
50
Dynamic Behavior of Objects in
Modelling Manufacturing Processes

Jose Barata; L.M. Camarinha-Matos
Universidade Nova de Lisboa - Dep. de Engenharia Electrotecnica
Quinta da Torre, 2825- Monte Caparica, Portugal
Tel +351-1-350022412953213 Fax +351-1-2957786
E-mail: {jab,camj@jct.unl.pt

Abstract
Various modelling perspectives for manufacturing systems, both from the structural and
dynamic behaviour points of view, are discussed. The utilisation of object-oriented and frame
based paradigms in this modelling context is discussed as well as the connection of models to
the real device controllers. The synthesis of control programs from a Petri net model is also
presented in this general modelling framework. Finally the concept of object migration is
introduced as an approach to deal, in a flexible way, with moving objects in manufacturing
systems.

Keywords
Modelling, Object Behaviour, Flexible Manufacturing Systems, Object Persistency, Views.

1. INTRODUCTION

Object Oriented and Frame based (OO&F) techniques have been intensively used in modelling
manufacturing systems and processes. OO&F provides a structured modelling approach,
allowing for multiple levels of abstraction, a convenient approach for complex systems
modelling. However an extended view of objects is necessary in order to capture the dynamic
behaviour of such systems.

Particularly in the area of shop floor control, OO&F can be used to model the various
manufacturing agents -- robots, NC machines, transportation systems or even continuous
processes equipment. An adequate combination of reactive programming and client-server
architecture allows for an effective link between the 00 model and the local controllers,
therefore capturing the dynamic behaviour of the modelled devices and providing a kind of
dynamic persistence. Classical real-time aspects, like asynchronous events I interrupts, device
drivers, etc., may be adequately modelled/abstracted using such extended OO&F approach.

In this paper various modelling situations are described and experimental results discussed.

Q. Sun et al. (eds.), Computer Applications in Production Engineering
© IFIP International Federation for Information Processing 1995

500 Part Eleven Modeling and Simulation in CAM

2. MODELLING ASPECTS

The Object Oriented paradigm or its "mate" Frame-based/Reactive Programming represent a
convenient tool to model the inherent complexity of a manufacturing system. This complexity
comes from the amount of relationships among components in association with the diversity of
components. On the other hand, the topic of modelling is a pre-requisite for systems integration
in CIM. Speaking specifically about system controllers there is a need for a model that supports
the interaction between high and low level controllers, and, at the same time, supports the
configuration of new systems.

The model should emphasise the relationships among the various components in the cell and
hide the specificity's of the hardware. This last item can be easily achieved with the Object
Oriented/Frame based paradigm using methods or demons. Methods associated to the
component can hide the underlying hardware infrastructure. Another important aspect is the
"relation" concept which can provide a flexible way to describe inter-components relationships.
This concept has different semantic meanings in the Object and Frame paradigms, which makes
modelling a little bit different in these two frameworks.

Before going further in the modelling discussion, it is important to say a few words about
which paradigm should be used to model - Frames or Object Oriented. It isn't an easy choice
because both have advantages and disadvantages. The fact that a Frame deals with objects as
prototypes, allowing dynamic change of the structure of those objects is a good point,
especially during the research phase. But this could be also a disadvantage, especially for
software engineering production. For instance, a programming environment that doesn't
provide strong type checking can be very error prone and lead to software difficult to maintain.
On the contrary, these could be the virtues of the Object Oriented paradigm. On the other side,
00 systems are quite limited in terms of definition of new relations with customised inheritance
mechanisms.

2.1 Structural aspects

The various examples to be discussed in order to introduce the main modelling concepts will
use a cell as the basic modelling unit. A cell is a composite entity that is capable of making some
transformation, movement or storage related to some product or part. In structural terms, each
cell (C) has components to support the input of parts (I), an agent to perform the transforming
actions (A) and components to support the output of products/processed parts (0). Therefore, a
cell is the tuple: C = (1, A, 0).

Parts input and output and the agent will be supported by manufacturing components. Some
components can only support one function but there are others components which can support
more than one function. Components adapt themselves to the roles they can perform. Some
components are more adaptable than others. For instance, the Conveyor is very flexible because
it can erform an in ut, out ut or a ent role, but a CNC machine on! can Ia an agent role.

