
3 

Configuration Management in the STAR 
Framework * 

Helena G. Ribeiro, Flavio R. Wagner, Lia G. Golendziner 

Universidade Federal do Rio Grande do SuI, Instituto de Informatica 
Caixa Postal 15064, 91501-970 Porto Alegre RS, Brazil 

e-mail {hgraz.fiavio.lia}@inf.ufrgs.br 

Abstract 

Configuration management is an essential service to be provided by electronic design au­
tomation frameworks. Besides conventional static and dynamic configurations, normally 
offered by most systems, the STAR framework supports specialized facilities, such as open 
configurations (as in VHDL), the automatic resolution of open and dynamic configuration 
through expressions on object properties, and the manual resolution of these configura­
tions by means of a graphical-interactive database browser. Unlike other systems, the 
STAR configuration manager is a separate framework module which the final user can 
directly reach through the main user interface. Furthermore, the STAR configuration 
management mechanisms respond to novel requirements, imposed by powerful versioning 
services. 

1 Introduction 

Configuration management is an important service that must be available in electronic 
design automation frameworks. Design objects to be handled in these frameworks have 
a complex and hierarchical structure, with objects composed of other sub-objects. The 
design of an object is an evolutive process, and in this context a set of versions can rep­
resent the same object in different moments of the process. When a single representation 
of a composite object is necessary to be submited to a design tool, a selection of versions 
for its sub-objects must be performed. This set of selected versions that define a given 
representation of the object is called an object configuration. The process of selecting 
versions for the sub-objects can be very long and difficult, because the sub-objects can 
be composed in \urn of other sub-objects, and each sub-object in this hierarchy can have 
many versions. The user must select versions that are compatible with each other and 

-This work was partially supported by CNPq and CAPES. 

F. J. Rammig et al. (eds.), Electronic Design Automation Frameworks
© Springer Science+Business Media Dordrecht 1995



26 Pan Two Data Management and Tool Integration 

that best fit to given requirements. A configuration manager must provide resources to 
help designers establish and maintain object configurations. 

Three types of configurations are defined in the literature: static configurations [1] 
associate a complete reference (object and version) to each sub-object; dynamic configu­
rations [1] associate partial, incomplete references to the sub-objects; and open configu­
rations [2] leave the references completely undefined. Open and dynamic configurations 
must be resolved to a complete reference before the object may be used by certain design 
tools. 

There are many proposals of configuration management mechanisms in the literature 
(for instance [1, 3, 4, 5, 6]). These mechanisms support static, dynamic, and open 
configurations in different ways and offer different resources for the resolution of dynamic 
and open configurations. 

This paper presents a configuration manager for the STAR framework [7], which is 
under development at the University of Rio Grande do SuI at Porto Alegre, Brazil. The 
STAR framework is based on a semantic data model that offers specialized, combined 
mechanisms to represent concrete design data and to manage the various representations 
created for each design object along the design evolution (alternatives, views and revi­
sions). On top of the data model sits a version manager, which is responsible for revision 
control. The STAR configuration manager [8] supports static, dynamic, and open config­
urations. The hierarchical organization of versions in the STAR data model imposes some 
very specific requirements on the definition and resolution of configurations. Dynamic 
and open configurations can be resolved in a manual, automatic, or semi-automatic way, 
whereby versions may be selected according to desired object qualities. An interactive 
database browser and a special selection language are available for supporting version 
selection. After defined, configurations can be stored as database objects that persist in 
the framework and thus reused. 

This paper is organized as follows. Section 2 reviews the main features of the STAR 
data model and of the STAR version management mechanisms. Section 3 defines configu­
rations in the context of the STAR framework, while Section 4 presents the configuration 
management mechanisms. A comparison between the STAR mechanisms and those avail­
able on other systems can be found in Section 5. Section 6 concludes with final remarks. 

