
4

AutoCap: An Automatic Tool Encapsulator1

Joao Camara *, Helena Sarmento **

R. Alves Redol, 9, 1000 LISBOA, Portugal

Phone +35113100353 Fax: + 3511525843 emailjac@olivia.inesc.pt

* INESC ** 1ST / INESC

1. Abstract

CAD frameworks often have to be updated by incorporating new CAD

tools. Encapsulation is the tools' incorporating technicality most often

used. Once tools have been incorporated into a framework, the designer

access to them may be unified and simplified.

The present work describes work recently developed, within the PACE

framework, to address tool encapsulation and tool invocation.

2. Introduction

The dynamic nature of CAD systems implies the ability to easily modify

them. These modifications often include adding new tools to the

framework (or removing outdated ones).

Tools can be incorporated into a CAD system in two ways: integration and

encapsulation. Integrating a tool means tightly connecting it to a CAD

system by writing or modifying the tool to use framework services directly

to get data and other information it needs to be executed. Encapsulation

means loosely interfacing a tool to a CAD system trough a layer separated

from the tool. Integrating a tool requires the tool's source code to be

available and usually represents a substantial investment of time and

expertise. On the other hand, encapsulating a tool is usually less time

consuming and no modification of the tool's source code is required. This is

1 Part of this work was done under ESPRIT project SPRITE.

F. J. Rammig et al. (eds.), Electronic Design Automation Frameworks
© Springer Science+Business Media Dordrecht 1995

36 Part Two Data Managenumt and Tool Integration

why, when incorporating tools into a framework, encapsulation is more

often used.

Nowadays CAD systems need to incorporate a large number of different

tools, each one with its own particular, often unique, requirements for

proper execution. The need to remember the correct tool location,

command syntax and arguments necessary to invoke each tool often leads

to errors and decreased productivity. The development of CAD

frameworks, which are software infrastructures that provide a common

operating environment for CAD tools, is very important since they offer a

number of services that ease the task of managing and updating CAD

systems. Due to the dynamic nature of CAD systems, the easiness to

incorporate a tool into a framework is an important factor to be considered

when evaluating a framework.

Once a tool has been incorporated into a framework, tool management,

one of the services offered by CAD frameworks, frees the designer from

the need to remember the correct location, command syntax and

arguments necessary to invoke each tool.

This paper describes recent work developed within the PACE framework

[Sarmento 90] to address two related problems: easiness of incorporating a

tool into a CAD framework and easiness of invoking tools from a CAD

framework. Section 3 refers related work developed within several CAD

frameworks. Some aspects of tool encapsulation are mentioned in section

4. Section 5 briefly describes TES, the CFI standard for tool encapsulation

information. Sections 6 and 7 describe AutoCap. Finally, some conclusions

are presented in section 8.

AutoCap: an automatic tool encapsulator 37

3. Related work

The problem of incorporating tools into a framework has been addressed

by different frameworks in different manners.

Both ULYSSES [Bushnell 85] and CADWELD [Daniell 89] frameworks

are based on a blackboard architecture. The blackboard is global database

containing references to all the files related with the tools incorporated in

the system. In the ULYSSES framework the characterisation of a tool is

part of the blackboard. In CADWELD, tool characterisation is obtained by

building a software layer that allows the tool to interact with the

blackboard. Both CADWELD and ULYSSES implement a name server as

part of the blackboard, thus allowing an easier invocation of the tools.

Within FALCON [Mentor 90] framework tool characterisation is done by

the association of a qualification script to each tool. This framework

includes a Design Manager that permits the designer to easily invoke a

tool with a graphical interface quite similar to the one used in Apple

Macintosh [Apple 91] computers.

CADLAB [TIDL 90] framework offers an object oriented language, TIDL2,

to describe the design environment. The tool integrator uses this language

to define the objects needed to encapsulate the tool. TIDL automatically

generates de dialogue boxes that allow the designer to enter the tool's

parameter list.

Within DESIGN FRAMEWORK II [DFII], the tool integrator writes a

program, using the SKILL language, to wrap the tool thus permitting the

management of the tool within the framework. Once encapsulated, tools

are invoked by invoking the encapsulation function, which can be

associated to the call back function of a menu item.