Vibrator Feeders
Buffers
Indexed Table
Gravity Feeder
Conveyor
Robot
CNC machine
AGV
Positioning device

omponents Input Output Agent

Table 1 Components and their possible roles

Dynamic behaviour of objects in modelling manufacturing processes 501

The generic cell concept can be specialised by activity. There can be cells specialised in
assembly, painting, welding, storage, machining, transportation, etc .. A shop floor is just a set
of specialised cells.

Metaknowledge should be associated with each specialised cell to represent the specificities
of its application domain. For each domain the specific cell has the same structure as the
generalised Cell concept (Input Agent, Processing Agent, Output Agent) but the domain and
carnality of the implementing components is different in each specialisation. For example, in a
Painting or Welding Cell, a vibrator feeder is not a valid Input item, but this component is valid
in an Assembly Cell. The Metak.nowledge seems to be a very important element at the
configuration phase, assuring the validity of cells.

FRAME CELL
name:
base_coordination_system:
processable_products:
input_parts:
connected from:
processor:
connected to:

FRAI\IIE ASSEMBLY-CELL
is-a: CELL
val-inp-ag: vibratory_feeder,

buffer,
gravitic_feeder,
Index_Table, agv,
conveyor

val-out-ag: conveyor, agv, buffer,
index_ table

val-proc-ag: robot

FRAME ROBOT_COMPONENT
is-a: manufacturing_component
Base_coordinate_system:
Controlled bv:
Applications: assembly, gluing, ..
DOF: 6
Working_area:
Load:
Repeatability:
Current_position:
Cost:
Cycle_Time:
Next_maintenance:
N_working_hours:
Weight:
Max_speed_by_axes:

Figure 1 Example concepts of cell, assembly cell and component.

At this stage it is convenient to clarify the concepts of ,llgM!, input and output, and their
relation with the components/manufacturing resources.

Components are entities which participates in the productive process with a specific
function and can be controlled by a computational entity. Components models are context
independent description of its static and dynamic characteristics. A robot component model, for
instance, includes all the characteristics which completely characterise its structural and dynamic
aspects.

A robot agent (Figure 2) is a model of a robot and associated resources, like tools or
auxiliary sensors, when inserted in a particular context. A robot can play different roles in
different contexts. The (expected) behaviour of a robot in an Assembly context is different
from its behaviour in a spot welding context.

Figure 2 Structure of a robot agent.

i input b

I roles ~ i output_ __ IIIII

I processing I
elemnp&

Figure 3 Role taxonomy: main level.

502 Part Eleven Modeling and Simulation in CAM

On the other hand, when a robot is performing a given role, it may resort to auxiliary
resources, like tools, sensors, buffers, etc., that extend the robot functionality in order to fulfil
the functionality required by this role. A robot agent is, therefore, a model of the robot when
playing a particular role and extended by selected attributes inherited from the auxiliary
resources.

The entity that effectively participates as an assembly robot, for instance, is one which has
those characteristics from the robot component model to perform the assembly role.

The agent entity ASSEMBLY _ROBOT is a structure which is supported by two relations:
performs and played_by. The relation performs assures the inheritance of the role
characteristics to the structure while played_by assures the inheritance of those agent relevant
aspects, from the component. Main_attributes and component_attrib are attributes to be used by
played_by and performs relations.

FRAME ASSEMBLY_ROBOT
is-a: agent
performs: ASSEMBLY_ROLE
played by: ROBOT_COMPONENT
main_attributes:force_sensor,

current_tool,
available_tools,

available_resources
component_attrib:Base_coord_system,
Controlled_by,
Working_area, load,
Current_position

FRAME AG_ROBOT_ASSEMBLY_ROLE
is-a: role
tools_domain: (grippers,

screwdriver)
aux_res_domain: (buffers)
force sensor:
current tool:
available_tools: grl, gr2, sd2
aux_resource: bufl, buf2
assembly_device: fixturel

Figure 4 Example concept of an agent

The slots, tools_domain and aux_res_domain represent domain-knowledge that is important
during configuration time. The slot current_tool is a relation that associates the main player of
this role (robot component) to a particular tool. It could be defined as:

new _relation(current_ tool, transitive, inclusion(tool_operations, attached_ to)
where attached_to is the inverse relation. By the "inclusion" restriction, only tool_ operations
will be inherited by the ag_robot_assembly _role.