2 The STAR framework 

The STAR data model [9] provides a flexible management of the various representations 
created along the various dimensions of the design evolution (alternatives, views and revi­
sions). This feature allows the system to implement, according to user- or methodology­
defined criteria, conceptual schemata that are specialized for representing the design 
evolution of each object type. 

As shown in Figure 1, each Design object gathers an arbitrary number of ViewGroups 
and Views. The ViewGroups may in turn gather, according to application-defined crite­
ria, any number of other ViewGroups and Views, building a tree-like hierarchical object 
schema. Three types of Views are supported: HDL Views, for behavioral descriptions, 
MHD Views (Modular Hierarchical Description), for structural descriptions, and Layout 



Configuration management in the STARframework 27 

Design 

Ports 

UserFields 

I 
I I I 

ViewGroup ViewGroup View View 

Ports Ports Ports Ports 

UserFields UserFieids UserFields UserFields 

1 I I 
Views and ViewStates ViewStates ViewStates 

I I I 
ViewGroup ViewGroup View View 

Ports Ports Ports Ports 

UserFields UserFieids UserFields UserFields 

1 I I I 
Views and ViewStates Views and ViewStates ViewStates ViewStates 

Figure 1: The STAR data model 

Views, for geometric descriptions. In all View types, objects can be described as a com­
position of sub-objects that are instances of other objects, but only MHD Views handle 
the exact interconnections among the sub-objects. 

ViewGroups can be used, for instance, to build a hierarchy of design decisions, where 
alternatives from a given design state are appended to the ViewGroup which corresponds 
to this state. The advantages and generality of this schema are stressed elsewhere [9, 10]. 

The object schema is a generalization hierarchy. Each node has properties that may 
be inherited by its descendant nodes. Not only the existence of an attribute is transferred 
to the descendant nodes, but also its value, when defined. Ports and UserFields (user­
defined attributes) are among these inherited attributes. Therefore, they may be defined 
at any level of the object schema hierarchy. 

Version management in the STAR framework [9] is supported by two different mech­
anisms, at two different levels. At a conceptual level, the user or the design methodology 
may define a particular object schema for each design object so as to organize design 
views and alternatives according to a given strategy. This allows the user to apply a 
methodology control which is highly tuned to the design of each object [7]. 

At a lower level, the system offers automatic mechanisms for handling the various 
revisions that are created for each design representation along the time axis. There are 
two revision mechanisms. Firstly, to each View (i.e., each leaf of the object schema) 
an acyclic graph of ViewStates is appended. ViewStates contain the real design data 



28 Part Two . Data Management and Tool Integration 

that correspond to the various design representations, such as layouts, HDL descriptions, 
structural decompositions, and so on. ViewStates have an associated status, represent­
ing their design stage. Possible status values are in progress, stable, and consolidated. 
Another mechanism allows the sequential versioning of the other nodes of the object 
schema (Design, ViewGroup, and View), according to changes made to attributes (Ports 
and UserFields) defined at these nodes. The system maintains the correspondence be­
tween ViewStates and versions of their ascendant nodes, thus linking each ViewState to 
the inherited attributes that were valid at the time of its creation. 

3 Configurations in the STAR framework 

In the STAR framework, a configuration is defined for each ViewState as a selection of 
a particular version of a particular design object for each sub-object within this View­
State. The three basic types of configurations already defined in the introduction (static, 
dynamic, and open configurations) are supported by the framework. Open and dynamic 
configurations must be resolved to a complete reference before the ViewState is used by 
certain design tools. 

In the STAR context, the general definitions of static, dynamic, and open configu­
rations must be refined. A static configuration selects, for each sub-object, a complete 
reference Design - ViewGroup - ... - ViewGroup - View - ViewState. Dynamic configu­
rations select partial paths, containing at least a reference to a Design, but not reaching 
the ViewState level of the schemata of the referenced objects. The references may thus 
reach Design, ViewGroup, or View nodes of the schemata. In fact, in a general sense 
STAR configurations are always intrinsically dynamic, since the system always selects 
the current version of the Design, ViewGroup, and View nodes of the object schemata. 

