
14 

Resource-Oriented Load Distribution 
in a Framework Environment * 

Jiirgen Schubert Arno Kunzmann 

Forschungszentrum Informatik, FZI 
Systementwurf in der Mikroelektronik (Prof. W. Rosenstiel) 
Haid-und-Neu-Strafie 10-14, D-76131 Karlsruhe, Germany 

E-mail: schubert/kunzmann@fzLde 

Abstract 

In this paper the framework-based load distribution system FLODIS is pre­
sented. In order to reduce the overall design time, FLODIS provides a user­
transparent distribution of design activities over a heterogeneous network of 
workstations. The distribution algorithm is mainly controlled by estimations 
about the required activity-specific resources that can be derived by user­
defined data, recorded execution profiles and methodology information of the 
framework. Experimental data with several design flows and different design 
activities show that by the proposed distribution system the overall execu­
tion time can be distinctly reduced. Compared with conventional distribution 
systems an average reduction up to over 60% can be observed. 

1 Introduction 

The development of complex systems requires a highly efficient cooperation of design 
teams to reduce the overall design time. A key objective is the support of concurrent 
engineering. This necessarily implies that a simultaneous and coordinated execution of a 
large number of different design tools is required. Depending on the selected parameters 
and the input/output data, each tool can perform several activities. Given a network 
of several workstations, the execution time for each activity is heavily influenced by the 
selected workstation. In order to reduce both the individual and the overall response 
time, several load distribution systems have been developed. Since the management of 
complex design tasks is typically embedded in a specific design framework, the efficiency 
of load distribution systems can be significantly improved by using framework knowledge. 

"This work is supported by the ESPRIT project JESSI-COMMON-Frame (7364). 

F. J. Rammig et al. (eds.), Electronic Design Automation Frameworks
© Springer Science+Business Media Dordrecht 1995



140 Part Five Communication and Distribution 

In this paper, the concept and implementation of the load distribution system FLODIS 
(Framework based LOad DIstribution System) will be discussed. Experimental results 
show that compared with conventional load distribution approaches, FLODIS distinctly 
reduces the overall response time in average up to over 60 %. 

2 The FLODIS Approach: Motivation and Concepts 

One general problem of most load distribution systems is the missing knowledge about 
the upcoming load. Hereto, static approaches use statistics, for instance, fixed job arrival 
rates. The distribution is performed without measuring the load of the available work­
stations, assuming an average external load [TT85]. In contrast, dynamic distribution 
algorithms consider the current system load, in order to select the workstations with least 
load. 

Embedded in framework environments, several approaches were reported: The MCC CAD 
framework selects an appropriate workstation based on the (static) Round-Robin algo­
rithm [ARF90j. FLOW is a representative approach for dynamic load distribution [Kas92j. 
PAPYRUS is based on the operating system SPRITE and, therefore, also process migra­
tion is supported [CK93j. In the ULYSSES II framework, resources are dynamically 
allocated [Bus94]. Here, the best suited workstation is selected by calculating the pro­
cessing power and work load. A common feature of all these distribution strategies is that 
they are only based on the number of activities. But obviously, the necessary resources 
(e.g., CPU-time, I/O-time, main memory) are essential to compute efficient allocations. 
Therefore, FLODIS also takes resources into account, but since exact values are only 
available in very special cases, estimations about the required resources will be used. 
In a framework environment precise predictions about activity specific resources can be 
gathered by different sources: 

a) The tool integrator often knows which complexity dimension (CD) value (e.g., num­
ber of gates, transistors, primary inputs) are important for computing the activity 
specific resources. Additionally, detailed resource requirements, e.g., how the num­
ber of gates influences the memory and CPU-time consumption may be known. For 
several activities like simulation and test pattern generation, an average complexity 
of the basic algorithm is available and the corresponding calculation formula can be 
used for load predictions. 

b) With every activity execution, the used resources are recorded, always related to the 
CD values. In FLODIS a linear regression is used to forecast CPU-time, I/O-time 
and memory requirements [DS66]. 

c) Derived from the methodology management, the information of repeatedly executed 
activities within a subproject can be used. In this case the CD values are expected 
to be similar because the same specification is used for the part which has to be 
designed. The mean value of the previously used resources is sufficiently accurate. 



