
32
A Structural Analysis Approach to the Evaluation of Fault

Coverage for Protocol Conformance Testing*

Mingyu Yao, Alexandre Petrenko and Gregor v. Bochmann

Departement d'infonnatique et de recherche operationnelle
Universite de Montreal, CP. 6128, Succ. Centre-Viile, Montreal (Quebec), Canada H3C 3J7

In this paper, we propose a structural analysis approach to the evaluation of fault coverage of
protocol conformance testing based on the finite state mac hine model. The attractiveness of this
approach is its low computational complexity. It allows us to calculate the fault coverage of a
given test suite by directly analyzing the test suite against the specification machine. Therefore,
it avoids the generation and execution of mutants. The approach has been implemented and a
number of experiments has been carried out. Some of the experimental results are summarized
in this paper to show the accuracy of this approach compared with the mutation analysis
technique.

Keywords: I.3, I.6, III,l, IV.3, IV.4.

1. INTRODUCTION

The finite state machine (FSM) model has been widely used in the development of hardware
and software systems. Especially in the recent years, it has been extensively used in the
conformance testing of communication protocols. Quite a number of methods have been
proposed in the literature for generating test suites from protocol specifications given in the
form of FSMs. An important issue related to the test suite generation is the effectiveness of a
test suite which depends primarily on its fault coverage, i.e., its capability of detecting faults in
a potential implementation. Approaches based on Monte-Carlo simulation have been proposed
in the literature to evaluate the fault coverage of a test suite generated from a given FSM
specification [DaSa 88, DDB 91, SiLe 89 and MCS 93]. These approaches require a (large)
number of mutants of the given specification machine to be enumerated and executed against the
test suite. In our recent work [YPB 94], a different procedure has been developed which,
without the need of explicitly generating and then executing a certain (and often large) number
of mutant machines, can decide if the given test suite provides full fault coverage (i.e., if it can
detect all bad implementation machines). However, this approach does not provide a numeric
measure for a test suite which does not have full fault coverage. Consequently, it is impossible
to use this approach to compare the fault coverage of two test suites, if none of them provides
full fault coverage. In this paper, we will propose a structural analysis approach to evaluate the
fault coverage of a given test suite. The basic idea of this approach is, by analyzing the given
test suite against the specification machine, to make an estimation on the number of mutants
representing potential bad implementations that can be detected by the test suite without the need
to generate and execute the mutants.

The rest of the paper is organized as follows. In Section 2, the FSM model is introduced and a
framework of software testing based on this model is presented. The structural analysis

* This research was supported by the IDACOM-NSERC-CW ARC Industrial Research Chair on Communication
Protocols at University of Montreal.

D. Hogrefe et al. (eds.), Formal Description Techniques VII
© IFIP International Federation for Information Processing 1995

400 Part Seven Testing and Perfonnance

approach to the evaluation of fault coverage of a test suite is developed in Section 3. The "Order
Coverage", which is based on the structural analysis approach and proposed to deal with large
complex specification machines, is then presented in Section 4. Finally, in Section 5, our
approach is compared with other related work.

2. A FRAMEWORK OF TESTING BASED ON THE FSM MODEL

We will frrst introduce the finite state machine model and then present a software testing
framework based on this model.

2 .1 The FSM Model

A finite state machine (FSM), often simply called a machine throughout this paper, is essentially
an initialized Mealy machine which can be formally defined as follows.

Definition 2.1 (finite state rnachine)
A finite state machine is a 7-tuple <S, X, Y, S1. S, Â., D>, where
S is a set of n states { S 1o S2, ... , Sn} with S 1 as the initial state;
X is a finite set of input symbols;
Y is a finite set of output symbols;
D is a specification domain which is a subset of S x X;
S is a transfer function S: D --> S;

Â. is an output function Â.: D --> Y. •
An FSM is said to be completely specified (defined), iff D = S x X. Otherwise it is said to be

partial/y or incompletely specified (defined). Since S and Â. are required to be functions, this

FSM model is deterministic. That is, for each (Si. x) e D, there should be exactly one state Sj e

S and exactly one output symbol y e Y such that S(Si. x) = Sj and Â.(Si, x) = y. In this case,
we say there is a transition leading from state Si to Sj with input x and output y. Such a
transition is usually written as Si -x/y-> Sj. or as a triplet < Si; x/y; Sj >. Si is said to be the
head or starting state of the transition, while Sj is said to be the tail or ending state of the
transition. An FSM can be given in a graph form, with the states and transitions of the FSM
represented by the vertices and arcs ofthe graph, respectively. As an example, Figure 1 gives a
FSM which is partially specified since, at state S3, no transition is specified for input symbol 1.

l/1

2(1.

S = { SI, S2, S3, S4 }
X= { 1, 2}
y = { 1, 2}
Initial state is S 1

Figure 1: An exarnple FSM

Evaluation of fault coverage for protocol conformance testing 401

The following notations will be used throughout the paper. For a given symbol set Z, z* is
used to represent the set of words constructed on Z and "e" to represent the empty word, i.e.,

the word consisting of no symbols. Also, the dot "·" is used to represent the concatenation
operation of two words. However, this dot symbol is often omitted when no ambiguity arises.
Furthermore, IZI is used to represent the cardinality of Z.

