
2

A Configurable Cooperative Transaction Model
for Design Frameworks

Axel Meckenstock
Detlef Zimmer

CADLAB*
Bahnhofstr. 32

0-33102 Paderborn
{axelldet }@cadlab.de

1 Introduction

Rainer Unland

WestfaJische Wilhelms-Universitat
Grevener Str. 91
D-48159 Miinster

unlandr@uni-muenster.de

Traditional transaction management [Gra81] which supports concurrent work and failure han­
dling (recovery) based on the ACID-properties! [HR83] plays a significant role in database
management systems. In the field of design frameworks this concept is relevant, too. However,
the set of requirements for transaction management in this area is much more diverse.

In the conventional model, concurrency control is done by executing transactions in an iso­
lated way. Design processes, however, require different degrees of cooperation in order to
support collaborative work. Recovery, which is traditionally handled by rolling back transac­
tions, should consider that design activities are of long duration and that work losses should be
minimized. Consistency is handled implicitly in the conventional model. In design environ­
ments, explicit consistency specifications and different levels of consistency should be supported.

The idea of design frameworks is based on the observation that "hard-wired" services are not
flexible enough to meet the various requirements of applications. Instead, a framework should
offer a high degree of configurability. This idea can also be applied for transaction manage­
ment. Thus, we propose a highly configurable transaction model permitting the definition
of different transaction types. Hereby, a heterogeneous transaction hierarchy can be formed
[US92, MUZ94]. The transaction types can be assigned different characteristics with respect to
concurrency control, cooperation, recovery and consistency management. This is done by defin­
ing protocols that are used by the corresponding transactions. It is the task of the framework
administrator to define suitable transaction types fulfilling the application requirements. Frame­
work users and/or applications needing transactions with certain characteristics can choose from
the set of transaction types and need not be bothered with details of transaction management .

• Joint R&D Institute University-GH Paderborn / Siemens Nixdorf Informationssysteme AG.
1 Atomicity, Consistency, Isolation, Durability

F. J. Rammig et al. (eds.), Electronic Design Automation Frameworks
© Springer Science+Business Media Dordrecht 1995

14 Part One Transaction-BasedApproaches

We shall start with a short review of related work. In section 3 we present the basic concepts of
our transaction model. Section 4 describes the main idea, Le., the configurability of the model.
We conclude with a short summary and an outlook.

2 Related Work

Early approaches to design transaction management have concentrated on certain aspects. For
example, [KLMP84} introduced the concept of workspaces and checkout/ checkin, [KSUW85}
added version management and some cooperation primitives, and [KKB88} presented a model
consisting of four transaction types and defined concurrency control protocols permitting co­
operation. [Ioc89} discusses recovery techniques in workstation-server environments for several
design transaction models. [NRZ92] uses grammars as a programmable correctness criterion for
cooperative transaction hierarchies.

A more recent approach, Concord [RMH+94}, especially deals with cooperation. Although it
uses similar notions of transactions as our approach, it differs, e.g., in the way the operations
checkout/ checkin are handled. Another model developed within the JESSI Common Framework
project [BS94} describes primitives for design transactions on top of an object-oriented database
system. Both approaches do not support the concept of typing of transactions.

The main benefit of our model lies in the ability to configure transactions. Hereby, heterogeneous
transaction hierarchies can be built that satisfy various requirements of applications. This
heterogeneity also allows to combine the best-suited concepts from other transaction models.
Furthermore, the model is supposed to integrate the different aspects oftransaction management,
in particular concurrency control, cooperation, recovery and consistency management. In this
way, we continue and generalize the transaction toolkit approach [US92].

3 The Transaction Model

3.1 Overview

In this section we present the basic concepts of our transaction model. In particular, we sketch
three notions of "transactions" which is necessary since this term is overloaded in literature.

