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Traditional transaction management [Gra81] which supports concurrent work and failure han­
dling (recovery) based on the ACID-properties! [HR83] plays a significant role in database 
management systems. In the field of design frameworks this concept is relevant, too. However, 
the set of requirements for transaction management in this area is much more diverse. 

In the conventional model, concurrency control is done by executing transactions in an iso­
lated way. Design processes, however, require different degrees of cooperation in order to 
support collaborative work. Recovery, which is traditionally handled by rolling back transac­
tions, should consider that design activities are of long duration and that work losses should be 
minimized. Consistency is handled implicitly in the conventional model. In design environ­
ments, explicit consistency specifications and different levels of consistency should be supported. 

The idea of design frameworks is based on the observation that "hard-wired" services are not 
flexible enough to meet the various requirements of applications. Instead, a framework should 
offer a high degree of configurability. This idea can also be applied for transaction manage­
ment. Thus, we propose a highly configurable transaction model permitting the definition 
of different transaction types. Hereby, a heterogeneous transaction hierarchy can be formed 
[US92, MUZ94]. The transaction types can be assigned different characteristics with respect to 
concurrency control, cooperation, recovery and consistency management. This is done by defin­
ing protocols that are used by the corresponding transactions. It is the task of the framework 
administrator to define suitable transaction types fulfilling the application requirements. Frame­
work users and/or applications needing transactions with certain characteristics can choose from 
the set of transaction types and need not be bothered with details of transaction management . 
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We shall start with a short review of related work. In section 3 we present the basic concepts of 
our transaction model. Section 4 describes the main idea, Le., the configurability of the model. 
We conclude with a short summary and an outlook. 

2 Related Work 

Early approaches to design transaction management have concentrated on certain aspects. For 
example, [KLMP84} introduced the concept of workspaces and checkout/ checkin, [KSUW85} 
added version management and some cooperation primitives, and [KKB88} presented a model 
consisting of four transaction types and defined concurrency control protocols permitting co­
operation. [Ioc89} discusses recovery techniques in workstation-server environments for several 
design transaction models. [NRZ92] uses grammars as a programmable correctness criterion for 
cooperative transaction hierarchies. 

A more recent approach, Concord [RMH+94}, especially deals with cooperation. Although it 
uses similar notions of transactions as our approach, it differs, e.g., in the way the operations 
checkout/ checkin are handled. Another model developed within the JESSI Common Framework 
project [BS94} describes primitives for design transactions on top of an object-oriented database 
system. Both approaches do not support the concept of typing of transactions. 

The main benefit of our model lies in the ability to configure transactions. Hereby, heterogeneous 
transaction hierarchies can be built that satisfy various requirements of applications. This 
heterogeneity also allows to combine the best-suited concepts from other transaction models. 
Furthermore, the model is supposed to integrate the different aspects oftransaction management, 
in particular concurrency control, cooperation, recovery and consistency management. In this 
way, we continue and generalize the transaction toolkit approach [US92]. 

3 The Transaction Model 

3.1 Overview 

In this section we present the basic concepts of our transaction model. In particular, we sketch 
three notions of "transactions" which is necessary since this term is overloaded in literature. 

To illustrate our presentation we give a simple example that will be used throughout this pa­
per. A chip design project has the task to build an arithmetic-logical unit (ALD). The task 
is subdivided into the design and the simulation of the ALU. The design of the ALU can be 
further partitioned into the design of submodules like adders and multipliers. Designers are 
supported by interactive or batch tools, e.g., a schematic editor, a net list generator, or a 
simulator. These tools store design objects (e.g., schematics or netlists) in a database. They 
perform operations like reading a schematic into a main memory buffer, writing it back, inserting 
new modules into a schematic or adding a link into a netlist. 