Definition 2.1 (defined input sequence)
Let p = XlX2···Xk E x•. p is called a defined input sequence for state Si e s. if there exist k
states Sn, S;2, ... , Sik e S and an output sequence q = YlY2···Yk e y* such that there is a
sequence of transitions
Si ·X11Y1-> Sn -X'J/'/2-> S;2 --> ... --> Sik-1 -XkfYk·>Sik (1-1)
in the ffnîte state machine. •

We use 'lf(Si) to denote the set of all the defined input sequences for state Si. A sequence of
transitions such as (2-1) can be abbreviated as Si -p/q-> Sik, which, when we do not care
about the output sequence q, can be further simplified as Si -p-> Sik, with the meaning that the
FSM, when in state Si and given an input sequence p, will enter state Sik. The definitions of the
transfer function 8 and output function Â. can be naturally extended to apply not only to single
inputs, but also to sequences of inputs.

Definition 2.3 (extensions of transfer and output functions to input sequences)
Let p = X1X2···xk e 'lf(Si) and e be the empty word. Then,
8(Si, e) = Si, 8(S;. p) = 8(8(Si, p'), xk)

Â.(S;. e) = e, Â.(Si. p) = l(S;. p')_l(8(Si. p'), xk)

where p' = XlX2···Xk-l·

Definition 1.4 (compatible states and distinct states)
•

We say that Si and Sj are compatible states iffor 'V pe 'lf(Si) n 'lf(Sj). ls(Si, p) = ls(Sj, p).
Otherwise, they are called distinct states. •

According to the above defmition, if 'lf(Si) n 'lf(Sj) = cll. then Si is compatible with Sj. If the
FSM happens to be completely specified, then the definition of compatible states given above
reduces to the definition of equivalent states as found in the literature (see for example, [Gill 62,
Koha 78]).

Definition 2.5 (reduced machine)
A FSM is said to be reduced if and only if no two states are compatible.

It is easy to verify that the FSM given in Figure 1 is reduced.

Definition 2.6 (reachable state and strongly connected FSM)

•

A state S; is said to be reaclwble (from the initial state S1) if there exists an input sequence p e
'lf(Si) such. that S1 -p->S;. A machine is said to be initially connected if all the states are
reachable. •

All the states of the FSM in Figure 1 can be reached from the initial state and therefore this
example FSM is initially connected.

402 Part Seven Testing and Performance

Definition 2.7 (mutant machine)
Let M1 and M2 be two given FSMs. M2 is said tobe .a mutant machine of M1 if M2 is obtained
by applying to M1 each of the following four types of operations, in any order, for a certain
number of times (including zero times):
Type 1: change the tail state of a transition;
Type 2: change the output of a transition;
Type 3: add a transition; and
Type 4: add an extra state. •

The following corollary follows direcdy from the above definition.

Corollary 2.8
A machine is a mutant machine of itself. •
2. 2 A Testing Framework Based on FSM Model

The FSM model was widely used in traditional hardware testing. In recent years, this model has
also received much attention in the testing of certain software systems such as communication
protocols [PBD 93] and object-oriented programs [HoSt 93, TuRo 92]. Testing based on the
FSM model can be formalized as the problem of testing a FSM implementation[Ura191]: given
a FSM representation (specification) of a system (denoted henceforth as Ms) and an
implementation of tlte system (denoted henceforth as MI). we are required to determine if the
implementation machine MI cmiforms to (i.e., is correct with respect to) the specification
machine Ms by testing MI as a black-box. This implies that we should generate from Ms a set of
input sequences, called a test suite, and the corresponding set of expected output sequences
such that MI conforms to Ms if and only if, when the input sequences in the test suite are
applied to MI, the observed output sequences from MI are the same as the corresponding
expected output sequences. As already pointed out in the literature [Moor 56, Gil162, YPB 93a,
YPB 93b], this problem is not solvable unless it is dealt within a restricted framework.
Therefore, some assumptions should be made about the specification machine Ms and the
implementation machine MI. Firstly, the restrictions on the specification machine are
summarized in the first assumption.

Assumption 1: (reduced and initially connected specification machine)
The given specification machine Ms is reduced and initially connected. •
Secondly, testing based on the FSM model is essentially a mutation testing. Therefore, for the
given specification machine Ms. an implementation machine MI is actually a mutant machine (of
Ms) obtained from Ms by applying each of the four types of operations listed in Definition 2.7
for a number of times (including zero times). These four types of operations represent the basic
types of changes that can be made during the implementation of Ms. However, it should be
noted that, in practice, the implementation machine MI is nonnally completely defined even
though the given specification machine Ms is often only partially specified. Therefore, the
following assumption is made throughout this paper.

Assumption 2: (completeness of an implementation machine)
For the given specification machine Ms. an implementation machine MI is a completely defmed
mutant machine of Ms. •
Thirdly, if the number of changes of Type 4 applied to the given specification machine Ms is
not limited. the number of mutants of Ms wil1 be infinite and the problem of testing will become
intractable. Therefore, in practice, the number of changes of Type 4 is always limited to an
upper bound. Throughout this paper, we simply do not allow any change of Type 4 as stated in
the next assumption. ·

Assumption 3: (limited number of states in an implementation machine)
For the given specification machine Ms. any operation of Type 4 is not allowed and therefore
the number of states in an implementation machine MI will not exceed that of Ms. •