To illustrate our presentation we give a simple example that will be used throughout this pa­
per. A chip design project has the task to build an arithmetic-logical unit (ALD). The task
is subdivided into the design and the simulation of the ALU. The design of the ALU can be
further partitioned into the design of submodules like adders and multipliers. Designers are
supported by interactive or batch tools, e.g., a schematic editor, a net list generator, or a
simulator. These tools store design objects (e.g., schematics or netlists) in a database. They
perform operations like reading a schematic into a main memory buffer, writing it back, inserting
new modules into a schematic or adding a link into a netlist.

From these observations we can derive three kinds of transactions: Design Transactions (DT)
are used to model certain design tasks, Tool Transactions (TT) represent the execution of
tools, and Atomic (Database) Transactions (AT) perform the elementary operations on
the database.

A configurable cooperative transaction model 15

3.2 The Elements of the Model

We illustrate the model by the schema depicted in fig. 1 and the example in fig. 2.

Object Pool

Is stored In

n n

AT
works on

Database

Figure 1: Schema for the Transaction Model

A Designer works on design tasks or controls their execution. H he is participating in several
tasks, he is assigned several DTs. Vice versa, several designers can be assigned a single DT
if they cooperate closely and if the task cannot be split in a reasonable way. Thus we get a
n:m-relation between designers and DTs.

A DT represents a design task. Often design tasks are subdivided into subtasks, resulting in
a hierarchy of DTs. The design objects manipulated by a DT are typically managed as local
copies. This leads to a workspace concept that distinguishes between (semi-)public and private
workspaces [KLMP84]. To realize such a concept, we introduce object pools [US92]. An
object pool is assigned to a DT and serves as a (logical) container for all objects accessed by
the DT. The operations checkout and checkin are used to copy objects between object pools.
By using these operations DTs can cooperate explicitly. DTs are of long duration and typically
do not satisfy the ACID-properties. Concurrency control is done by a persistent mechanism
(e.g., persistent locks) spanning sessions. Recovery must be done in a flexible way since a total
rollback of long-lived design activities is often not adequate. In case of a crash, DTs can be
reconstructed and continued, because the actual work is done by TTs and ATs, which store
their results in a persistent way.

An object pool contains the design objects manipulated by a DT. Optionally, objects may
be versioned in order to represent the design history or variants. We distinguish between the
object pool as the logical workspace and the database as the physical container. The fact that
data will typically be distributed within a workstation-server environment is not relevant for the
discussion in this paper and will therefore be ignored. We assume that objects are manipulated
within transaction boundaries and that each elementary operation is performed by an AT which
obeys the ACIJ)..properties.

Within a DT tools like editors or simulators are executed. For simplicity we assume that a
TT represents the execution of exactly one tool. The object pool of a DT serves as the logical
data repository for the TT. The DT has to ensure (in charge of the user or a TT) that needed
objects are available in the object pool with appropriate access rights. TTs can be of short or

16 Part One Transaction-Based Approaches

~ nesting 01 DTs

TIconslsl8 01 ATs

AT works on database

DT11 Adder DT12 Multiplier

v § ... fE:':J
~//'//

database

Figure 2: Example

long duration and may ensure the ACID-properties. If a TT spans several designer's sessions,
it can be suspended and resumed later. TTs are not necessarily units of consistency since a
single tool execution need not bring a design object into a consistent state. Several concurrent
TTs working on one object pool are synchronized by a locking approach or by other, often
tool-specific techniques (e.g., timestamps). Concurrency control information can be managed
in a transient way as with conventional transactions, but must be made persistent when a TT
is suspended. In contrast to DTs, TTs cooperate implicitly by accessing a single object pool,
i.e., objects released by a certain TT are immediately available to other TTs without explicit
cooperation mechanisms. Recovery can be handled by aborting TTs or rolling back partially
to a savepoint. Other techniques are also conceivable, e.g., semantic undo of editor operations.
If a TT performs its work in main memory buffers, a system crash can lead to a major loss of
data. If it works on objects by executing ATs, the recovery mechanism for ATs guarantees that
the results of successfully terminated ATs are durable.

ATs realize the ACID-properties. They can be used to implement TTs and certain administra­
tive operations (e.g., starting DTs/TTs, checkout, checkin). Hereby, the conventional concur­
rency control and recovery concepts of a database can be exploited.

