prototype bas been fully functional for over a year. It cur­
rently runs on a Sun SPARCstation and has been implemented on top of the Gemstone OODB [10].

To model the more complex restructuring employed in ECAD tools, sucb as flattening hierarchical grapbs and
deriving transitive relationships, we are now proposing extensions to MultiView. We have designed extensions to
the query language to support more complex, recursive queries. In addition, we are designing extensions to the
set-based data model to include sequences, grapbs, and paths. Because of these added complexities we also must
re-examine the implications to query processing and the view update and consistency problems.

In this paper, we enable the derivation of views optimized for ECAD applications by adding complex, object­
creating operators. This optimization is twofold: (1) transformations on ECAD data are compact and easy to spec­
ify, reducing effort during integration, aud (2) efficient access to the transf011lled data, providing the performance
that is critical in ECAD applications.

4 Extending the VDL for Closure Computation

4.1 Characteristics of the Base Data
We now present the language extensions by wbich these complex views can be specified. We also characterize

the kinds of derived views possible with these new operators.

«)f
1:1
(a)

«)f
1:n
(b)

Figure 2: Recursive Schema Graphs.

cOf

n:m
(e)

Consider views derived from the base scbemata illustrated in Figure 2. These schemata contain a single class P,
and a relation F (modeled by the instance variable f) that relates two instances in P. We define bow the instance
variable f models the relationsbip F formally as:

for PbP2 in P: P2 inPI.f iff PI F P2 (1)
The cardinality of this relation determines the properties of instance graphs possible with this schema For

example, an instance of the schema in Figure 2.a would result in a set of sequences of instances of P. Because
these instance graphs have known properties, we are able to select our materialization strategy based upon this
knowledge. Independently of whether or not the relationship F is transitive, the view user may wish to derive new
attributes based upon the transitive closure of the attribute f. We consider two possible transitive derivations over
the attribute f: the symmetric and asymmetric transitive closure known as STet and Tet respectively.

4.2 Characteristics of the Derived Data
The derivation of TClSTC creates a derived attribute with more general semantics than the base attribute. For

example, if the attribute f represents the relation F (Fanout) between two instances in P (parts), then the
attribute c derived from the TC on f represents the more general semantics of C (Fanout-Cone). The transitive
closure on the specialized relation F is used to derive the more general relation C. In this example, Fanout is a
specialization of the Fanout-Cone relation. We derive the more general TCe relation as follows:

for P b P2 in P: PI F P2 implies PIC P2 (2)

for PbP2. P3 in P: PI C P2 andp2 C P3 implies PI C P3 (3)
Figure 3 illustrates an example of a schema, a possible object graph, and the derived Tet instance graph. Both

equations (2) and (3) are applied to the base instance grapb to produce the derived instance grapb. The application
of equation (2) represents attributes directly derived from the base data. Equation (3) produces the attributes
indirectly, or transitively derived, from base data. Note that the instance variables sbown in the schema are
represented by edges in the instance grapb. The instances of the class P are nodes in both the base and the derived
graph. This means that changes to the instance variables f in the base objects correspond to edge deletions and
insertions in the base and derived instance graphs.

Extending view technology for complex integration tasks 79

<!Of
1:n

P1 f® P1
tn.:\ "" C ,II f~ I c@/
~ \ 9. '.'~

(a) (b) (c)
Figure 3: (a) Schema, (b) Base Instance Graph, (c) and Derived (TC) Instance Graph.

Note that a similar generalization occurs with the derivation of the STC. Here we derive a new relation B (In­
Block) that relates all parts in a common combinational circuit block. To derive the STC, the relation B is directly
derived from F by applying the derivation in (2), then it is symmetrically derived by applying:

for Pb P2 in P: PI B P2 implies P2 BpI. (4)

and then transitively derived using formula (3). The resulting derived STC, a set of fully connected graphs for the
base instance graph of Figure 3b, is shown in Figure 4. The derivation for an instance graph of N objects where
N;: np divides the llf<Iph into n disjoint partitions connected by the derived attributes. The average size of each of
these partitions is p.' If the base instance graph is connected by the base relation, then we have p=N and n=I.