Evaluation of fault coverage for protocol conformance te sting 403

We also note here that additional types of changes, such as changes of inputs, changes of head
states and missing states, may be introduced [MiPa 92]. However, these types of changes are
not necessary for our discussion as the FSM model is deterministic (Definition 2.1) and
implementation machines are assumed to be completely defined (Assumption 2). The following
example explains that the same consequences of a missing state can be achieved by changing the
tail states of certain transitions (Type 1). Figure 2 (a) shows that, when implementing the FSM
given in Figure 1, state S4 is not implemented (i.e., missing in the implementation) and the
transition < S3; 2!2; S4 > is changed to < S3; 2/2; St >. However, we can still think: that state
S4 is present in the implementation as shown in Figure 2 (b). The reason is that S4 is no longer
reachable and therefore, during the black-box testing, whether S4 is present or missing in the
implementation makes no difference.

l/1
~~/2
~2

1/1

1/2

(a)

Figure 2: A missing state

(b)

Therefore, as a matter of fact, all the n states St. S2, ... , Sn of the specification machine Ms are
assumed tobe present in an implementation machine My. However, some of these states may
become unreachable in M1 due to the changes of Type 1 introduced during the implementation.
Confusion may arise because the same state names St. S2, ... , Sn are used for both Ms and My.
It is therefore often helpful, although not necessary, to make things clear by renaming the states
S~o S2, ... , Sn in My to It. l2, ... ,In, respectively. Then without loosing generality, let

Ms = < {St. S2, ... , Sn}, X, Y, St, lis, Â.s, Ds >, and

My = < {It. l2, ... ,In}, X, Y, It. liy, Â.y, Dy >.

Since My is supposed tobe completely defined, we know that Dy = {It, h ,In} X X and

therefore 'lf(li) = x* and 'lf(Sj) ~; 'lf(li). for any Ii and Sj. Now, we need to introduce some
important concepts. The f'rrst concept required is the so-called conformance relation which
essentially defines when My is a correct implernentation of Ms. This concept is defined through
the following two def'mitions.

Definition 2.9 (equivalence of states in respect to a set of input sequences)
Let Ii be a state of My and Sj a state of Ms. V is a set of input sequences such that V !; 'lf(Sj).
Then

li ~V Sj if Â.y (Ii. p) = Â.s(Sj, p), for'<;} p e V. •

Definition 2.10 (conformance relation)
M1 conforms to Ms, written M1 CONF Ms. if and only if It ~'Jf(St) St. where It and Stare
the initial states of My and Ms, respectively. •

404 Part Seven Testing and Performance

The above defined confonnance relation corresponds to the notion of weak confonnance [SaDa
88, SiLe 89 and MiPa 92]. The relationship between the above defined confonnance relation
and the types of operations listed in Definition 2. 7 is established by the following lemma of
which the proof is similar to that of Lemma A.l given in the appendix of [YPB 93a].

Lemma 2.11
For the specification machine Ms and implementation. Then Mr confonns to Ms if and only if

there exists a mapping f: {St. S2, ... , Sn} -> {Ilo h ,In}, such that
(1) fis one-to-one; and
(2) lf Si - x/y -> Sj is in Ms. then Ik - x/y -> I9 is in Mr, where Ik = f(Si) and I9 = f(Sj). •

Since the implementation machine Mr is treated as a black-box, test cases should be generated
from the specification machine Ms. The following two definitions fonnally defines the concepts
of test case and test suite.

Definition 2.12 (test case)
A test case is a sequence of inputs which should be of finite length and in 'lf(S1). •

As is clear fr9m the above definition, a test case always starts from the initial state S1 of the
specification:machine Ms. Accordingly, each test case should be applied to the implementation
machine Mr when it is in its initial state I1. Therefore, an important assumption in the testing
based on the FSM model is about the availability of the so-called reliable reset function and is
summarized as our fourth (and final) assumption.

Assumption 4: (availability of reliable reset)
The reliable reset is an operation that, when activated, will bring the implementation from any
other state back into its initial state. It is assumed to be available in an implementation under
test. •
A special input symbol "r" representing the invocation of the reset operation is added to the
beginning of each test case.

Definition 2.13 (test suite)
A test suite is a finite set of test cases.

TS = { r.1.1.2, r.2.1.2.1, r.2.2.1 }

(a)

(b)

Figure 3: A test suite generated from the example FSM

•

Evaluation of fault coverage for protocol conformance testing 405

Figure 3 (a) lists the test cases of a test suite generated from the machine shown in Figure 1.
Each of the test cases is prefixed by the reset symbol "r". Applying the three test cases to the
initial state S1 results in the three sequences of transitions shown in Figure 3 (b) that will be
executed.

Definition 2.14 (to pass a test suite)
Let TS be a test suite and p e TS be a test case. We say that a given implementation M1 passes

the test case p, written MI pass p, iff ÂI (l~o p) = Â.s(S~o p). Further, we say that MI passes the

test suite TS, written MI pas$ TS, iff MI pass p, for '<;}pe TS. •

An implementation machine which cannot pass a given test suite is said to fail the test suite or to
be detected by the test suite.

Let Impi(Ms) represent the set of all the implementation machines of Ms, i.e., all the
completely defmed mutant machines with same number of states as Ms. Then the following
lemma follows directly from the above defmitions.