These kinds of transactions represent different levels of abstraction: DTs are realized by TTs
and/or ATs, TTs are realized by ATs. Each of these levels can apply a different concurrency
control or recovery algorithm. For example, DTs can be synchronized by persistent locks which
survive failures or system shutdowns, TTs can use transient locks and ATs can employ an
optimistic approach. However, there are dependencies between these mechanisms. A TT, e.g.,
can only acquire a lock if the object and the appropriate persistent lock are already available in
the object pool the TT works on.

A configurable cooperative transaction model 17

4 Configurability of the Transaction Model

4.1 Motivation

As was noted in the introduction, a transaction model for design applications has to cover a huge
number of complex requirements. This especially holds in the framework area where different
kinds oftools and different design methodologies are applied. No single "hard-wired" transaction
model is :flexible enough to meet all the requirements. Thus, in accordance with the principal
idea of frameworks, we propose a transaction model that permits to individually configure a lot
of different characteristics.

Example: We can observe different requirements in our AL U project:

• Cooperation is very intensive within a subproject, e.g., the development of the AL U as part
of a microprocessor, but less intensive between subprojects. Thus, the concurrency control
mechanisms applied within the subproject should be more" liberal ".

• Recovery can be handled differently for interactive and batch tools. While a transaction
rollback is not acceptable for interactive tools, batch tools like simulators can repeat their
work automatically after a rollback.

• The consistency requirements are lower if design objects are passed within a subproject
(e.g., a preliminary netlist ofthe AL U is passed to the simulator) than ifthey are released
for use by other projects.

The following questions that arise in this context will be discussed in this section:

1. How can transactions be configured?

2. What are the characteristics that should be configurable?

3. How do transactions with different characteristics fit together if they are applied within
one application or framework?

4.2 Typing of Transactions

We first discuss question 1. Transactions are configured by using a typing mechanism. This
mechanism works similar to an object-oriented approach: It is possible to define transaction
types and to specialize them by an inheritance concept. Transactions are instances of trans­
action types. Transactions of different transaction types can be combined in one transaction
system in order to fulfill different requirements of applications. Similar to object-oriented class
libraries, transaction type libraries can be built in advance as part of a framework and can be
used and/or refined by users of the framework or by tool developers. Transaction types can be
defined in a language resembling an object-oriented language or can be specified interactively.
They maiuly consist of methods defining the protocols to be used for the transaction.

Example: A transaction type defining locking as the concurrency control protocol can be
refined into types applying two-phase locking and non two-phase locking.

18 Part One Transaction-Based Approaches

4.3 Combining Transactions of Different Transaction Types

If transactions of different transaction types are used in one system (question 3) it is necessary
that the protocols do not conflict. For example, if one transaction locks an object and another
one accesses the object in an optimistic wayan undesirable behaviour may result. Thus, an
arbitrary combination of protocols is impossible.

The concept of object pools offers the possibility to define for each local workspace an individual
protocol. Transactions accessing a single object pool have to use the· same or at least "compati­
ble" protocols. However, different object pools employ different protocols. Since an object pool
is related to exactly one DT, typing of DTs assigns protocols to object pools.

For space reasons, we will restrict the following discussion to DTs and omit typing of TTs.
Typing of ATs is not very meaningful since they are normally provided by a database system
and are assumed to realize the ACID-properties.

As design tasks are often split into subtasks a nested DT hierarchy is built (fig. 3). The type of
a certain DT defines the protocols to be used for the object pool of the DT. However, two rules
have to be obeyed to make this concept work correctly.

o -'*' r:=J OT _

Figure 3: Hierarchy of typed DTs

First, when child DTs of a certain DT access the object pool of the DT by checkout or checkin
they must apply protocols which are compatible with the protocols defined for that pool. For
example, if a DT requires a two-phase locking algorithm for its object pool, the child DTs must
use two-phase locking, too. However, they may apply specialized protocols, e.g. strict two-phase
locking or two-phase locking with preciaiming.