4.3 Updates to/from Derived Relationships
The attributes such as those derived by equations (2), (3), and (4) are generalizations of the base attributes from

which they are derived. The newly derived attributes represent a loss of information, and thus are called lossy.
This has important implications for the derived relations and their use in a view system. The most important
implication is that it is impossible for a view maintainer to incremenlally update derived information that has
"lost" information which contributes to the data derivation. We nUllify the effects of the lossy derivation by
recording enough information in the materialized view to distinguish between directly and indirectly derived
attributes. This ensures that updates can be propagated, and that the impact on the view of base updates can be
autonomously computed by the view maintainer. In general, it is not always possible to propagate updates made
by the view user to indirectly derived attributes. This problem is addressed in more detail in Section 6.4.

5 Efficiently Materializing Closure Views with the Mediator Class

To achieve performance critical in EeAD, we employ view materialization. This materialization is invisible to
the user of the view, however, the choice of representation for the materialized view can have a dramatic effect on
the efficiency of queries and updates to the derived data.

Using the more traditional view materialization approach as utilized by relational systems, the materialization
of a new relation is accomplished by creating a new object (tuple) representing a pairwise relationship between
two objects. The result is a new class 'l'p, B whose instances contain two attributes p. and Pb whose domain is P.
An instance is placed into the extent of class 'l'p ,B for each derived relationship. For this object-based materializa­
tion representing the derivation of the new relation B, we define the extent of'l'p,B as follows:

for Pa' Pb in P: object(a=Pa,b=Pb) in Tp, B iff Pa B Pb. (5)

1. For our analysis in the remainder of the paper, we assume that all subgraphs in the view have the same size p.

80 Part Three Data Types

Both the size and time required to materialize this newly derived class are 0 (n x p2) • This bound comes from
the fact that for each instance subgraph in the derived instance graph there are potentially p2 newly derived rela­
tions. Recall that number of these subgraphs in the derived instance graph is n. The appeal of this object-based
approach is its generality and simplicity. It can be used for any kind of derived relation. The data manager can
manipUlate this fonn of materialized view easily because it is a primitive form. We have found that one of its sig­
nificant drawbacks is its inefficiency (both in space and time).

We thus introduce the mediator class as an alternative means to materialize the newly derived relation in the
view. A mediator class is an optimized representation of the derived relation that accnrately models the relation,
and is able to propagate updates from the base data to the derived data efficiently. The mediator class is selected
based upon known properties of the base data, and known properties of the derived relationship. The creation and
materialization of a mediator class requires the following steps:

1. Identification of the appropriate mediator class for the current view of the base and derived data.
2. Materialization of the newly derived relation in mediator class objects.
3. An interface to the mediator to make it "look and feel" like the expected relationship semantics. These

include access functions to query derived instance variables and methods to update them.

Base Attributes
AccessedlUpdated

Derived
Attributes
Accessed

Figure 5: Mediator Class for Complex View Definition.
We assume that the view system knows enough about the characteristics of the base data to select a mediator

class for the available query operators. Steps 2 and 3 are the focus of the sections that follow. In our mediator­
based solution to materialization, we extend the derived class with a derived attribute that provides access to the
mediator. The view system provides query and update operations on the derived attribute so that it has the
appearance of a genuine attribute.

6 Implementation of Mediator Classes for Complex Views
This section discnsses the implementation of a mediator class for the materialization of the STC. We analyze

the perfonnance of the implementation, and compare it with a simple object-based materialization approach.

6.1 Symmetric Transitive Closure

A user may wish to define a view comprised of the symmetric, transitive closure operation of an attribute. In an
ECAD application, this type of transformation is typically used to combine a graph into a single entity, i.e., to
gather segments in a schematic into a single net We refer to the Original schemata as illustrated in Figures 2.b and
2.c, and to the relations and attributes presented in Section 4.2. Our mediator implementation for the STCe is inde­
pendent of the cardinality of the attribute f, so we present the general solution here. Optimizations specific to a
certain cardinality are discussed when they are significant.

We consider the user request to extend the class P with a derived attribute b, resulting in a virtual class P , .
P' = refine [b = STCf(self) I for (P).

Because of the nature of a symmetric, transitive relationship, the view system materializes the derived attribute
b via a set-based mediator. The derived attribute b can be materialized using a set because of similarities between
the properties of sets and the definition of symmetric, transitive closure. As expressed in the query, the new
attribute b will provide access to the derived STCC<p). Same-set membership in this set can then be used to
model the appropriate transitive and symmetric relationships because of the following:

Symmetry: PI in same-set as P2 implies P2 in same-set as PI (6)

Transitivity: PI in same-set as P2 and P2 in same-set as P 3 implies PI in same-set as P3 (7)