Lemma 2.15
Let TS be a given test suite for Ms and MI e lmpl(Ms). MI does not pass TS implies that MI
does not conform to Ms. •

3. A STRUCTURAL ANALYSIS APPROACH TO EVALUATING
FAULT COVERAGE

In this section, we are going to present a structural analysis approach to the evaluation of fault
coverage of a test suite in respect to a given specification machine. This approach avoids the
necessity of explicit generation and execution of mutant machines representing possible
implementations of the given specification machine Ms. First of all, let us introduce the
following notations:

Nt(Ms) - the total number of machines in Impi(Ms);
N:z(Ms) - the number of machines in Impl(Ms) which conform to Ms;
NJ(Ms) - the number of machines in Impi(Ms) which do not conform to Ms;
N4(M8 , TS) - the number of machines in Impi(Ms) which can pass the given test suite TS;
Ns(Ms, TS) - the number of machines in Impi(Ms) which do not conform to Ms and cannot

pass the given test suite TS;

We have the following lemma whose validity is obvious (see [Gill62, SiLe 89]).

Lemma 3.1
The total number of implementation machines, that is the cardinality of Impi(Ms), is

Nt(Ms) = llmpl(Ms)l = (n!YI)niXI (3-1)
Among these implementation machines, there are

N2(Ms) = (n- 1)! (niY!)niXI-IDsl (3-2)
implementation machines which conform to Ms, where n, X, Y and Ds are the number of
states, the input set, the output set and the specification domain ofMs, respectively. •

It is also easy to see that N3(Ms) = Nt(Ms)- N:z(Ms) and Ns(Ms, TS) = Nt(Ms)- N4(Ms.
TS).
Therefore, we can give the following so-called precise fault coverage of a given test suite TS in
respect to a given specification machine Ms.

406 Part Seven Testing and Performance

Definition 3.2 (precise fault coverage)
The precise fault coverage of a test suite TS in respect to Ms, denoted as FCp(Ms, TS), is
FC (Ms, TS) = N5(M8, TS) = N1(M8)- N4(M5, TS) •

P N3(M5) N1(M8)- N2(M5, TS)

As is clear from the above definition, in order to calculate the fault coverage, we stiH need to
find N4(Ms, TS), the number of machines in Impi(Ms) which can pass the given test suite TS.
The exact value of N4(Ms, TS) is in general too difficult to find without using the exhaustive
mutation analysis technique. However, as we have already mentioned, the exhaustive analysis
technique is often not feasible in practice due to the high cost. Therefore, in our approach, we
will use an estimated value, denoted as N4(Ms, TS), of N4(Ms, TS). Substituting N4(Ms, TS)
for N4(Ms, TS) in the calculation of the fault coverage as defmed in Definition 3.2 results in the
following estimated fault coverage.

Definition 3.3 (estimated fault coverage)
The estimated fault coverage of a test suite TS in respect to Ms, denoted as FCe(Ms, TS), is

FC (M TS) = Nt(Ms)- N4(Ms, TS) •
e s• N1(Ms)- N2(M8, TS)

Definition 3.4 (prefix set of a test suite)
The prefix set AP(TS) of a test suite TS is the set which consists of all the prefixes of all the
test cases in TS, i.e.,
AP(TS) = (p 1 p is a prefix of some test case in TS } . •

Definition 3.5 (transition covered by TS)

A transition < S;; x/y; Sj > in Ms is said to be covered by TS, if there are a, ax e AP(TS)

such that Bs(St. a) = S; and Bs(St. ax) = Sj. •

Definition 3.6 (tail state Sj of a transition distinguished from Sk by TS)
The tail state Sj of a transition < S;; x/y; Sj > in Ms is said to be distinguished from another state

Sk by TS if there are a, ax, axy, ~. ~ e AP(TS) such that

Bs(St. a)=Si. Bs(St. ax)=Sj. Bs(St. ~)=Sk and Âs(Bs(St. ax), y) "* Âs(Bs(St. ~). y). •

We will proceed in two steps to fmd the value of N4(Ms, TS). In the frrst step, we will make
an estimation, denoted as N6(Ms, TS), on the number of implementation machines which can
pass the given test suite TS, by analyzing the structures of the given specification machine and
test suite. In the second step, N6(Ms, TS) will be adjusted to N4(Ms, TS).

To find the value of N6(Ms, TS), we need to classify the transitions of Ms into two classes: the
first class includes the transitions covered by TS, while the second class consists of the
transitions not covered by TS. Taking the specification machine given in Figure 1 and the test
suite TS shown in Figure 3 (a) as an example, we can easily check that, among the seven
specified transitions in Figure 1, the six transitions listed in Table 1 (a) are covered by the test
suite TS, while the other transition given in Table 1 (b) is not covered.

For a transition < S;; x/y; Sj >in Ms, we use Tail_Dis(< S;; x/y; Sj >, TS) to denote the set of
states from which the tail state Sj of transition < S;; x/y; Sj > is distinguished. Then,
Tail NDis(< S;; xly; Sj >, TS) = (St, S2, ... , Sn} - Taii_Dis(< S;; x/y; Si>, TS)
is the set of states from which the tail state Sj of transition < S;; x/y; Sj > is not distinguished.