In order to implement open configurations, the STAR framework supports the defini­
tion of local Components within a given ViewState, in an approach which is similar to the 
VHDL language. Components are defined through their interface and parameters, and 
may be instantiated as sub-objects (DesignInstances, in the STAR terminology). Bind­
ing of Components to other design objects may be done later, when the configuration 
is resolved, although a reference (a complete or partial one) may be already established 
within the ViewState which contains the Component. Components are a generalization 
of DesignInstances: when there are many sub-objects of the same type, they make refer­
ence to one Component, which instantiates the common object. The same Component 
can be referenced by many DesignInstances. 

A configuration of a design object X is presented in Figure 2. The configuration 
is attached to the representation defined by the path ViewGroup XVGI - View XVI 
- ViewState XVS2 in the object schema of X. XVS2 is composed of two sub-objects, 
the DesignInstances DIl ahd DI2. DIl references the design object MD, and the user 
selected the path MD - MVI - MVSl in the object schema of MD, while DI2 references 
the design object N, and the user selected the path ND - NVGl - NVI - NVSI in its 
object schema. For each selected node (Design, ViewGroup, View) in these paths, the 
system automatically chooses the current revision. This is represented in the figure by 
hachured objects over white objects. 



Configuration management in the STARframework 29 

X design object 

M design object N design object 

Figure 2: An example of a configuration 

In VHDL, components are a mandatory support for the definition of sub-objects, even 
in the case of static configurations. The STAR framework offers two options: Designln­
stances may instantiate either Components or directly other design objects (reaching the 
level of Designs, ViewGroups, Views, or ViewStates). The second alternative is more 
convenient for static configurations, when the object contains a small number of similar 
sub-objects, something that is likely to occur at more abstract design levels. 

Each Designlnstance and Component has a reference attribute to instantiate design 
objects. This attribute can be defined (partial or complete references) or left undefined 
(no references). As in VHDL, in STAR an open or dynamic configuration may be resolved 
through a separate database object, called ConfigurationBody, which is non-versionable. 
ConfigurationBodies are bound to ViewS tates, and one ViewS tate can have many Con­
figurationBodies attached to it. 

A ConfigurationBody completes the partial references down to ViewStates of the 
schemata of the objects that have been selected for the sub-objects of an object X. 
ConfigurationBodies may also reference already established Configuration Bodies of these 
ViewStates, in a hierarchical fashion. Configuration Bodies have a status (in progress, 
stable, or consolidated) which depends on the status of the referenced ViewStates. 

ConfigurationBodies do not need to complete the references of all sub-objects of the 



30 Part Two Data Management and Tool Integration 

object X. They may be use to specify configurations for a subset of these sub-objects, so 
that a complete configuration of X may result from a combination of various Configura­
tionBodies. 

4 Configuration manager 

The configuration manager is a special module of the STAR framework. It is built on top 
of the basic data handling system and of the version manager and may be directly accessed 
through the framework cockpit [11]. Its goal is to support the resolution of dynamic 
and open configurations both through an interactive user interface and an application 
programming interface. The configuration manager allows the user to combine various 
partial ConfigurationBodies, that cover a subset of the sub-objects of the target design 
object, with interactive selections for the remaining sub-objects. 

The configuration manager offers a repertory of operations to make possible the def­
inition, manipulation, and resolution of configurations: 

• resolve a configuration and optionally save the result in a ConfigurationBody; 

• create a ConfigurationBody; 

• modify a ConfigurationBody, by changing, adding, or deleting referenced objects; 

• remove a ConfigurationBody, if it is not being referenced by another configuration; 

• search for the existing ConfigurationsBodies for a given ViewS tate; and 

• copy a ConfigurationBody, either to modify the copy without affecting the original 
ConfigurationBody or to define the same configuration for a new ViewState. 