Assembly_device is an attribute describing where assembly operations are really done.
Fixture] is an instance of a component specialized in holding parts.

RELATION PERFORMS
type: intransitive
inherit_slot: main_attributes
inverse_relation: performed_by

RELATION PLAYED_BY
is-a: relation
type: intransitive
inherit_slot: component_attributes
inverse_relation: play

Figure 5 Definition of relations performs and played_by.

A cell is made of entities that are playing different roles.
This modular approach to cell representation facilitates the creation of complex systems by

simple "concatenation" of cells. A particular manufacturing unit is made of several subsystems
(Transportation Cells, Painting Cell, Assembly Cell, ...). A manufacturing unit could be
modelled by a SYSTEM entity, which has access to all characteristics and functionality of all
subsystems involved in the Unit.

The way applications see the unit varies with their needs. An application concerned with
maintenance activities has different~ from SYSTEM than an application concerned with
supervision activities. These differences could be easily supported using the view concept.
Using this concept an application only sees the relevant information for its activity.

Dynamic behaviour of objects in modelling manufacturing processes 503

This is a very convenient concept because it supports information structuring and
consistency. Thinking of a robot, an attribute that accumulates its number of working hours is
important for a maintenance application, but it could be irrelevant for a direct control
application.

We can even think that applications in the same activity area, i.e., accessing the same view,
could have different requirements. In this case the access is determined not only by the role of
the client but also by its status. Applications may have different status to access a view entity,
having conditioned access determined by their status.

These concepts arc not easily implemented with current OO&F technologies. The views
implementation is different whether it is implemented by frames or by objects. The UNL
Robotics group developed some implementations using frames that support this concept. The
frame implementations are based on the inheritance and relation mechanisms.

Object Oriented languages should be extended in order to include a create_ view constructor
that could be related with another new construct VIEW. Using an example in EIFFEL the result
could be:

CLASSE robot
interface
maintenance VIEW

total_hours ()
hardhome ()

END maitenance
operative VIEW

hardhome ()
move()

END operative
configuration VIEW

load()
max_speed ()

2.2 Dynamic aspects

END configuration
END robot

rl,maint_view,op_view: robot;

rl := create(robot);
maint_view :=

create_view(robot,
maintenance);

oper_view : =
create_view(robot,

operative);

Dynamic aspects are related to the components internal state changes. The dynamism presented
by components is achieved through controller actions. Every component with dynamics must
have a controller associated with it. The main discussion is not centered in the aspects related
with the physical components changes, i.e., it isn't important to know what are the inertial
conditions associated, for instance, with a robot movement, but it is important to discuss the
functional behavihour of the physical component being modelled, i.e., it is important to know
what actions should be done in order to move the robot in the most flexible way. The way the
model reflects component physical changes and the way physical component reflects model
changes is the most important point when discussing dynamic aspects.

Dynamic aspects can also be discussed with two different views: (1) considering the
components as isolated entities or (2) considering complex structures, like cells, made of
components. In the first view the key point is how components are actuated, without any
concerns about their interrelationships. In the second view, aspects related with synchronisation
are the most important ones (it will be analysed in the PETRI NETs chapter). In this point the
concern is with the first view.

Every component model with behaviour should have a controller model. This model should
be like an image of the real controller. Using a frame oriented paradigm, the controllers
functionalities could be defined by methods. In this way most of the controller's model is a list
of methods, a method for each functionality.

504 Part Eleven Modeling and Simulation in CAM

Figure 6 Controlled_ by and Controls relations.

A component is related to its controller by a controlled_by relation while the controller
relates to its component by a controls relation.

RELATION CONTROLLED_BY
is-a: relation
type: intransitive
inherits: inclusion (move_wc,

move_jc,
hardhome,
acceleration,
speed)

inverse relation: controls
inverse_relation: controls

FRAME ROBOT_CTRL_COMPONENT
is-a: controller
move_wc: method move_wc_fn(x,y,z,q)
move_jc: method

move_jc_fn(ml,m2,m3,m4)
hardhome: method hardhome_fn
acceleration:demon if write accel dem
speed: demon if write speed_dem
input: byte demon if needed input_dem
output:byte demon if write output_dem

Figure 7 Model of a component and its controller.