Resource-oriented load distribution 141 

d) For executions within the same design flows, where predefined activity sequences 
have to be followed, the CD value of the last execution is chosen, in general providing 
an even more accurate value. This is a typical case because a design process often 
is iterative which includes the re-execution of activities with slightly modified input 
until the specification is fulfilled. 

To establish the required communication between framework and load distribution sys­
tem, the framework sends activities to FLODIS together with the information about the 
identification of the design flow and the subproject from which the activity is started. In 
FLODIS the resource estimation algorithm in Fignre 1 is used for characterization with 
respect to the relative CPU and I/O usage of the activities to distinguish between CPU 
and I/O intensive jobs. 

complexity 

design flow. 
subproject 

Use measured 

data 

Use mean of 

measured data 

Figure 1: Activity resource estimation algorithm 

Since an execution of jobs with the same characteristics on the same workstation results 
in relatively high increases of the response times, in FLODIS an allocation strategy is 
implemented that prefers the combination of tools with different characteristics. Given a 
workstation specific maximum CPU and I/O load, activities can be allocated as long as 
this limit is not exceeded. To take also workstations with different computing power into 
account, transfer factors for adapting CPU and I/O requirements are calculated. In order 



142 Part Five Communication and Distribution 

to optimize the use of powerful workstations, the distribution algorithm is based on a list 
of available workstations, descending ordered according to their computing power. Always 
starting at the top of this list, activities are allocated if the available resources fulfil the 
activity requirements. In this case, the workstation resources are decreased according 
to the resource predictions for the allocated activity, otherwise the next workstation is 
scanned. 

50% 

Activity 1 

50% 

Activity 2 

I 00% r----------------, 

Activity 3 
50% 

CPU I/O 

CPU I/O 

Figure 2: Activity allocation algorithm 

Figure 2 presents an example for the allocation of three activities that have to be executed. 
The available three hosts are ordered according to their computing power. Both activities, 
activity I and activity 2, are CPU intensive jobs. The allocation algorithm selects the 
more powerful host (Host Xl) for execution of activity I and the available resources of this 
workstation are decreased by the estimated activity requirements. The second activity 
needs more CPU resources than host Xl can provide, therefore, the less powerful host 
(Host X2) is selected. The third activity needs a lot of I/O resources. The allocation 
algorithm tries to allocate the activity at the most powerful host Xl. As both, the CPU 
requirements and the I/O requirements, do not exceed the predefined limit, host Xl is 
selected. This guarantees on one hand that the activities don't have to wait for resources 
which are used by another activity, and on the other hand, the activities are executed on 
the most powerful workstation which is available. The minimum execution time of the 



Resource-oriented load distribution 143 

activities is provided in spite of the fact that the host X3 is not used. 

The presented algorithm does not take the real load of the workstations into account. It 
is assumed that in a framework design environment all the activities on the workstations 
are controlled by the framework. Of course, this assumption does not hold, if the designer 
is allowed to start a process which is not known by the framework. Therefore, FLODIS 
offers the possibility to refuse an execution if an overload of a workstation has to be 
avoided. FLODIS checks the selected host before an activity is sent for execution. If 
the host does not provide the required resources because non framework processes are 
running, the activity is sent back to the allocation algorithm for a re-selection of another 
host. Additionally, the specific host is marked as 'overloaded' . The execution of activities 
is not delayed because only the selected host has to be checked and not the workstation 
environment. Of course, a delay occurs in case of an overloaded host, but this is assumed 
to be an exception. 