The configuration manager supports three different resolution modes: manual, auto­
matic, and semi-automatic. 

The manual mode is supported by an interactive database browser. The user initially 
selects a ViewState for which the configuration is to be resolved. For each Designlnstance 
of this ViewS tate, the user interactively selects a particular leaf of the object schema of the 
referenced object. This process is repetead for each ViewState selected along the object 
composition hierarchy. If there are ConfigurationBodies bound to a given ViewState in 
this hierarchy, the user can select one of them in order to avoid building a complete 
configuration for the whole sub-hierarchy below this ViewState. 

In the automatic mode, the user chooses both the initial ViewS tate and one of two 
possible selection criteria: current or most recent ViewState. This criterion is used by 
the configuration manager to automatically select ViewStates for the sub-objects in the 
object compostion hierarchy. The current or most recent ViewState of each design object 
is pointed by a cursor which can be interactively moved via the browser. The automatic 
mode with selection of the current ViewState is the default resolution mode. 

In the semi-automatic mode, the resolution is supported by a selection language that 
permits the expression of user-defined criteria based on desired object qualities. 



Configuration management in the STARframework 31 

ViewState 

Designlnstance FUNCnON( 
" sub-expression1 AND/OR/NOT or " " 

Component sub-expression2 AND/ORINOT ... .' I selection expression 
.' .' 

) ; 

Designlnstance FUNCTION ( 

sub-expression1 AND/ORINOT " or " 
" I selection expression 

Component sub-expression2 AND/OR/NOT ... .' .... 
) ; 

Figure 3: An example of use of the selection language 

The selection language (see example in Figure 3) allows the user to specify configu­
ration expressions for the Components (or Designlnstances) of the ViewS tate for which 
a dynamic configuration is to be resolved. The expressions may be attached to each 
Component (or Designlnstance), to groups of Components (or Designlnstances), or to 
all Components (or DesignInstances) of the ViewState. 

An expression is composed of a set of sub-expressions. Each sub-expression specifies 
conditions on properties the ViewStates must show in order to be selected. The evalua­
tion of each sub-expression restricts the set of candidate ViewStates. The simultaneous 
evaluation of all sub-expressions results in a final set of candidate ViewStates that show 
all the desired properties. In order to restrict this final set to a single ViewState, the user 
must either define a conflict resolution function (which specifies the selection of either 
the current or the most recent ViewState), or switch to the manual selection mode, or 
redefine the configuration expression. If the final set is empty, the resolution fails. 

The sub-expressions are built as logical connections (through AND, OR, and NOT 
operators) of logical factors. Factors are expressed by the following special operators: 

• relational operators, which compare object attributes to constant values; 

• MAX (or MIN), which selects the version with the maximum (or minimum) value 
of an attribute; 

• existencial operators, which ask for the existence of attributes (possibly inherited 
ones); 



32 Part Two Data Management and Tool Integration 

• LAST (or FIRST), which selects the last (or first) version of a Design, ViewGroup, 
or View; and 

• CURRENT, which selects all current ViewStates associated with a Design, View­
Group, or View. 

5 Related work and comparison 

As in the SDE environment [5, 12], the STAR configuration manager offers configuration 
expressions as a means of specifying user-defined constraints to solve dynamic and open 
configurations. The SDE environment supports four types of constraints: 

• performance constraints specify restrictions on attributes like size, delay, power 
consumption, and latency; 

• selection constraints are restrictions on the selection of cells as components; 

• environment constraints specify the environment where a cell can be used as a 
component of a larger design (e.g related to a cell fanout); and 

• relativity constraints are dependencies of cells on other cells; 

Other systems, such as the OCT manager [3] and the Version Server [1] use workspaces 
(called layers in the Version Server) to organize versions that may be used together in a 
meaningful configuration. In these systems, the user is directly responsible for assigning 
versions to workspaces (or layers). These mechanisms are directly comparable to the 
selection and relativity constraints of the SDE environment. They do not allow the 
expression of complex queries to solve configurations. 