Second, the transfer of objects between arbitrary DTs within the hierarchy has to be done
stepwise, i.e., objects may only be transferred directly to a child DT or to the parent DT.
This is important since each DT must check its protocols and may forbid certain operations.
If objects were transferred directly as in the conventional nested transaction approach [Mos85]
inconsistencies could result because protocols could be circumvented. The conventional approach
works well only with strict two-phase locking but does not support arbitrary protocols. In
particular, it does not support different protocols within one hierarchy.

Because of the stepwise transfer the st.btree rooted at a certain DT builds a sphere with well­
defined characteristics. DTs outside this sphere are not influenced by the protocols used within
the sphere. This is important in order to control the information flow within the hierarchy.

We now describe in more detail some characteristics that can be configured (question 2) . The
list is not exhaustive, i.e., additional features can be defined. Of course, some characteristics
are strongly related which means that they cannot be configured independently.

A configurable cooperative transaction model 19

4.4 Concurrency Control Protocols

Concurrency control is important for two reasons: First, the concurrency control mechanism
determines the degree of parallelism and thereby strongly influences the efficiency of the system.
Second, it is a prereqnisite to perform work in a cooperative way. Concurrency control requires
the definition of a protocol. Locking protocols are the best-suited alternative. However, by
using special lock modes we can also support a more liberal approach where objects are modified
concurrently by using different copies and the changes are merged later on. To specify locking
protocols two aspects must be defined:

• Locking rules, e.g.,

- two-phase locking
In this case, a DT may not acquire a new lock after it has released a lock. Two-phase
locking assures the serializability property.

- strictness
A DT may not release any lock before it commits. This option avoids cascading
rollbacks and is thus important for recovery.

- preclaiming
A DT must acquire all its locks at its beginning. This option avoids deadlocks.

• Lock modes and their compatibility
A lock generally has two effects [Unl94]: First, the DT holding the lock is granted the
right to perform certain operations (called the internal effect). Second, a lock specifies
which operations competing DTs are allowed to perform (called the external effect). The
distinction between these two effects enables the specification of lock modes in a very
flexible way. A classical exclusive lock can be specified by an internal effect granting the
right to perform all operations and an external effect granting no right at all. However, it
is also possible to specify a lock where the holder may modify an object and competitors
may still read it or derive new versions from it. In particular, it is possible to specify locks
permitting parallel updates of different copies of a single object that are merged later on.

4.5 Cooperation Protocols

Cooperation between transactions can take place in different ways, e.g., by exchanging design
objects, delegating work, sending notifications or working on common data. Cooperation must
be enabled by the concurrency control protocol. Traditional protocols for ACID-transactions
prevent cooperation, i.e., they force transactions to work in an isolated way. This is not accept­
able for design environments where design is often performed in a cooperative way. The main
problem with cooperation is that it allows information to flow between transactions even if it
is still preliminary. Thus, it can be difficult to assure consistency and to minimize the effects
of recovery actions. To deal with this problem, it should be possible to define which kinds of
cooperation are permitted in a certain situation. Cooperation between DTs occurs by explicit
operations based on checkout/ checkin. We distinguish between the following cases:

• Transferring objects
In this case, a DT passes a (possibly preliminary) object to another DT. The locking
protocol must not be strict and - if objects are transferred back and forth between DTs -
not two-phase.

20 Part One Transaction-Based Approaches

• Cooperation based on multiple copies
DTs check out objects into their pools and work on these copies concurrently. This is
possible if appropriate lock modes are offered. Two aspects have to be configured here:
First, it must be defined what happens if a DT has produced a new version of an object
that is also of interest for other DTs (e.g., rereading the object, notifying the user). Second,
it must be defined what happens when different updates of the same object are checked
in (e.g., merging the updates).

4.6 Recovery Protocols

Recovery is the reaction of the transaction system to certain kinds of errors like system crashes,
program errors or errors caused by a user. The traditional way to perform recovery, i.e. the
rollback of transactions, is not flexible enough for design environments. A major problem for
the recovery of DTs is cooperation: By exchanging objects, inconsistent information may be
spread throughout the hierarchy which can lead to cascading recovery in case of a failure. For
the configuration of recovery we apply three mechanisms:

• Savepointing, Le., specifying when a savepoint is set.