3 Experimental Results 

The reported results are computed by a prototype implementation of the FLODIS sys­
tem based on the JESSI-COMMON-Framework (JCF) [LJ92] . At present FLODIS is 
implemented as a domain neutral tool that is loosely coupled with the JCF framework, 
i.e. all necessary data for the load distribution are exchanged via the JCF Tool Man­
agement System. The experimental analyses are based on three different types of design 
flows. As indicated in Figure 3, sub-flows can be executed in parallel. The degree of 
parallelism characterizes the three basic flow types, where (n,m) is set to (2,1), (3,3) and 
(6,6). Obviously, in the last case 24 activities have to be executed. 

~ Mapping Activity n 

I en I Clustering Activity n 

I P n I Partitioning Activity n 

~ State-Encoding Activity m 

Figure 3: Principle structure of the evaluated design flows 



144 Part Five Communication and Distribution 

All evaluated flows are typically used for the design of field-programmable gate-arrays 
(FPGAs), and consist of four basic activities for mapping, clustering, partitioning and 
state encoding. To receive practice-oriented measurements, all flows were executed with 
up to 12 different control parameters and input data, e.g. circuit sizes. For the subse­
quently given response times, a network of six SUN workstations with different computing 
power is assumed (lxSS20, lxSSlO, 2xSS2, 2xSS1). In Table 1 and Table 2, the results 
for two conventional approaches (static: Round Robin and dynamic: LB [KS94]) and 
FLODIS are listed, based on three different settings of n and m. 

n=2,m=1 n=3, m=3 
Parameter Set Parameter Set 
1 2 3 1 2 3 4 5 6 

Round Robin 243 88 126 333 171 462 87 212 589 
Dynamic (LB) 243 106 103 261 135 114 127 200 302 
FLODIS 98 49 72 211 74 97 65 88 164 

Savings RR [%] 59,7 44,3 42,9 36,6 56,7 79,0 25,3 58,5 72,2 
Savings LB [%] 59,7 53,8 30,1 19,2 45,2 14,9 48,8 56,0 45,7 

Table 1: Response times for two different flow types with 3 and 6 parameter sets [sec.] 

n=6,m=6 
Parameter Set 

1 2 3 4 5 6 7 8 9 10 11 12 
Round Robin 539 548 202 67 130 69 132 159 340 100 221 290 
Dynamic (LB) 226 310 154 53 133 64 119 152 317 118 173 249 
FLODIS 176 256 114 49 123 50 121 180 260 81 128 186 

Savings RR [%] 67,3 53,3 43,6 26,9 5,4 27,5 8,3 -13,2 23,5 19,0 42,1 35,9 
Savings LB [%] 22,1 17,4 26,0 7,5 7,5 21,9 -1,7 -18,4 18,0 31,4 26,0 25,3 

Table 2: Response times for the third flow type with 12 different parameter sets [sec.] 

The given response times show the impact of the selected parameters. Besides these 
times values, for each parameter a direct comparison between the Round-Robin, LB and 
FLODIS approach is given by the last two rows. With only a very few exceptions, the 
ranking between these three systems is obvious: the dynamic LB has slight advantages 
over the static Round Robin approach, whilst the proposed new method requires the 
lowest response time in average. This result is also stated by Table 3, where the individual 
response times are summed up. Compared with Round-Robin, the relative response time 
savings of FLODIS are between 38 % and 62 %, for LB the achieved reductions range 
between 16 % and 51 %. 



Resource-oriented load distribution 145 

n=2 n=3 n=6 
m=1 m=3 m=6 

Round Robin 459 1857 2802 
Dynamic (LB) 454 1142 2074 
FLO DIS 219 701 1728 

Savings RR [%] 52,3 62,3 38,3 
Savings LB [%] 51,8 38,6 16,7 

Table 3: Comparison of the overall response times [sec.] 

The most significant savings can be achieved if a small number of activities is executed 
in the workstation net (n=2/m=I). This is the typical case in design environments. 
However, FLODIS also provides better results if the number of activities is higher than 
the available number of workstations. 