From these observations we can derive three kinds of transactions: Design Transactions (DT) 
are used to model certain design tasks, Tool Transactions (TT) represent the execution of 
tools, and Atomic (Database) Transactions (AT) perform the elementary operations on 
the database. 
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3.2 The Elements of the Model 

We illustrate the model by the schema depicted in fig. 1 and the example in fig. 2. 
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Figure 1: Schema for the Transaction Model 

A Designer works on design tasks or controls their execution. H he is participating in several 
tasks, he is assigned several DTs. Vice versa, several designers can be assigned a single DT 
if they cooperate closely and if the task cannot be split in a reasonable way. Thus we get a 
n:m-relation between designers and DTs. 

A DT represents a design task. Often design tasks are subdivided into subtasks, resulting in 
a hierarchy of DTs. The design objects manipulated by a DT are typically managed as local 
copies. This leads to a workspace concept that distinguishes between (semi-)public and private 
workspaces [KLMP84]. To realize such a concept, we introduce object pools [US92]. An 
object pool is assigned to a DT and serves as a (logical) container for all objects accessed by 
the DT. The operations checkout and checkin are used to copy objects between object pools. 
By using these operations DTs can cooperate explicitly. DTs are of long duration and typically 
do not satisfy the ACID-properties. Concurrency control is done by a persistent mechanism 
(e.g., persistent locks) spanning sessions. Recovery must be done in a flexible way since a total 
rollback of long-lived design activities is often not adequate. In case of a crash, DTs can be 
reconstructed and continued, because the actual work is done by TTs and ATs, which store 
their results in a persistent way. 

An object pool contains the design objects manipulated by a DT. Optionally, objects may 
be versioned in order to represent the design history or variants. We distinguish between the 
object pool as the logical workspace and the database as the physical container. The fact that 
data will typically be distributed within a workstation-server environment is not relevant for the 
discussion in this paper and will therefore be ignored. We assume that objects are manipulated 
within transaction boundaries and that each elementary operation is performed by an AT which 
obeys the ACIJ)..properties. 

Within a DT tools like editors or simulators are executed. For simplicity we assume that a 
TT represents the execution of exactly one tool. The object pool of a DT serves as the logical 
data repository for the TT. The DT has to ensure (in charge of the user or a TT) that needed 
objects are available in the object pool with appropriate access rights. TTs can be of short or 
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Figure 2: Example 

long duration and may ensure the ACID-properties. If a TT spans several designer's sessions, 
it can be suspended and resumed later. TTs are not necessarily units of consistency since a 
single tool execution need not bring a design object into a consistent state. Several concurrent 
TTs working on one object pool are synchronized by a locking approach or by other, often 
tool-specific techniques (e.g., timestamps). Concurrency control information can be managed 
in a transient way as with conventional transactions, but must be made persistent when a TT 
is suspended. In contrast to DTs, TTs cooperate implicitly by accessing a single object pool, 
i.e., objects released by a certain TT are immediately available to other TTs without explicit 
cooperation mechanisms. Recovery can be handled by aborting TTs or rolling back partially 
to a savepoint. Other techniques are also conceivable, e.g., semantic undo of editor operations. 
If a TT performs its work in main memory buffers, a system crash can lead to a major loss of 
data. If it works on objects by executing ATs, the recovery mechanism for ATs guarantees that 
the results of successfully terminated ATs are durable. 

ATs realize the ACID-properties. They can be used to implement TTs and certain administra­
tive operations (e.g., starting DTs/TTs, checkout, checkin). Hereby, the conventional concur­
rency control and recovery concepts of a database can be exploited. 

These kinds of transactions represent different levels of abstraction: DTs are realized by TTs 
and/or ATs, TTs are realized by ATs. Each of these levels can apply a different concurrency 
control or recovery algorithm. For example, DTs can be synchronized by persistent locks which 
survive failures or system shutdowns, TTs can use transient locks and ATs can employ an 
optimistic approach. However, there are dependencies between these mechanisms. A TT, e.g., 
can only acquire a lock if the object and the appropriate persistent lock are already available in 
the object pool the TT works on. 
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4 Configurability of the Transaction Model 

4.1 Motivation 

As was noted in the introduction, a transaction model for design applications has to cover a huge 
number of complex requirements. This especially holds in the framework area where different 
kinds oftools and different design methodologies are applied. No single "hard-wired" transaction 
model is :flexible enough to meet all the requirements. Thus, in accordance with the principal 
idea of frameworks, we propose a transaction model that permits to individually configure a lot 
of different characteristics. 