• Definition of recovery actions
It is possible to define how a DT reacts to failures. We distinguish between the following
alternatives2 :

- The DT rolls back completely or - if possible - to the last savepoint (partial rollback).

- The DT only rolls back the changes to the object that is affected by the failure
(selective rollback).

- The user or the application is notified and can perform manual or programmed re­
coveryactions.

• Prevention of cascading recovery
By restricting the flow of information in advance, it is possible to prevent cascading re­
covery actions. We can apply one of the following mechanisms:

- The DT uses a strict locking protocol. In this case, no preliminary objects may be
released and no other DTs may be affected by a recovery action.

- Whenever the DT releases an object, it commits its changes to the object, i.e., it
waives its right to roll back its changes later (selective commit).

4.7 Consistency Specifications

A main goal of transactions is to guarantee consistency in case of concurrency and failures. In
the conventional model, consistency is defined implicitly, i.e., each transaction is assumed to be
consistency-preserving. In a design environment, we should be able to define consistency in a
more flexible, application-specific way and should support different degrees of consistency.

Consistency can be specified by defining a control flow or by defining properties of design
objects. The first approach is used in several transaction models (e.g., [NRZ92, WR92]) and

2 An interesting alternative not discussed here is semantic recovery by compensation [KLS90].

A configurable cooperative transaction model 21

by design flow managers [KM92]. It fits well with our model in that control flow information is
assigned to DT types. The second approach works as follows: In order to specify consistency, we
use the feature concept [Kae91]. A feature is an arbitrary property of a design object that can
have a (possibly ordered) number of values. A set of features defines the consistency state of a
design object. We can use features in order to specify consistency requirements when objects are
transferred. First, it is possible to specify the minimum consistency of an object that is checked
out by a DT. In this way, the DT can guard itself against objects with an insufficient degree
of consistency. Analogously, it is possible to specify the minimum consistency of an object that
is checked in by a DT. In this way, the DT assures that is does not release objects with an
insufficient degree of consistency.

Since checkout and checkin are also used for cooperation, it is possible to specify whether coop­
eration is permitted for objects with a certain degree of consistency.

4.8 Application Example

To illustrate our approach, we show some type definitions suitable for the DTs in our example.

Example:

• Concurrency control characteristics
The objects in the pool of the AL U Development DT are versioned in a linear order.
Concurrency control is done by non-two-phase locking. Valid lock modes are share for
reading a version and derive for deriving' a new version. In the lock compatibility matrix,
share is compatible with share and derive, but derive is not compatible with itself.

• Cooperation characteristics
The AL U Development DT may transfer (possibly preliminary) versions of netlists to the
ALU Simulation DT (only for reading).

• Recovery characteristics
The AL U Development DT creates an automatic savepoint for an object after a TT has
modified it. The AL U Simulation DT rereads a netlist if it has been invalidated by a
recovery action and restarts the simulation.

• Consistency characteristics
The AL U Development DT may checkin only objects for which the simulation with certain
test patterns was successful.

5 Conclusion

The transaction model sketched in this paper distinguishes itself by a high degree of configura­
bility. This is achieved by defining transaction types using certain transaction primitives and
combining them into a heterogeneous transaction system. In this way, the model is superior to
other approaches and is open to model most of their features. Since the specification of trans­
action types is a complex task requiring knowledge in this area, a framework should provide a
set of general purpose transaction types for tool developers or framework users. If necessary, a
framework administrator can build new or refine existing transaction types.

An implementation of the model requires a specification mechanism for transaction types. There
are two main possibilities: First, a language can be defined that should resemble an object­
oriented language or be an extension of it. Second, transaction types can be defined interactively.

22 Part One Transaction-Based Approaches

In our prototype based on the JESSI Common Fmmework [Ste92j we have chosen the interactive
approach. However, we plan to design a suitable language because this seems more flexible.