Because same-set membership is a transitive and symmetric relationship, we define STCr<P) to be of a set type,
and materialize the resulting sets as instances of the mediator class. We also provide an interface to the mediator
class to query and propagate updates to and from the view efficiently. Each object in P' has associated with it an
instance of the mediator class. This mediator class is made available through the attribute b that is added with the
view definition. Figure 6 shows the base instances with the derived attribute b associating each instances with the

Extending view technology for complex integration tasks 81

mediator class instances used to represent the symmetric transitive closure relation. The mediator accurately rep­
resents the derived relationship by satisfying the following consttaint:

for P b P2 in P: P 1 in P2.b iff PI in STCt<P2) (8)

f*-f=:~; ~ :::::::::::::::::::::""""'''''''''''''''.''''''!'''' '11"

.. ' · .. · ,.,~ i .. · ,III'.1111

p -'";~~:-~r~
P ' , b ,t ,"··,·

~ base attribut;·' · · j 0 =::~~:~s
·"111 • • derived attribute b ! to base objects)

Figure 6: Mediators and the Derived Attribute b for STCt(p).

6.2 Creation of the Derived Attribute and Mediator Class

The traditional object-based materialization approacb derives objects to represent the STC. These objects are
materialized in the class '1'" B using the following operations:

create_class '1".B subclassOt Object with (a:P, b.'P);
insert (select a:Pl.self, b:P2.se1f fram Pl' P2 1n P

where Pl in STCt (P2)) into T, B;
We create our mediator class with the following queries: '

create_class M subelassOt STCMediator;
insert (select distinct the STCt(p) tram p in P) into M;

In both cases. a new attribute is created for the class P' wbich provides the interface to the derived and materi­
alized STC relation. For the mediator case, the creation of !he b attribute for the class P' is as follows:

P' = retine [b = (.elect m fram M where p in m)] for (p in P);
This defines !he derived attribute to provide access to the mediator object that maintains the STC relation. For !he
object-based materialization !he new attribute provides !he interface to !he query and update operations needed to
access !he STC materialized in '1',. B'

6.3 Querying
We compare bere the relative costs of performing queries on the traditional object-based materialization of !he

STC and our mediator-based materialization.

6.3.1 Membership Test in the STC,(P)
We next sbow bow !he two representations answer !he query: Is y in the STCt (x) ?

Object·Based Representation: This tests for existence of an object !hat reflects !he relationship between x and y.
return not ampty(select * from Tp,B where a=x and b=y);

Because the size of !he extent of Tp,B is 0 (n xp2). this operation can be performed in time 0 (log (n xp2» .
This assumes the existence of proper indices to facilitate the searcb. The assumption of these indices impacts the
estimated cost of insertions and updates. as well.
Medlato Based Representation: The mediator determines if y is in !he S'fCt(x) with !he 0 (1) comparison of
!he reference attributes to the STC sets to see if they refer to the same set object.

return (x.s==y.s);
If bo!h x and y have !he same mediatur set, !hen they are by definition in the STC of each oIher.

6.3.2 Retrieval of the STC,(P) Relationship
We now discuss how the two representations answer !he query: Wha tis the STC f (x) ?

82 Part Three Data Types

Object-Based Representation: In this case, we need to locate all objects in Tp,B that contain x.
return .elect b from Tp,B where a=x;

Although the size of the extent of Tp,B is O(nx[i2), and this operation takes o (log (nxr)) time, the
actual performance may be bounded by the size of the STC which is returned. Since the number of objects which
represents the STC is 0 (p2), this may become the bound on the periormance of this query if p is sufficiently
large. Becanse of the representation inherent in the object-based solution, it is not possible to retum a reference to
the set of objects in better than 0 (r)
Mediator-Based Representation: The STC is computed by returning the mediator set associated withx. Because
the set is already grouped into a single object, a reference to the set can be returned in constant time. However,
becanse the size of this set is 0 (p), that is the bound on the performance of the query.

6.4 View Updates to Complex Derived Attributes

In general, the derived attribute b has ambiguous update semantics, as shown in Figure 7. This figure shows
objects PI through P5 in the base data related by the attribute f. The STCt(P) derives the fully-connected instance
graph with the derived attribute b. Although neither materialization strategy uses an explicit graph to represent
the derived data, it is useful for this example. The ambiguity in the view update occurs when the view user
attempts to change the value of the derived attribute indicated with the a. If this reference to P4 is removed from
the attribute PI.b, it is not possible to determine how to propagate this change to the base data. A single change to
an indirectly derived attribute has many interpretations involving changes to base attributes. It might be possible
for the view system to assess the minimal impact update necessary to propagate, but such a computation is expen­
sive and of limited use. Merely changing the derived attribute value without propagating the change to the base is
not an option, because that means the view no longer represents the SICt(P). After such a change it would no
longer be possible to use the STC mediator, because the constraint on which the contents of the mediator is based
is violated. For this reason, updates to the indirectly derived attributes are not permitted for the STC.