Example: We can observe different requirements in our AL U project: 

• Cooperation is very intensive within a subproject, e.g., the development of the AL U as part 
of a microprocessor, but less intensive between subprojects. Thus, the concurrency control 
mechanisms applied within the subproject should be more" liberal ". 

• Recovery can be handled differently for interactive and batch tools. While a transaction 
rollback is not acceptable for interactive tools, batch tools like simulators can repeat their 
work automatically after a rollback. 

• The consistency requirements are lower if design objects are passed within a subproject 
(e.g., a preliminary netlist ofthe AL U is passed to the simulator) than ifthey are released 
for use by other projects. 

The following questions that arise in this context will be discussed in this section: 

1. How can transactions be configured? 

2. What are the characteristics that should be configurable? 

3. How do transactions with different characteristics fit together if they are applied within 
one application or framework? 

4.2 Typing of Transactions 

We first discuss question 1. Transactions are configured by using a typing mechanism. This 
mechanism works similar to an object-oriented approach: It is possible to define transaction 
types and to specialize them by an inheritance concept. Transactions are instances of trans­
action types. Transactions of different transaction types can be combined in one transaction 
system in order to fulfill different requirements of applications. Similar to object-oriented class 
libraries, transaction type libraries can be built in advance as part of a framework and can be 
used and/or refined by users of the framework or by tool developers. Transaction types can be 
defined in a language resembling an object-oriented language or can be specified interactively. 
They maiuly consist of methods defining the protocols to be used for the transaction. 

Example: A transaction type defining locking as the concurrency control protocol can be 
refined into types applying two-phase locking and non two-phase locking. 
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4.3 Combining Transactions of Different Transaction Types 

If transactions of different transaction types are used in one system (question 3) it is necessary 
that the protocols do not conflict. For example, if one transaction locks an object and another 
one accesses the object in an optimistic wayan undesirable behaviour may result. Thus, an 
arbitrary combination of protocols is impossible. 

The concept of object pools offers the possibility to define for each local workspace an individual 
protocol. Transactions accessing a single object pool have to use the· same or at least "compati­
ble" protocols. However, different object pools employ different protocols. Since an object pool 
is related to exactly one DT, typing of DTs assigns protocols to object pools. 

For space reasons, we will restrict the following discussion to DTs and omit typing of TTs. 
Typing of ATs is not very meaningful since they are normally provided by a database system 
and are assumed to realize the ACID-properties. 

As design tasks are often split into subtasks a nested DT hierarchy is built (fig. 3). The type of 
a certain DT defines the protocols to be used for the object pool of the DT. However, two rules 
have to be obeyed to make this concept work correctly. 

o -'*' r:=J OT _ . ..... 

Figure 3: Hierarchy of typed DTs 

First, when child DTs of a certain DT access the object pool of the DT by checkout or checkin 
they must apply protocols which are compatible with the protocols defined for that pool. For 
example, if a DT requires a two-phase locking algorithm for its object pool, the child DTs must 
use two-phase locking, too. However, they may apply specialized protocols, e.g. strict two-phase 
locking or two-phase locking with preciaiming. 

Second, the transfer of objects between arbitrary DTs within the hierarchy has to be done 
stepwise, i.e., objects may only be transferred directly to a child DT or to the parent DT. 
This is important since each DT must check its protocols and may forbid certain operations. 
If objects were transferred directly as in the conventional nested transaction approach [Mos85] 
inconsistencies could result because protocols could be circumvented. The conventional approach 
works well only with strict two-phase locking but does not support arbitrary protocols. In 
particular, it does not support different protocols within one hierarchy. 

Because of the stepwise transfer the st.btree rooted at a certain DT builds a sphere with well­
defined characteristics. DTs outside this sphere are not influenced by the protocols used within 
the sphere. This is important in order to control the information flow within the hierarchy. 