2 Tool Integration and Description Language

38 Part Two Data Management and Tool Integration

4. Tool Encapsulation

As referred, the evolution of a CAD system often requires adding tools to

the framework. The existence of tool encapsulation mechanisms is

therefore of great importance.

Tool encapsulating requires both a tool description language to

characterise the tool and a mechanism capable of interpreting a tool

description. Although, theoretically, any description language may be

used, the language should obviously be concise and have an adequate

expressive power. It is also advantageous that the language has a human

and computer readable form, since this allows the information contained

in a tool description to be used in either a manual or automatic creation of

a tool encapsulation.

Aiming at the implementation of a standard for a format for tool

encapsulation information, CFI has developed TES (Tool Encapsulation

Specification) [CFI 92], which we briefly describe in the next section.

5.TES

The current version of TES includes general tool information, description

of all the tool arguments, description of all data associated with the tool

function, description of the syntax for a valid command line to initiate the

tool function and description of possible result codes. TES also includes a

mechanism that permits to add arbitrary name/value pairs to a

description construct, thus providing with an extension capability the

current version ofTES.

We have adopted TES as our description language and developed AutoCap

(Automatic Encapsulator), a tool that interprets the information contained

in a TES description and uses it to automate the encapsulation of the tool

described.

AutoCap: an automatic tool encapsulato,. 39

6. AutoCap

AutoCap reads a TES file and maps it to an internal representation

structure. This structure is complex enough to deal with all types of

information needed and general enough to be usable in the construction of

any type of user interface (graphical, textual or other). The internal

representation structure has to be of some complexity since AutoCap

needs to represent all the information contained in the TES file internally.

Alternatively AutoCap could deal separately with each information

construct contained in the TES file, thus allowing the use of a simpler

internal structure; however this approach would not allow the global

treatment of the information, necessary in the construction of a graphical

interface.

The information contained in a TES file may be used in two ways:

• read the TES file once, at the time the tool is registered with the

framework, extracting its information and storing it in persistent

objects which are then activated by the framework when the designer

invokes the tool;

• read the TES file each time the tool in invoked using an interpreter­

like program to extract the information and use it to invoke the tool

directly.

AutoCap uses the second approach since it is simpler and since we have

verified that the TES file interpretation may be done quite quickly. This

approach also permits, when the framework invokes AutoCap, to pass to

AutoCap parameters that are only defined at run time.

AutoCap automatically builds a user interface which is a graphical

representation of the tool arguments described in the TES file. The

designer is presented with a user friendly interface, where the values

40 Part Two Data Management and Tool Integration

required are labelled and may be of different types: integer, real, string,

multiple choice3• The required values may be entered either by pushing

buttons or by typing then onto entry fields. Figure 1 shows an example of

an AutoCap interface window.

=1 AutoCap I-Iel
jason

DeSign Name: I progscan I II
Minimum Delay Between Operations: II I I
Algorithms

~ LlSI 0 IFDSO FDS

rl Graphic Output?

QALAP?

Delta limeshape File: I I progscan, time II
Controller

o With Auto Reset ¢ With Wa~ State

I Help I I Cancel I I Ok I ~ Retrieve Vals I

Figure 1 - AutoCap interface window

The arguments the designer is required to enter do not necessarily

correspond to the arguments used in the command line to initiate the tool

function: some of them may be used to somehow evaluate other values

that, in turn, are used in the command line. Similarly the values inputted

by the user for some arguments may correspond to different values in the

command line: for instance the value true of a boolean argument may

correspond to the value -g in the command line.

Ranges of acceptable values for an argument may be specified in a TES

file. AutoCap checks if entered values comply the restrictions specified in

the TES file, if any. In case of an error, a popup window is used to notify

the designer.

3Multiple choice arguments are represented either by radio buttons (exclusive multiple choice) or by
toggle buttons (inclusive multiple choice).

AutoCap: an automatic tool encapsulator 41

A TES file may contain help lines. These lines are used to supply

additional information to the user concerning the enclosing description

constructs. On demand, AutoCap opens a window (see figure 2) presenting

this information to the user.