There are some extensions that can improve our approach. First, it should be possible to use
information from the data schema in order to specify protocols for certain types of objects. This
leads to an integration of the language for specifying transaction types with the data definition
language. Second, there should be a rule mechanism permitting the definition of automatic
reactions in case of synchronization conflicts, errors or consistency violations and supporting
certain forms of cooperation. We are currently investigating these topics.

References

[BS94] A. Bredenfeld and H. Streibel. Report and Demonstration of first Prototype of Complex Transac­
tion Model. Technical Report JCF /GMD/006-01/30-Jun-94, Jessi-Common-Frame (ESPRIT Project
7364), June 1994.

[Gra81] J. Gray. The Transaction Concept: Virtues and Limitations. In Proc. VLDB, pages 144-154, Septem­
ber 1981.

[HR83] T. Harder and A. Reuter. Principles of Transaction-Oriented Database Recovery. A CM Computing
Surveys, 15(4):287-317, December 1983.

[1oc89] C. Iochpe. Database Recovery in the Design Environment: Reqnirement Analysis and Performance
Evaluation. Dissertation, Universitat Karlsruhe, 1989.

[Kae91] W. Kaefer. A Framework for Version-based Cooperation Control. In Proc. 2nd Inti. Symp. on Database
Systems for Advanced Applications (DASFAA), April 1991.

[KKB88] H.F. Korth, W. Kim, and F. Bancilhon. On Long-Duration CAD Transactions. Information Sciences,
46:73-107, 1988.

[KLMP84] W. Kim, R. Lorie, D. McNabb, and W. Plouffe. A Transaction Mechanism for Engineering Design
Databases. In Proc. VLDB, pages 355-362, August 1984.

[KLS90] H.F. Korth, E. Levy, and A. Silberschatz. A Formal Approach to Recovery by Compensating Trans­
actions. In Proc. ConJ. on Very Large Data Bases, pages 95-106, August 1990.

[KM92] T. Kathefer and J. Miller. The JESSI-COMMON-FRAME Project - Sub-project Development -. In
Proc. 9rd IF!P Workshop on Electronic Design Automation Frameworks, pages 253-269, March 1992.

[KSUW85] P. Klahold, G. Schlageter, R. Unland, and W. Wilkes. A Transaction Model Supporting Complex
Applications in Integrated Information Systems. In Proc. ACM SIGMOD Conf. on Management of
Data, pages 388-401, May 1985.

[Mos85] J .E.B. Moss. Nested Transactions - An Approach to Reliable Distributed Computing. MIT Press,
1985.

[MUZ94] A. Meckenstock, R. Unland, and D. Zimmer. Flexible Support of Cooperative Design Environments
by a Transaction Toolkit (in German). In Proc. STAK '94, pages 9-26, March 1994.

[NRZ92] M.H. Nodine, S. Ramaswamy, and S.B. Zdonik. A Cooperative Transaction Model for Design
Databases. In A.K. Elmagarmid, editor, Database Transaction Models for Advanced Applications,
pages 53-85. Morgan Kaufmann, 1992.

[RMH+94] N. Ritter, B. Mitschang, T. Harder, M. Gesmann, and H. Schening. Capturing Design Dynamics -
The Concord Approach. In Proc. IEEE Data Engineering, February 1994.

[Ste92j B. Steinmiiller. The JESSI-COMMON-FRAME Project - A Project Overview. In Proc. 3rd IFIP
Workshop on Electronic Design Automation Frameworks, pages 227-238, March 1992.

[Unl94] R. Unland. Control of Collaboration within Intelligent and Cooperative Information Systems. In
Proc. CoopIS-94, May 1994.

[US92] R. Unland and G. Schlageter. A Transaction Manager Development Facility for Non Standard
Database Systems. In A.K. Elmagarmid, editor, Database Transaction Models jor Advanced Ap­
plications, pages 399-466. Morgan Kaufmann, 1992.

[WR92] H. Wichter and A. Reuter. The ConTract Model. In A.K. Elmagarmid, editor, Database Transaction
Models/or Advanced Applications, pages 219-263. Morgan Kaufmann, 1992.