For a transition < S;; x/y; s1 > covered by TS, we can easily calculate Taii_Dis(< S;; x/y; Sj >,
TS) and therefore Taii_Nuis(< S;; x/y; Sj >, TS). As an example, let us consider one of the

Evaluation of fault coverage for protocol confonnance te sting 407

covered transition < S1; 2/2; S2 > given in Table 1 (a). As is clear from Figure 3 (b), this
transition is covered twice by the test suite. The tail state S2 at point V 6 is distinguished from
state s4 at point V 8· The same tail State s2 at point V 11 is distinguished from state s3 at point
V7. Therefore, Tail_Dis(< S1; 2/2; S2 >, TS) = { S3, S4} and Tail_NDis (< S1; 2/2; S2 >,
TS) = { s1o s2 }.

< S1; 1/1; S2 >

< S2; 2/2; S2 >

< S1; 2/2; S2 > < S2; 1/1; S3 >

< S3; 2/2; S4 > < S4; 1/2; S4 >

(a) transitions covered by TS

< S4; 2/2; S1 >

(b) transition not covered by TS

Tail_Dis (< S1; 1/1; S2 >, TS) = { S4}

Tail_Dis (< S1; 2/2; S2 >, TS) = { S3, S4}
Tail_Dis (< S2; 1!1; S3 >, TS) = { S1, S2}

Tail_Dis (< S2; 2/2; S2 >, TS) = { S4 }

Tail_Dis (< S3; 2!2; S4 >, TS) = { S1, S2}

Tail_Dis (< S4; 1/2; S4 >, TS) = cp

(c)

Tail_NDis (< St; l/1; S2 >, TS) = { S1, S2, S3}

Tail_NDis (< S1; 2/2; S2 >, TS) = { S1, S2}
Tail_NDis (< S2; 1/1; S3 >, TS) = { S3, S4}

Tail_NDis (< S2; 2/2; S2 >, TS) = { S1, S2, S3}

Tail_NDis (< S3; 2/2; S4 >, TS) = { S3, S4}
Tail_NDis (< S4; l/2; S4 >, TS) = { SI, S2, S3, S4 }

(d)

Table 1: lntermediate calculation results for the example FSM and TS

The related results for the other five covered transitions can be found in Table 1 (c) and (d).
Since a state in Taii_NDis(<S;; x/y; Sj>. TS) is not distinguished from the tail state~ of <S;;
x/y; ~>. changing the tail state Sj of transition < S;; x/y; Sj > to any state in Tail_ Nuis(< S;;
x/y; :Sj >, TS) will give us an implementation machine which can pass the test suite TS.
Theretore, there are ITaii_NDis(< S;; x/y; Sj >, TS)I possible ways to make such a Type 1
change (as defined in Definition 2.7). However, we should note that, as transition < S;; x/y; Sj
> is covered by TS, changing the output symbol "y" to any other output symbol (Type z
change) will result in an implementation machine which is very likely tobe detected by TS.
Therefore, to guarantee to generate an implementation machine which can pass TS, we have
only one choice of keeping the output "y" of the transition. Consequently, the given transition <

408 Part Seven Testing and Perfonnance

Si; x/y; Sj > covered by TS gives us ITaii_NDis(< Si; x/y; Sj >, TS)I possibie ways of
generating an impiementation machine which can pass the test suite TS. It can be noted that,
with certain test suite generation methods such as the W method [Chow 78], ali the transitions
in the specification machine will be covered and the taii state of each transition will be
dis~nguis~ed from ali other states. Therefore, Taii_NDis(< Si; x/y; Sj >, TS) = { Sj } and
ITali_NDts(< Si; x/y; Sj >, TS)I = 1.

For a transition < Si; x/y; Sj > not covered by the given test suite TS, its tail state ~ is not
distinguished by TS from any state. Therefore, we have Taii_NDis(< Si; x/y; Sj >, TS) = {
St. S2, ... , Sn }. Furthermore, since the transition is not covered by TS, we can change the
output symboi "y" to any symboi in Y and still get a mutant machine which can pass TS.
Combining the possibie ways of changing the tail state (Type 1 change) and the possibie ways
of changing the output (Type 2 change), we can immediateiy conclude that, for the transition <
Si; x/y; Sj > which is not covered by TS, there are ITail NDis(< Si; x/y; Sj >, TS)I x IYI = niYI
possibie ways to generate an impiementation machine wliich can pass the test suite. As a result,
the set of ali the transitions not covered by TS gives us (n-!YI)m choices to generate an
impiementation mac hine which can pass TS (where m is the number of transitions not covered
by TS).

As we have assumed in Section 2, an impiementation machine shouid be compieteiy defined.
Therefore, for the given specification machine Ms which is in general partialiy specified, we
need to appiy the Type 3 operation to add an extra transition for each (Si, x) e S x X - Ds.
Since the taii state of such an extra transition can be any of the n states St. S2, ... , Sn and the
output symboi can be any one in Y, we know that there are a total of (n·IYI)niXI-ID~ possibie
ways to generate an impiementation machine by adding niXI - IDsl extra transitions.

Following from the above discussions, we have

N6(Ms, TS) = (njYI)niXI-IDsl+m IT l'faii_NDis(< Si; x/y; Sj >, TS~ (3-3)
< Si; x/y; Sj >

covered
implementation machines in lmpi(Ms) which are estimated to be able to pass the given test
suite, where m is the number of transitions not covered by TS.