."'Ii " ~f _~p u,"h... p

;-- "'='--.... p~ 3 P

(b ~\ /~ p @ ~
~ ." ~. f'b ?

p ,"11: .. ·.. \ §. f1 _p_....,~
'I·'·· ~ ·,II"·P ~

........ !? @
(c) Two Possible Results

(a) base instance graph (b) Derived STCrtP) from Removing a
Figure 7: Ambiguous Update to Derived Attribute (deleting a).

6.5 View Consistency

If several tools use the base data simultaneously, then there must be a means to propagate updates performed
on the base data to the views. We describe two updates which have direct impact on the derived view.

6.5.1 Reference Removal
We consider the effect of removing a reference to object y from the base attribute f of object x. This

corresponds to an edge deletion in the base instance graph. The removal of the edge in the base instance graph
may partition the graph. resulting in a corresponding partitioning of the sets materialized in the SIC mediator.

Because the object-based approach is loss), the view maintainer cannot autonomously determine the effect of
such an update. As a consequence, the <Jbject-based approach requires that the central data manager
communicates the resulting partitions to the view maintainer. The mediator class distinguishes between base and
derived attributes, and consequently has enou!,h information to autonomously compute the effect of the update on
the view. The base data manager just reports attribute changes to the mediator. The mediator employs the same
algorithm that would be used by the base data manager to determine the repartitioning of the base instance graph.

The partitioning algorithm builds two sparning trees of the base instance graph starting from both x and y. If
the spanning trees are disjoint, then the attribute change partitions the graph, and the results of the partitioning

Extending view technology for complex integration tasks 83

must be propagated to the derived data. This check requires 0 (p) time to complete. If the attribute does not par­
tition the base instance grapb, no further action is required (the STC remains uncbanged).
Object-Based Representation: The view maintainer receives update information from the base data manager in
the fOlDl of two sets S· and S1> representing the partition of the instance subgrapb produced by the removal of the
reference to y. The foifowing method updates the class Tp , B so that it reflects the removal of the reference to x.

fore.ch v in Sj
fore.ch w in Sk

remove object (a=v,b=w), object (a=w,b=v) from Tp,B

The nested outer loops require 0 (r) time, and the inner operation requires 0 (log (n x r» time, for a total
complexity of 0 (log (n x p2) x p2) .
Medlator·Based Representation: After determining if the change to x.f partitions the base graph (and as a con­
sequence computing the partitions S j and S k)' the mediator updates its derived data with the following algorithm:

delete STCMediator(x.b); II remove old set
new STCMediator(Sj); II create new sets
new STCMediator(Sk);
fore.ch v in Sj

v.b = STCMediator(Sj);
fore.ch w in Sk

w.b = STCMediator(Sk);
This algorithm associates eacb object with the new set that represents the STC of the object. It requires 0 (p)
time. In the case that the cardinality of the base attribute f is l:n, we have a trivial partitioning of the base into the
single element y, and the set consisting of x . b-y.

6.5.2 Reference Insertion
We consider the effect of inserting a reference to object y into the base attribute f of object x. This corresponds

to an edge insertion in the base instance grapb. The insertion of the edge in the base instance grapb may result in
the merger of two subgrapbs in the STC derivation. Unlike edge deletion, however, the data manager takes no
special actions to notify the maintainer of the STC view. It merely notifies the view maintainer about the addition
to the attribute.
Object.Based Representation: The object-based representation receives update information in the fOlDl of an
addition to the attribute value for the object x. The following method updates the class T P, B so that it reflects the
new value for attribute f of object x. It accomplishes the merger of the two subgraphs by creating an ol:!ject asso­
ciating every element of the subgrapb in whicb x is a member, to every element of the subgraph in which y occurs.

fore.ch w in (.elect b from Tp,B where a=x }
fore.ch z in { .elect b from Tp B where a=y }

in.ert ob~ect(a=w,b=z) into Tp,B
in.ert obJect (a=z, b=w) into Tp B

The outer loops have complexity 0 (p 2) , and the inner operation requires' V (log (n x p2» time, for a total com­
plexityof 0 (log (n x p2) x p2) . The insertion time in the inner loop could be constant, but that would be at the
expense of increased cost to other operations. The logarithmic insertion time is consistent with the overhead of
maintaining an efficient structure which supports fast queries and deletions.
Mediator-Based Representation: The following algorithm updates the mediator:

newset = new STCMediator(x.b union y.b);
delete STCMediator(x.b);
delete STCMediator(y.b);
fore.ch v in (newset) II link elements to new mediator

v.b = newset;
This solution simply associates each affected object with the newly merged subgraph which represents the STC of
the object. It requires 0 (p) for the algorithm.