One of the most important points in this discussion is the way a controller model is
connected to the physical controller. This connection is sometimes not easy because it involves
the cooperation of two different computational worlds: the computational world where the
model runs and the real controller. To make things even more difficult, sometimes, real
controllers have closed architectures. From our experience a lot of effort has usually to be put in
trying to open real controllers architecture, and implies the production of an interpreter that runs
on it. This interpreter accepts commands from an image that runs in the other world.

The methods of a Controller model implement the actions that are needed to send the right
commands to the real controller. The real controller image should be developed using a client
server approach. In this way, implementation methods can ask this server to perform the
needed actions. These methods hide the underlying hardware structure from the application,
i.e., any application using a robot component doesn't need to know anything about the real
robot controller and its image or server. The applications only know what functionalities are
provided by the robot component model. This approach could be very suitable to integrate
existing controllers, making the integration of legacy systems an easier task.

3. DYNAMIC PERSISTENCE OF OBJECTS

In a manufacturing environment, many information sources -- sensors, state variables of
local controllers, etc.-- have their own "life", independent of the computer that is running the
general controller model, because they have local processing power. This may lead to the
concept of dynamic persistence, that will be introduced and exemplified in modelling
manufacturing systems.

Object Persistence is the property of extending the life of an object beyond the running
session of the application software that created or changed it. This characteristic is important for
applications that may interact with long lifetime objects.

The traditional way of dealing with Object Persistence is storing the objects in secondary
memory. In some approaches, classical Database Management Technology has been integrated
with OOP languages in order to manage the flow from main to secondary memory and vice
versa.

Dynamic behaviour of objects in modelling manufacturing processes 505

The concept of Dynamic Persistence of Objects is not very different from normal
persistence. The basic difference comes from the way persistence is supported: by the local
memory of devices' controllers. The use of reactive programming (demons) and methods to
"link" the object model to the real cell controllers allows for a permanent update of the dynamic
object's model. In this way, a special kind of persistence is achieved - dynamic persistence.
It is dynamic because the object model reflects, at every time, the status of the physical object.
The persistence is assured by the "memory" present in the device controller. There is a tight
connection between the object "living" in main memory and the physical controller. We can say
that the object virtualizes de physical controller. The physical entity description (object) is
connected to the physical entity via demons associated to object attributes. These demons
establish a communication link to the hysical entity controller.

frame Robot

Figure 8 Use of reactive programming to support dynamic persistence

In our work an assembly cell composed by a SONY Scara robot, a fixture, a force sensor,
an automatic tool exchanger and two gravity feeders was integrated in a UNIX environment
using this approach. However, due to SONY robot's closed architecture a big amount of effort
was needed in order to allow this integration. It implied "breaking" the protocol used to down
and upload programs, and also the development of an interpreter that runs on top of SONY's
own controller. To make error recovery possible (guarded moves) it was also necessary to
"break" the teach pendant protocol and to replace it by a PC controller. A controller was also
included to drive the force/torque sensor. To connect these external controllers into the UNIX
environment it was necessary to develop their "images" on the UNIX side. Each of these
"images" are accessible to applications according to a client-server basis.

The same methodology is being used to integrate the several agents belonging to a complex
manufacturing cell installed in our facilities. Due to cell's complexity this work is being done by
phases. A BOSCH scara robot, a conveyor belt system and an automatic warehouse have been
already integrated using this approach.

4. PETRI NETS

Petri Nets are important tools to model the structure and behaviour of controllers and
application programs. Complex system dynamics can be described and analysed in a structured
way (mathematical methods). There are several types of Petri Nets, which can be used to model
distinct types of systems, but Predicate Transition Nets (PTN) seem to be very suitable to
model logic controllers. A PTN has predicates associated with transitions which only fire when
all input places has marks and the predicate returns true.

The benefits of using a high level modelling tool, like a PTN, shouldn't end in their
descriptive characteristics but there should be a direct connection between the description and
the real controllers. This means that the model could drive directly its associated physical
controller. To assure this connection two different approaches could be used: (1) using PTN to
directly program the physical controller, which implies a support by its manufacturer or (2)
using a PTN translator which converts PTN to the own language of the physical controller.