4 Conclusions and Future Work 

Short time-to-market is one main objective in the development of new products. Es­
pecially the design of complex systems where extensive CPU usage can be foreseen, an 
optimized usage of the available workstations can provide distinct response time savings. 
Within a framework environment FLODIS takes advantage of the available information 
about activities, project hierarchy and predefined design flows. Controlled by the current 
system load and the design activity profiles that allow the prediction of the expected CPU 
and I/O behaviour, an optimized allocation of activities to workstations can be performed. 
In contrast to conventional static load distribution systems, FLODIS allocates system­
atically several activities to one workstation as long as a load limit is not exceeded. As 
underlined by the experimental results the proposed distribution strategy shows distinct 
savings of the necessary overall response time up to 62 %. This reduction does not only 
contribute to a reduced design time, but also the designer will benefit of the distribution 
system by reduced response times. 

The estimation algorithm of FLODIS provides all information about the activities that is 
necessary to control the allocation algorithm. Until now, the allocation uses relative values 
(percentages) to indicate the resource requirements. The results show significant reduced 
response times of the activities. However, other allocation strategies using the available 
information may result in the same or more reduction of the overall execution time. 
An interesting approach is the evaluation of a more simplified estimation algorithm which 
classifies the activities. The allocation algorithm will avoid to select the same workstation 
for the same classes. On one hand, this algorithm needs less precise information about 
the activities, but on the other hand the savings of the distribution algorithm might be 
in the range of the originally proposed algorithm. 



146 Part Five Communication and Distribution 

Acknowledgments 

We would like to thank Prof. W. Rosenstiel and Prof. F. Wagner for the fruitful discus­
sions and their encouragement of this research which enabled this publication. 

References 

[ARF90] W. Allen, D. Rosenthal, and K. Fiduk. Distributed Methodology Management 
for Design-in-the-Large. In ICCAD, pages 346-349, Santa Clara, 1990. 

[Bus94] M. Bushnell et al. Distributed Computing, Automatic Design and Error Recovery 
in the ULYSSES II Framework. In EDAC, Paris, March 1994. 

[CK93] T. Chiueh and R. Katz. A Distributed Transaction Facility for Design Task 
Management. In EDAC, Paris, France, 1993. 

[DS66] N. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons, New 
York,1966. 

[ELZ86] D. Eager, E. Lazowska, and J. Zahorjan. Adaptive load sharing in homogeneous 
distributed systems. IEEE Transactions on Software Engineering, 12(5):662-675, 
May 1986. 

[Kas92] Y. Kashai. Flow - A Concurrent Methodology Manager. In EDAC, Brussels, 
Belgium, March 1992. 

[Kir94] S. Kirschke. Aufbau eines modularen, planenden Lastverteilungssystems fiir den 
Einsatz in Frameworks. Master's thesis, Universitat Karlsruhe, January 1994. 

[KS94] D. Kassabian and T. Soyata. LB - The Load Balancer. Dept. of Electrical 
Engineering, University of Rochester, April 1994. 

[LJ92] D. Liebisch and A. Jain. JESSI-COMMON-Framework Design Management -
The means to Configuration and Execution of the Design Process. In EuroDAC, 
Hamburg, 1992. 

[NXG85] 1. Ni, C. Xu, and T. Gendreau. A distributed drafting algorithm for load bal­
ancing. IEEE transactions on software engineering, 11(10):1153-1161, October 
1985. 

[TT85] A. Tantawi and D. Towsley. Optimal Static Load Balancing in Distributed Com­
puter Systems. ACM Journal, 32(2):445-465, April 1985. 

[Wei93] C. Weiler. Lastverteilung von CAD-Werkzeugen unter Einbeziehung von 
Framework-Informationen. Master's thesis, Forschungszentrum Informatik, 
November 1993. 