The table in Figure 8 shows clearly that the mediator-based materialization strategy achieves advantages in
both time and space performance over the traditional relational materialization approach. The mediator also
demonstrates efficient membership and retrieval performance, a property essential for ECAD analysis tools that
do many more reads than updates.

7 Other Mediators
We have discussed the implementation of the mediator for the STC operator in the Section 6. In this section,

we briefly discuss the TC mediators. Mediators for the derived TC differ from the set-based STC mediator, since
the symmetry modeled by the set-based mediator is not appropriate when materializing the TC relationship.

84 Part Three Data Types

Metric Mediator-Based Object-Based

Space Required O(n x p) O(n x p<!)

Creation TIme O(n x p) O(nx ~)
Membership Test 0(1) O(log (n x ~))

STC Retrieval 0(1) O(log (n x p2j)

Edge Deletion O(p) O(log (n x p2) x ~)

Edge Insertion O(p) 0(1og (n x p2) x p2)
Figure 8: Comparison of Mediator-Based and Object-Based Materialization Strategies

7.1 TC Mediator for 1:1

We refer to the schema illustrated in Figure 2.a, and consider the view definition:
P' = refine [c = TCf(self) 1 for (P).

If the cardinality of the attribute f is 1:1, we can materialize and maintain the TCr with a mediator class
containing ordered sets (or sequences). For each element e in the sequence we define a sequence number
seqnum(e), that identifies the position of each element e in the ordered set. We then model the TCr implicitly
using the same-set test along with the seqnum(e) associated with each element e. We state the definition of the
TCf in terms of operations on the mediator as:

for p bP2 in P: P2 in TCt<,p 1) iff P2 in same-set as PI and seqnum(P2) > seqnum(p 1) (9)

An Object-based materialization of the TCr performs similarly to the object-based materialization of the STCr
so we will not discuss the performance of the object -based materialization in this section.

The mediator provides a membership test (see Section 6.3.1) on the materialization of the TCr by comparing
references to the associated ordered set and comparing sequence numbers. This can be accomplished in 0 (1)

time. The TCr<Pn) can be retrieved for an object Po in constant time, provided that the mediator is capable of
returning a reference to a subsequence in the ordered set, otherwise the operation requires 0 (p) time to build the
sequence to return.

Updates on the base data can be efficiently propagated to the mediator. If an edge in the base instance graph is
removed, this results in a partitioning of the ordered set materialized in the mediator. The edge itself provides the
point in the sequence where the cut must be made. The result is two sequences representing the two new partitions
in the base instance graph. This operation can be accomplished in 0 (p) time. If an edge in the base instance
graph is added, this results in the merger of two base instance graphs. The mediator merges the corresponding
ordered sets by concatenating them. The operation requires 0 (p) time.

We materialize the TC for instance graphs containing loops by using a set representation similar to the STC
mediator objects. Because all objects in a loop are transitively related to each other, the set models this relation­
ship accurately. Updates that break loops eliminate the associated set-based mediator and create a corresponding
ordered-set mediator. Similarly, the mediator handles updates which introduce loops (i.e., joining the end of a
sequence to the beginning) by creating the corresponding set-mediator and removing the ordered set mediator.
These operations require 0 (m) time.

7.2 TCr for Other Cardinalities

The precise materialization strategy for TCf of other cardinalities of f is still an open question. We are
currently investigating strategies for materialization which balance performance for both queries and updates. We
can improve the performance of queries by utilizing topological ordering in much the same way that we employ
sequence numbers for the 1:1 case.

8 Related Work

The Gandalf system [8] was one of the earliest environments to use views as the basis for tool integration. This
system used "display-only" views to provide the data for various tools in a software development environment.
Updatable views were proposed in this work, but not implemented. In the FICOM system [2], a data manager is

Extending view technology for complex integration tasks 85

presented that supports incremental consistency maintenance between different levels of abstraction in a CAD
data manager. However, the representations are limited to those already implemented in the data manager.
Furthermore, the FlCOM system does not support materialization within the integrated tools.