The first approach is unrealistic at current stage because the concept of PTN is not well
disseminated among controllers' manufacturers, which makes the second approach a better one.

506 Part Eleven Modeling and Simulation in CAM

The PTN description should be compiled in order to generate a program which interact with the
real system in the way described by the PTN.

The application program or High Level Control Program (HLCP) is generated from a PTN
which describes components behaviour and interactions. The HLCP interacts with the
execution infrastructure, mainly with the components models. These models are described
using an Object/Frame paradigm. As mentioned before, the components behaviour is
implemented by methods, which interact with the component's physical controller through a
server which supports an image of the physical controller functionalities.

RFree

Robot_ Move

0
Robot_Grasp

Figure 9 - Interactions between HLCP and Execution
Infrastructure.

Figure 10 A Petri Net example.

The components model associated to a HLCP include only those models relevant for the
program that is running in the HLCP. Saying it by other words, only those components which
appear in the PTN will be included in the components model associated with HLCP. It should
be noted that a Component Model can interact with more than one server, depending on the
number of needed controllers to control the components being used. For instance there can be
different servers to control de robot, the gripper, gravity feeders, etc.

In order to generate the HLCP from a PTN some considerations should be made about
PTN. Components actions can only be done in places with marks. Predicates associated to
transitions specify conditions. In order to match places to components actions, places' names
include components' name and action name separated by an underscore (for instance, the name
for the place that describes the grasp action of a robot is named robot_grasp).

The HLCP program generated is a simulator of the PTN being modelled. Different PTNs
may have the same kind of simulator, differing only in which order transitions will be fired and
which actions will be done.

Program generation was developed using Prolog, and the generated program is also
described in Prolog with a frame extension developed in our group- Golog. The generated
program can be seen below.

The first section of the generated program is concerned with place definition; every place is
defined by an object/frame whose main attribute is the slot mark to store the place's mark value.
During this phase the program that contains the components model is consulted.

:- consult('models.pl').
:- new_frame(places), new_slot(places, mark).
:- new_frame('RFree'), new_slot('RFree', isa, places), new_slot('RFree', mark, 1).
:- new _frame(robot_grasp),new _slot(robot_grasp,isa,places), new _slot(robot_grasp,mark, 1).
:- new_frame(robot_move),new_slot(robot_move,isa,places), new_slot(robot_move,mark,O).

After this, transitions are defined. Each transition is defined by checking its enabling
condition. When this occurs, input places are updated and transition fires with output place
updating and the corresponding method activation: call_method(robot, 11UJVe, [true]). This
method's code will send a message to the server which will react by sending the command
"move" to the robot.

Dynamic behaviour of objects in modelling manufacturing processes 501

t1 :- get_value('RFree', mark, XO), XO > 0,
get_ value(robot_grasp, mark, X1), X1 > 0,
NValO is XO- 1, new_value('RFree', mark, NVaiO),
NVa11 is X1- 1, new_value(robot_grasp, mark, NVal1),
call_method(robot, move, [true]),
get_ value(robot_move, mark, VOa!O), NVOaiO is VOaiO + 1,
new_value(robot_move, mark, NVOalO).

The main program consist<; of a forever cycle that continuously apply the existing transition
names and randomly choose one which will be checked for it<; enabling condition.

rep_run(O).
rep_run(List) :- length(List, Tarn), Pos is ip(rand(Tarn)), position(Pos, List, Tr),

remove(Tr, List, RList), cali(Tr, Success), !, fail == Success, rep_run(RList).
run :-repeat, rep_run([t1]).

This generated program run with a similar behaviour as the PTN shown in figure 10.

5. OBJECT MIGRATION

In a FMS/FAS System several distinct physical "worlds" may be considered. Assembly
cells, transportation systems and automatic warehouses are examples of existing "worlds" in a
shop floor environment that have their own controllers (i.e. distinct computational worlds !).
These "worlds" are strongly interconnected requiring information exchange, which could be
achieved by sharing a centralised repository, by messages or by moving data among "worlds".

Viewing the associated computational "world" as a set of object<; which model the physical
entities participating in the process, the concept of object migration becomes relevant. A
computational "world" can include object<; which belong intrinsically to that "world". For
instance, the object robot belongs intrinsically to the assembly cell "world", but the object pallet
doesn't. A pallet migrates between worlds. This object doesn't belong to any specific "world"
and can "enter" different "worlds" at different time slots. Taking into account the need of these
object<; in a FMS/FAS system it would be necessary to develop an infrastructure to support
object migration.