The selection language of the STAR framework, in turn, allows for the specification of 
expressions that are directly comparable to the performance and environment constraints 
of the SDE environment. The assignment of adequate attributes to the various nodes of 
the STAR object schemata allows for an "emulation" of the SDE selection and relativity 
constraint types. 

In the SDE environment, constraints are embedded into a VHDL extension and are 
thus expressed within the design object descriptions. In the STAR framework, the con­
figuration manager is a separate module offering a general-purpose service for resolving 
dynamic configurations. Design tools and descriptions are not affected by this service. If 
desired, design tools may access it through the API of the configuration manager. 

Configuration management in the STAR framework has very particular requirements. 
The hierarchical object schemata and the possibility of assigning Ports and other general­
purpose attributes to any of their nodes make dynamic configurations and their resolution 
more complex, but give an extra modeling flexibility. 

6 Final remarks 

The configuration manager is a separate module of the STAR framework, which offers 
integrated, extensive, and flexible mechanisms to define, solve, and handle design object 



Configuration management in the STARframework 33 

configurations. These mechanisms are implemented through both an interactive user in­
terface and an application programming interface. The main features of the configuration 
manager are: 

• support to static, dynamic and open configurations, so as to define configurations 
according to the current development of the design object or to the abstraction 
level which is desired for a given object representation; 

• the definition and storage of ConfigurationBodies and its reutilization, also in a 
hierarchical way, within other configurations; 

• the resolution of dynamic and open configurations in one of three different modes 
(manual, automatic, and semi-automatic); 

• a selection language that allows the definition of configuration expressions to select 
objects according to object features, so as to establish different semantic configu­
ration constraints; and 

• an interactive selection of object representations, by means of a navigation in the 
object schemata via an interactive database browser. 

References 

[1] R.H.Katz et al. Design version management. IEEE Design & Test of Computers, 
February 1987. 

[2] IEEE. IEEE Standard VHDL Language Reference Manual, 1988. 

[3) M.Silva et al' Protection and versioning for OCT. In 26th Design Automation Con­
ference. ACM/IEEE, 1989. 

[4) E.Siepmann. A data management interface as part of the framework of an integrated 
VLSI design system. In Intern.l Conference on Computer Design. IEEE, 1989. 

[5] M.J.Chung and S.Kim. The configuration management for version control in an 
object-oriented VHDL design environment. In Intern. Conference on Computer Aided 
Design. IEEE, 1991. 

[6] S.Banks et al. A configuration management system in a data management framework. 
In 28th Design Automation Conference. ACM/IEEE, 1991. 

[7) F.R.Wagner, L.G.Golendziner, and M.R.Fornari. A tightly coupled approach to de­
sign and data management. In EURO-DAC. 1994. 

[8] H.G.Ribeiro. A Configuration Manager for the STAR Framework. Master thesis, 
UFRGS, Porto Alegre, 1993. 

[9] F.R.Wagner et al. Design version management in the STAR framework. In 3rd IFIP 
Intern. Workshop on EDA Frameworks. North-Holland, 1992. 



34 Part Two Data Management and Tool Integration 

[10J F.R.Wagner and A.H.Viegas de Lima. Design version management in the GARDEN 
framework. In 28th Design Automation Conference. ACM/IEEE, 1991. 

[11] R.Mello, L.G.Golendziner, and F.R.Wagner. The visual interface of the STAR frame­
work. Also presented at the 4th IFIP Intern. Working Conference on EDA Frame­
works, 1994. 

[12] S.Kim and M.J.Chung. A constraint-driven approach to configuration binding in 
an object-oriented VHDL-CAD system. In 10th IFIP International Symposium on 
Computer Hardware Description Languages and Their Applications. North-Holland, 
1991. 