However, we should note that, among ali the implementation machines in Impi(Ms), there are
N2(Ms) = (n- 1)! (niYI)niXI-ID~
implementation machines which conform to the given specification machine Ms and therefore
can pass any test suite. As such, we need to adjust the estimated number of implementation
machines that can pass the test suite TS and use N4(Mg, TS) = max(N2(Ms), N,(Ms, TS))
(i.e., the maximum ofthe two)

FC (M TS) = N1(M5)- max(N2(M8, TS), N6(M8, TS))
e S• N 1 (Mg) - N2(M5, TS)

(3-4)

Let us continue our example with the specification machine given in Figure 1 and the test suite
shown in Table 1 (a). For this particular example, IDsl = 7, m = 1, n = 4, lXI = IYI = 2.
Therefore, we have Nt(Ms) = 16777216, N2(Ms) = 48, N,(Ms, TS) = 18432 and fmally the
estimated fault coverage FCe(Ms, TS) = 99.89042%.

Several properties ofFCe<Ms. TS) given in (3-4) are summarized in the following theorem.

Evaluation of fault coverage for protocol conformance testing 409

Theorem 3.7
(1) O S FCe(Ms, TS) S 1;
(2) FCe(Ms, TS) = 1 if FCp(Ms, TS) = 1;
(3) FCe(Ms, TS) =O if FCp(Ms, TS) =O; and
(4) FCe(Ms, TS) S FC0 (Ms, TS') if AP(TS) !;;; AP(TS'). •
It is quite straightforward to prove these properties. However, we feel that the meaning of the
forth property needs some explanation. We note that AP(TS) is the prefix set of TS and that
AP(TS) !;;; AP(TS') implies that TS' bas more or longer test cases than TS. The forth property
essentially tells us that the estimated fault coverage for TS and TS' coincide with the intuition
that TS' provides better fault coverage than TS.

The calculation of the estimated fault coverage given in (3-4) can be simplified since a common
factor (n IYI)niXI- IDsl exists in N1(Ms), Nz(Ms) and N6(Ms, TS) as shown in (3-1), (3-2)
and (3-3), respectively. After eliminating this common factor from all the items in (3-4), we
have the following simplified formula:

FC (Mş, TS) = K1(Mş)- max(K2(Mş, TS), K3(Mş, TS))
e K1(Mş)- K2(Mş, TS) (3-5)

where
K 1(Ms) = (nfYI)ID~.
Kz(M5, TS) = (n - 1)!,

K3(MS, TS) = (njYI)ID TI rrail_NDis(< Si; x/y; sj >, TS~.
< si; x/y; sj >

covered

From this simplified formula, we can see that only the specified transitions in a given
specification machine will contribute to the calculation of the estimated fault coverage and those
non specified can be excluded from consideration.

The above structural analysis approach to the evaluation of fault coverage bas been implemented
under SUN/UNIX and a number of experim<:nts have been done to show how accurately the
estimated fault coverage can match the precise fault coverage. Taking the FSM given in Figure 1
as a specification machine, we generated the following nine test suites:

TSt =cii
TSz = { r.1 }
TS3 = { r.1.1.2, r.2.1.2.1 }
TS4 = { r.1.1.2, r.2.1.2.1, r.2.2.1 }
TSs = { r.1.1.2, r.2.1.2.1, r.2.2.1.2 }
TS6 = { r.l.1.2, r.2.1.2.1.1, r.2.2.1.2 }
TS7 = { r.l.1.2, r.2.1.2.1, r.2.2.1.2.2 }
TSs = { r.l.l.2, r.2.1.2.1.1, r.2.2.1.2.2 }
TS9 = { r.1.1.2.1.1.1, r.l.1.2.1.2.1, r.1.2.1.2.1, r.1.1.2.2.1.1.2.1, r.1.1.2.2.1.2.1,

r.1.1.2.2.2.1, r.1.2.2.1, r.2.1.2.1.1, r.2.2.1.2.2 }

Applying our structural analysis approach to these test suites yields the estimated fault coverage
listed in the second column of Table 2. To assess the accuracy of these estimated fault coverage
values, we need to compare them with the precise fault coverage values for these test suites.
Fortunately, for the small specification machine given in Figure 1, we have been able to make
an exhaustive mutation analysis. We have written a program which generates and executes one

410 Part Seven Testing and Peifonnance

by one ali the (4 x 2)(4 x 2) = 16777216 possible implementation machines against each of the
above nine test suites. Therefore, we have been able to calculate the precise fault coverage for
these test suites and the results are listed in the third column of Table 2. The differences
between the estimated and precise fault coverage are listed in the forth column of Table 2.

TSi FCe(Ms, TSi) FCp(Ms, TSi) Deviation

TSt 0.00000% 0.00000% 0.00000%

TS2 50.00014% 50.00014% 0.00000%

TS3 99.34110% 99.25871% 0.08239%

TS4 99.89042% 99.66497% 0.22545%

TSs 99.89042% 99.66898% 0.22144%

TS6 99.94535% 99.77655% 0.16880%

TS7 99.94535% 99.88084% 0.06451%

TSs 99.97282% 99.92032% 0.05250%

TS9 100.00000% 100.00000% 0.00000%

Table 2: Fault Coverage for the FSM m F1gure 1

We have also applied this structural analysis approach to some real protocol machines. For
instance, the FSM shown in Figure 4 actually represents the control portion of the NBS
transport protocol (class 4) [SiLe 89]. It bas 15 states, 27 inputs, 46 outputs and 62 specified
transitions. For this FSM, the following two test suites are generated in [SiLe 89] with the
transition tour method and the UIO method, respectively.