<=>1 AutoCap I· 0
Design Name: B MinimumDelayBetweenOperations: ..

2

Click on an item to get help

Choose one of the possible algorithms

I Ok I

Figure 2 - Help window

When invoking a tool the designer often enters for each argument the

same value he did last time the tool was invoked. This led to the existence

of the Retrieve Values button (see figure 1) in the AutoCap interface

window. By pressing this button the designer is able to retrieve the

argument values he entered last time the tool was invoked.

7. Implementation

AutoCap was developed using C++\ and it implements a set of classes

that allow the storage of the tool encapsulation information. These classes

are associated with the different entities the information refers to, such as

tool, argument, argument list, value, concatenated value and others.

Figure 3 depicts the class hierarchy, using the notation proposed in

[Rumbaugh 91].

AutoCap graphical interface was built using the services of GHOST

[Santos 90], a graphical server that greatly simplifies the programming

effort necessary to implement the interface.

4 Approximately 6000 lines of code were written.

42 Part Two Data Managel1U!nt and Tool Integration

Figure 3 - AutoCap classes hierarchy

To deal with a TES file AutoCap uses the tools LEX and YACC. The use of

these tools showed to be extremely useful since TES allows great

flexibility in the order and number of elements that constitute each of its

description constructs.

8. Conclusions

AutoCap is presently being used by DESKTOP [Martins 93], a part of the

PACE framework, to invoke the encapsulated tools.

AutoCap was used to encapsulate several tools, such as ARCHITECT (a

schematic diagrams visualisation tool developed at INESC) and JASON (a

scheduler tool of the PHIDEO compiler developed at PHILIPS Natlab).

Although there were no TES files available for these tools, these files

where very easily written by the tool integrator, once he was told about

the tool arguments.

AutoCap greatly simplifies the work of a tool integrator, since it only

requires the existence of a TES file describing the tool. This file is

supposed to be supplied by the tool vendor, so all the information the tool

integrator has to add is the tool location. So, unlike the methods used by

other frameworks referred in section 3, the tool integrator's work is

reduced to an absolute minimum. By using a common user friendly

AutoCap: an autol7UltiC tool encapsulator 43

interface, AutoCap also simplifies the designers work as far as tool

invocation is concerned.

The development of AutoCap was greatly simplified by the use of GHOST,

another service provided by the PACE framework. On the other hand, the

existence of AutoCap was very useful in the development of BALANCE,

an automatic dynamic load balancer recently offered by the PACE

framework. By capturing information about all data associated with the

tool function and possible result codes, AutoCap may also be very useful

for flow management.

References

[Bushnell 85] M. L. Bushnell, S. W. Director, ULYSSES - An Expert­

System based VLSI Design Environment, International Symposium

on Circuits and Systems, June 1985.

[CFI 92 - a] TCC Approved Draft Proposal - CFI, Toll Encapsulation

Specification, CAD Framework Initiative pilot release document

CFI-92-P-10

[CFI 92 - b] CAD Framework Initiative - CFI, Standards Release,

Notifications ofCFI 2.0 Pilot Program, 1992.

[Daniell 89] J. Daniell and S. Director, An Object oriented approach to

CAD Tool Control Within a Design Framework, 26th ACMlIEEE

Design Automation Conference, 1989

[Martins 93] J. F. Martins, Final Prototype of a Desktop, technical report,

INESC, SPRITE Esprit project, November 1993.

44 Part Two Data Management and Tool Integration

[Mentor 90] Mentor Graphics, The Falcon Framework Technical Papers,

June 1990

[Rumbaugh 91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W.

Lorensen, Object-oriented Modelling and Design,. Prentice-Hall

International Editions, 1991.

[Santos 90] P. Santos, H. Sarmento and L. Vidigal, Ghost / Spook User

Interface and Process Management in the PACE Framework,

European Design Automation Conference, March 1990.

[Sarmento 90] H. Sarmento and P. Santos, A Framework for Electronic

Design Automation, IFIP Workshop on Electronic Design

Automation Frameworks, North-Holland, November 1990.

[TIDL 90] Cadlab, CADLAB Tool Integration Description Language

Release 3.0 TIDL - Overview, 1990