We now describe in more detail some characteristics that can be configured (question 2) . The 
list is not exhaustive, i.e., additional features can be defined. Of course, some characteristics 
are strongly related which means that they cannot be configured independently. 
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4.4 Concurrency Control Protocols 

Concurrency control is important for two reasons: First, the concurrency control mechanism 
determines the degree of parallelism and thereby strongly influences the efficiency of the system. 
Second, it is a prereqnisite to perform work in a cooperative way. Concurrency control requires 
the definition of a protocol. Locking protocols are the best-suited alternative. However, by 
using special lock modes we can also support a more liberal approach where objects are modified 
concurrently by using different copies and the changes are merged later on. To specify locking 
protocols two aspects must be defined: 

• Locking rules, e.g., 

- two-phase locking 
In this case, a DT may not acquire a new lock after it has released a lock. Two-phase 
locking assures the serializability property. 

- strictness 
A DT may not release any lock before it commits. This option avoids cascading 
rollbacks and is thus important for recovery. 

- preclaiming 
A DT must acquire all its locks at its beginning. This option avoids deadlocks. 

• Lock modes and their compatibility 
A lock generally has two effects [Unl94]: First, the DT holding the lock is granted the 
right to perform certain operations (called the internal effect). Second, a lock specifies 
which operations competing DTs are allowed to perform (called the external effect). The 
distinction between these two effects enables the specification of lock modes in a very 
flexible way. A classical exclusive lock can be specified by an internal effect granting the 
right to perform all operations and an external effect granting no right at all. However, it 
is also possible to specify a lock where the holder may modify an object and competitors 
may still read it or derive new versions from it. In particular, it is possible to specify locks 
permitting parallel updates of different copies of a single object that are merged later on. 

4.5 Cooperation Protocols 

Cooperation between transactions can take place in different ways, e.g., by exchanging design 
objects, delegating work, sending notifications or working on common data. Cooperation must 
be enabled by the concurrency control protocol. Traditional protocols for ACID-transactions 
prevent cooperation, i.e., they force transactions to work in an isolated way. This is not accept­
able for design environments where design is often performed in a cooperative way. The main 
problem with cooperation is that it allows information to flow between transactions even if it 
is still preliminary. Thus, it can be difficult to assure consistency and to minimize the effects 
of recovery actions. To deal with this problem, it should be possible to define which kinds of 
cooperation are permitted in a certain situation. Cooperation between DTs occurs by explicit 
operations based on checkout/ checkin. We distinguish between the following cases: 

• Transferring objects 
In this case, a DT passes a (possibly preliminary) object to another DT. The locking 
protocol must not be strict and - if objects are transferred back and forth between DTs -
not two-phase. 
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• Cooperation based on multiple copies 
DTs check out objects into their pools and work on these copies concurrently. This is 
possible if appropriate lock modes are offered. Two aspects have to be configured here: 
First, it must be defined what happens if a DT has produced a new version of an object 
that is also of interest for other DTs (e.g., rereading the object, notifying the user). Second, 
it must be defined what happens when different updates of the same object are checked 
in (e.g., merging the updates). 

4.6 Recovery Protocols 

Recovery is the reaction of the transaction system to certain kinds of errors like system crashes, 
program errors or errors caused by a user. The traditional way to perform recovery, i.e. the 
rollback of transactions, is not flexible enough for design environments. A major problem for 
the recovery of DTs is cooperation: By exchanging objects, inconsistent information may be 
spread throughout the hierarchy which can lead to cascading recovery in case of a failure. For 
the configuration of recovery we apply three mechanisms: 

• Savepointing, Le., specifying when a savepoint is set. 

• Definition of recovery actions 
It is possible to define how a DT reacts to failures. We distinguish between the following 
alternatives2 : 

- The DT rolls back completely or - if possible - to the last savepoint (partial rollback). 

- The DT only rolls back the changes to the object that is affected by the failure 
( selective rollback). 