TST = { r.xl.x14.x5.x5.x19.x24.xl2.x3.x8.x9.x8.xll.x16.x8.x7.xll.x24.x2.x17.xl.x15.
x5.x24.xl3.x19.x1.x14.x8.x10.x11.x16.x8.x7.x8.x9.x24.x 12.x5.x24.x17. x19.x13.
x18.x2l.x23.x24.xl.x15.x6.x24.x12.x22.x4.x19.x24.x17.x2.x27.x1.x14.x23.
x24.x12.x3.x9.x16.x11.x7.x24.x17.x1.x15.x23.x24.xl.x14.x25.x26.x16.x5.x24.
x1.x 15.x20.x6.x24.x 13.x 18.x3.x 16.x9.x8.x7 .x24.x12.x3.x 16.x 1 O.x 11.x7 .x 1 O.x11.
x9.x24.xl.x14.x16.x8.x9.xll.x7.x24.xl.x14.x16.x23.x24.xl.x14.x16.x.25.x26 }

TSum = { r.xl.x14.x5.x5, r.xl.x14.x8.x9, r.xl.x14.x23.x5, r.xl.x14.x25.x8,
r.xl.x14.x26.x8, r.xl.x14.x16.x5.x5, r.xl.x14.x16.x8.x7, r.xl.x14.x16.x23.x5,
r.xl.x14.x16.x25.x8, r.xl.x14.xl6.x26.x8, r.xl.x15.x5, r.x12.x3.x8.x9,
r.xl2.x3.x9.x8.x16.x7, r.x12.x3.x9.xll.x16.x7, r.x12.x3.x9.x16.x8.x7,
r.x 12.x3.x9.x16.x7.x5, r.xl2.x3.x9.x16.xll.x7, r.x12.x3.x10.x9,
r.x12.x3.xll.x9, r.xl2.x3.xl6.x8.x7, r.x12.x3.x16.x7.x8.x9,
r.x 12.x3.x 16.x7 .x9 .x5, r.x 12.x3 .x 16.x7 .x 10.x9, r.x 12.x3.x 16.x7 .x ll.x9
r.x12.x3.x16.x9.x8.x7, r.x12.x3.x16.x9.x7.x5, r.x12.x3.xl6.x9.x11.x7
r.xl2.x3.x16.x10.x7, r.xl2.x3.xl6.xll.x7, r.x12.x5.x5.x5, r.xl2.x5.x19.x5
r.x12.x5.x24.x12, r.x12.x5.xll.x5, r.x12.x21.x3, r.x12.x23.x5, r.xl2.x22.x3
r.xl2.x4.x5.x5, r.x12.x4.x6.x5, r.x12.x4.x19.x5, r.x12.x4.x23.x5
r.xl2.x4.x20.x5, r.x2.xl2, r.x17.xl.xl4, r.x17.x19.x12, r.x17.x2.x27
r.x17.x27.xl2, r.x13.x19.xl2, r.x13.x18.x3 }

Evaluation of fault coverage for protocol confonnance te sting 411

x7/y38

Figure 4: The NBS Transport Protocol (Ciass 4)

412 Part Seven Testing and Performance

For both these two test suites, our structural analysis approach yields the estimated fault
coverage tobe 100%. For such a large machine, we are apparently unable to use the exhaustive
mutation analysis technique to simulate ali the 69()405 possib1e implementation machines.
Therefore, we cannot compare our estimated fault coverage values with the corresponding
precise fault coverage values here. However, we have also used the Monte-Carlo simulation
approach to estimate the fault coverage for these two test suites. 106 randomly generated
mutants, each of which does not conform to the specification machine given in Figure 4 and
contains a random number of transfer and/or output faults, have been simulated. It tums out that
both test suites can detect ali these 106 non conforming mutants. Therefore, with the Monte­
Carlo simulation approach, we have found that the fault coverage of these two test suites to be
also 100%. This coincides with the result obtained with our structural analysis approach. It
should be noted that our Monte-Carlo simulation differs from the one used in [SiLe 89] where
10 classes of mutants were defmed and only mutants within those classes were simulated.

FCe(TS, M)

1.0

b
a

Kt*CIYI - U
(KI - K2)*1YI

Ideal

Real

..._ ___; ____l,~--~ FCp(TS, M)
0.0 Kt*C!YI- 1l 1.0

(Kt - K2)*1YI

Figure 5: FCe(Ms, TS) vs. FCp(Ms. TS) for a given Ms

As is clear from the above two examples, the estimated fault coverage approaches the precise
fault coverage when the latter is either very high (almost 100%) or relatively low. The general
relationship between the estimated fault coverage and the precise fault coverage is shown in
Figure 5. We have already pointed out in Theorem 3.7 that the estimated fault coverage
FCe(Ms, TS) takes the same value as the precise fault coverage FCp(Ms, TS) whenever the
latter is equal to O or 1. It is also shown in Figure 5 that, for a test suite TS which has only one
input symbol (excluding the reset), both the estimated fault coverage FCe(Ms, TS) and the
precise fault coverage FC (Ms, TS) will be equal to (Kt*(IYI - 1))/((Kt- K2)*1YI). For a test
suite TS which has more fuan one input, the precise fault coverage FCp(Ms, TS) will take a
value "a", where (Kt*(IYI- 1))/((Kt- K2)*1YI) SaS 1. Ideally, we would like the estimated
fault coverage FCe(Ms, TS) to take the same value "a". In reality, FCe(Ms, TS) approximates

FCp(Ms. TS) by ta.king a value in the section [c, b], where c SaS b.