In [9], the authors present the super-key class as a mechanism for enabling updates on materialized paths in
object databases. Although the model they present is general, no implementation is discussed.

9 Conclusions and Future Work
In this paper, we bave discussed extensions to the view definition language of MultiView to provide complex

transformations as required by ECAD tools. We bave proposed the addition of a mediator class to provide for the
efficient materialization of certain classes of complex views. In addition, we presented the development of
efficient materialization strategies which include support for updatable views. These contributions provide
essential foundational technology for an integration support tool in an ECAD framework.

We plan to continue the development of update semantics for these complex structures, as well as classify the
types of transformations which are appropriate for the integration of ECAD tools. This includes the evaluation of
materialization strategies for the transitive closure operation, and other path transformations. We are also develop­
ing the use of our mediator class as a super-key class for more general path materialization.

Acknowledgments. Matthew would like to thank Karem Sakallab for financial support while he was ''finding
this topic". Many thanks go to Harumi Kuno and Tricia Jones for reviewing an earlier draft of this work.

10 References
[l] S. Abiteboul aud A. Bonner, "Objects and Views," in Proc. of the ACM SIGMOD 91, 1991, pp. 238-247.
[2] R. Armstrong and J. Allen, "FlCOM: A Framework for Incremental Consistency Maintenance in Multi­

Representation, Structural VLSI Databases," in Proc. IEEE International Conference on Computer-Aided
Design (ICCAD), 1992, pp. 336-343.

[3] 02 Technology. 02 Views User Manual, version 1 edition, December 1993.
[4] CFl-DR-TSC, "Design Representation Electrical Connectivity Information Model and Programming Inter­

face," CFI Publication, Version 1.0.0, 1992
[5] CFI-ITC-TSC, "Inter-Tool Communication Architecture," CFI Publication, Version 1.0.0, 1992
[6] L. Claesen, R. Severyns, P. Six, W. D. Rammelaere, H. D. Man, 1. Cockx, P. Reynaert. and G. Sbrooten,

"Open Framework of Interactive and Communicating CAD Tools," in Too/Integration and Design Envi­
ronments, F. 1. Rammig, ed., North-HoUand, 1987.

[7] M. Jones, and E. A. Rundensteiner, "Mediator Classes for the Efficient Materialization and Update of Com­
plex Views", ElectricaI Engineering and Computer Science Depl, University of Michigan, Ann Arbor,
Tech. Rep., In Preparation.

[8] D. Garlan, "Views for Thais in Integrated Environments," in Advanced Programming Environments,
Springer-Verlag, 1986, pp. 314-343.

[9] S. Konomi, T. Furukawa, and Y. Katnbayashi, "Super-Key Classes for Updating Materialized Derived
Classes in Object Bases," in Proc. DOOD Conference, Dec. 1993.

[10] H. A. Kuno and E. A. Rundensteiner, "Developing an Object-Oriented View Management System," IBM
CASCON, Ocl 1993, pp. 548 - 562

[11] H. A. Kuno and E. A. Rundensteiner, ''Materialized Object-Oriented Views in MultiView," in Proc. Fifth
International Workshop on Research Issues on Data Engineering: Distributed Object Management (RIDE­
DOM '95), March 1995.

[12] J. Miller, K. Groning, G. Schulz, and C. White, "The Object-Oriented Integration Methodology of the
CADlab Work Station Design Environment," in Proc. IEEFJACM Design Automation Con/. (DAC), 1989.

[13] Y. G. Ra, H. KUDO, and E. A. Rundensteiner, "A Flexible Object-Oriented Database Model and Implemen­
tation for Capacity-Augmenting Views", Electrical Engineering and Computer Science Dept., University of
Michigan, Ann Arbor, Tech. Rep. CSE-TR-215-94, May 1994.

[14] E. A. Rundensteiner, "MultiView: A Methodology fOt Multiple Views in OODBs," in Proc. of International
Conference on Very Large Data Bases (VWB), 1992, pp. 187-198.

[15] E. A. Rundensteiner, "Design Tool Integration Using Object-Oriented Database Views," in Proc. IEEE
International Conference on Computer-Aided Design (lCCAD), 1993, pp. 104-107.

[16] M. H. Scholl, C. Laascb, and M. Tresch, "Updatable Views in Object-Oriented Databases," in Proc. DOOD
Conference, Germany, Dec. 1991.