- The user or the application is notified and can perform manual or programmed re­
coveryactions. 

• Prevention of cascading recovery 
By restricting the flow of information in advance, it is possible to prevent cascading re­
covery actions. We can apply one of the following mechanisms: 

- The DT uses a strict locking protocol. In this case, no preliminary objects may be 
released and no other DTs may be affected by a recovery action. 

- Whenever the DT releases an object, it commits its changes to the object, i.e., it 
waives its right to roll back its changes later (selective commit). 

4.7 Consistency Specifications 

A main goal of transactions is to guarantee consistency in case of concurrency and failures. In 
the conventional model, consistency is defined implicitly, i.e., each transaction is assumed to be 
consistency-preserving. In a design environment, we should be able to define consistency in a 
more flexible, application-specific way and should support different degrees of consistency. 

Consistency can be specified by defining a control flow or by defining properties of design 
objects. The first approach is used in several transaction models (e.g., [NRZ92, WR92]) and 

2 An interesting alternative not discussed here is semantic recovery by compensation [KLS90]. 
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by design flow managers [KM92]. It fits well with our model in that control flow information is 
assigned to DT types. The second approach works as follows: In order to specify consistency, we 
use the feature concept [Kae91]. A feature is an arbitrary property of a design object that can 
have a (possibly ordered) number of values. A set of features defines the consistency state of a 
design object. We can use features in order to specify consistency requirements when objects are 
transferred. First, it is possible to specify the minimum consistency of an object that is checked 
out by a DT. In this way, the DT can guard itself against objects with an insufficient degree 
of consistency. Analogously, it is possible to specify the minimum consistency of an object that 
is checked in by a DT. In this way, the DT assures that is does not release objects with an 
insufficient degree of consistency. 

Since checkout and checkin are also used for cooperation, it is possible to specify whether coop­
eration is permitted for objects with a certain degree of consistency. 

4.8 Application Example 

To illustrate our approach, we show some type definitions suitable for the DTs in our example. 

Example: 

• Concurrency control characteristics 
The objects in the pool of the AL U Development DT are versioned in a linear order. 
Concurrency control is done by non-two-phase locking. Valid lock modes are share for 
reading a version and derive for deriving' a new version. In the lock compatibility matrix, 
share is compatible with share and derive, but derive is not compatible with itself. 

• Cooperation characteristics 
The AL U Development DT may transfer (possibly preliminary) versions of netlists to the 
ALU Simulation DT (only for reading). 

• Recovery characteristics 
The AL U Development DT creates an automatic savepoint for an object after a TT has 
modified it. The AL U Simulation DT rereads a netlist if it has been invalidated by a 
recovery action and restarts the simulation. 

• Consistency characteristics 
The AL U Development DT may checkin only objects for which the simulation with certain 
test patterns was successful. 

5 Conclusion 

The transaction model sketched in this paper distinguishes itself by a high degree of configura­
bility. This is achieved by defining transaction types using certain transaction primitives and 
combining them into a heterogeneous transaction system. In this way, the model is superior to 
other approaches and is open to model most of their features. Since the specification of trans­
action types is a complex task requiring knowledge in this area, a framework should provide a 
set of general purpose transaction types for tool developers or framework users. If necessary, a 
framework administrator can build new or refine existing transaction types. 

An implementation of the model requires a specification mechanism for transaction types. There 
are two main possibilities: First, a language can be defined that should resemble an object­
oriented language or be an extension of it. Second, transaction types can be defined interactively. 
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In our prototype based on the JESSI Common Fmmework [Ste92j we have chosen the interactive 
approach. However, we plan to design a suitable language because this seems more flexible. 

There are some extensions that can improve our approach. First, it should be possible to use 
information from the data schema in order to specify protocols for certain types of objects. This 
leads to an integration of the language for specifying transaction types with the data definition 
language. Second, there should be a rule mechanism permitting the definition of automatic 
reactions in case of synchronization conflicts, errors or consistency violations and supporting 
certain forms of cooperation. We are currently investigating these topics. 
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