Figure 11 SLS and MDT.

FRAME MDT_OBJECT
is-a: migrat ion_object
pallet_id :
kind_of_pallet: (cnc_raw_material ,

c n c_finished ,
assembly_ raw_mater ial,

a s sembly_fini shed)
materials lis t:
pat h:
stop_places:

Figure 12 Object stored on pallet's
memory.

As in our pilot manufacturing system, the BOSCH pallet<; include an attached memory
device - MDT, that can be read/written by various other devices - SLS, located in special places
of the system, we have a "physical" support to this object migration (figure 11 , 12).

Regarding again the object pallet, it could be seen that while it moves through the "worlds",
it can be modified. The modification in the object's structure reflect<; the changing conditions in
the physical "world". At each time slot the object's state reflects the operations done by physical
entities, over the moving physical entity, represented by these migration object<;.

The attribute materials_list includes identifications of those object<; carried on the pallet.
Pallet's path movement within the cell is controlled by the attribute path, which includes a list of
conveyor names. The attribute stop _places tells the system where the pallet should be stopped.

508 Part Eleven Modeling and Simulation in CAM

When a pallet passes in front of an SLS, it reads the contents of the MDT structure in order to
determine which action to be done. SLSs are controlled by a PC server which is directly
connected to the PLC that controls cell's conveyors. Depending on the MDT's memory
contents, the SLS sends commands to the PLC. For instance, if there is a stopper nearby the
SLS and the stop _places attribute has the name of this SLS, the server commands the PLC to
stop the pallet. This is a highly dynamic system, either at the spatial or at the internal structure
levels. However, these aspects of migrating objects are still on a developing phase in our
system, needing a deeper evaluation.

6. CONCLUSIONS

In this paper we discussed various aspects of modelling manufacturing systems, both from the
structural and the dynamic perspectives, resorting to the object/frame based paradigms.

In particular, our experimental results have shown that objects' dynamic behaviour (by
means of reactive programming and methods) combined with a client-server approach, provide
an effective way to link models with local controllers of manufacturing devices. Therefore this
can be a suitable approach for migrating from legacy systems to more integrated high level
control systems. The generation (synthesis) of application control programs - directly linked to
the above methods from a Petri Net description was also discussed. Current work is addressing
the aspects of object migration as a flexible way to "deal" with moving objects in a
manufacturing environment.

Acknowledgements
This work has been funded in part by the European Community (Esprit project B-Leam and
FlexSys) and JNICT (projects SARPIC and CIM-CASE). We also thank Mr. Jolio Carlos Silva
and the students Eduardo Bras, Sandra Gadanho, Luis Fernandes and Nuno Chagas for their
contribution to the experimental setup.

REFERENCES

Barata, J.; Camarinha-Matos, L.M.; Rojas Chavarria, J.F. (1994) -Modelling, Dynamic
Persistence and Active Images for Manufacturing Processes, Studies on Informatics and
Control, vol. 3, no 2-3.

Camarinha-Matos, L.M. (1989)- Sistema de programafiio e controle de estafoes rob6ticas
Uma arquitectura baseada em conhecimento, PhD Thesis, Universidade Nova de Lisboa,
12 Jun. 1989.

Camarinha-Matos, L.M.; Negreto, U.; Meijer, G.R.; Moura-Pires, J.; Rabelo, R. (1989)
Information Integration for Assembly Cell Programming and Monitoring in CIM, 21st
ISATA, Wiesbaden.

Camarinha-Matos, L.M.; Os6rio, A.L. (1990)- Monitoring and Error Recovery in Assembly
Tasks, 23a ISATA, Viena.

Camarinha-Matos, L.M.; Pinheiro-Pita, H.J. (1990)- Interactive Planning of Motion and
Assembly Operations, Proc. IEEE Int. Workshop on Intelligent Motion Control ,
Instambul, Turkey.

Camarinha-Matos, L.M., L. Seabra Lopes, J. Barata (1994) - Execution Monitoring in
Assembly with Learning Capabilities, Proc. of the 1994/EEE lnt'l Conf on Robotics and
Automation, San Diego.