Evaluation of fault coverage for protocol conformance te sting 413

4. FAULT COVERAGE AT THE ORDER LEVEL

For a large specification machine Ms (i.e., a machine that has large numbers of states, outputs
and specified transitions) and a non trivial test suite TS that covers most or all of the transitions,
it can be observed from (3-5) that K1(Ms) >> K2(Ms) and K1(Ms) » K3(Ms, TS) and
therefore FCe(Ms, TS) = 1. For example, we have found with formula (3-5) that the estimated
fault coverage for the two test suites TST and TSmo of the NBS Transport Protocol shown in
Figure 4 tobe 100%. However, it is well known in the literature that a test suite generated with
the UIO method will in general provide better fault coverage than a test suite generated with the
transition tour method. It is therefore necessary to provide some kind of mechanism which can
make a distinction between the two. Actually, the following formula, which we call "Order
Coverage", can be used for this purpose:

(3-6)

The intuition behind this formula is as follows. For a large specification machine and a non
trivial test suite such that Kl(Ms) >> K2(Ms) and K1(Ms) » K3(Ms, TS), K2(Ms) and
K3(Ms, TS) can be neglected in the calculation with formula (3-5). However, the orders (i.e.,
the logarithms) of K:z(Ms) and K3(Ms, TS) are still comparable with that of the K1(Ms) and
therefore will not be neglected in the calculation with formula (3-6). For instance, although
FCe(Ms, TST) = FCe(Ms, TSmo) = 100%, we can still see a difference between the two test
suites since FC0 (Ms, TST) = 63.82301% and FC0 (Ms, TST) = 66.05067%.

The following theorem summarizes the properties of the "order coverage".

Theorem 4.1
(1) O~ FCo(Ms, TS) ~ 1;
(2) FC0 (Ms, TS) = 1 if FCe(Ms, TS) = 1;
(3) FC0 (Ms, TS) = O if FCe(Ms, TS) = O; and
(4) FCo(Ms, TS) ~ FC0 (Ms, TS') if FCe(Ms, TS) ~ FCe(Ms, TS') .

5. CONCLUSIONS

•

In this paper, we have presented a structural analysis approach to the evaluation of fault
coverage of a test suite in respect to a system specification given in the form of a finite state
machine. This approach differs from those methods proposed in [DaSa 88, SiLe 89, DDB 91
and MCS 93] as it avoids the necessity of generating and executing a Oarge) number of mutant
machines. Instead, it evaluates the fault coverage of a given test suite by direcdy analyzing the
test suite against the specification machine. It provides a numeric measure for a test suite no
matter whether the test suite has full fault coverage (i.e., 100%) or not. This feature makes the
metric approach different from one of our previous work [YPB 94] where a test suite is
analyzed only to see if it provides full fault coverage or not. As we have seen in Section 3,
applications of our approach to a number of examples have shown that the estimated fault
coverage of a test suite is quite close to the precise fault coverage, especially when the test suite
approaches full fault coverage (100%). Furthermore, this approach has very low computational
complexity. Actually, it is not difficult to prove that its complexity is O(L2), where Lis the size
of a test suite in terms of the total number of inputs in the test suite. We also proposed the
"Order Coverage" based on the structural analysis approach for large complex specification
machines. Other related work can be found in [MiPa 92, LoSh 92] where they aimed at
generating test suites to achieve full fault coverage (or maxima! fault coverage as they called)
rather than the evaluation of fault coverage of a given test suite.

414 Part Seven Testing and Performance

We also note that the structural analysis approach has been developed under certain assumptions
(Assumptions 1-4 as introduced in Section 2) which are the most relaxed ones compared with
other work based on the FSM model [SiLe 89, DaSa 88 etc.]. In particular, we have not
assumed the specification machine to be completely specified. Therefore, our approach can be
applied to partially specification machines. We believe that this is very important for its practica!
applications since the real-world systems, such as protocol machines, are normally partially
specified.

REFERENCES
[Chow 78] T. S. Chow, "Test Design Modeled by Finite-State Machines", IEEE Trans. SE-4,

3, 1978, pp. 178-187.
[DaSa 88] A. Dahbura and K. Sabnani, "Experience in Estimating Fault Coverage of a

Protocol Test", Proc. ofthe IEEE INFOCOM'88, 1988, pp. 71-79.
[DDB 91] M. Dubuc, R. Dssouli and G. v. Bochmann, "TESTL: A Tool for Incremental

Test Suite Design Based on Finite State Model", 4th International Workshop on
Protocol Test Systems, Holland, November 1991.

[Gill62] A. Gill, "Introduction to the Theory of Finite-State Machines", McGraw-Hill
Book Company Inc., 1962, pp. 207.

[Koha 78] Z. Kohavi, "Switching and Finite Automata Theory", New York, McGraw-Hill,
1978, pp. 658.

[LoSh 92] F. Lombardi and Y. N. Shen, "Evaluation and Improvement of Fault Coverage of
Conformance Testing by UIO Sequences", IEEE Trans. Commun., Voi. COM-40, 8,
August, 1992, pp. 1288-1293.

[MCS 93] H. Motteler, A. Chung and D. Sidhu, "Fault Coverage of UIO-based Methods for
Protocol Testing", Proc. IWPTS, Pau, France, 1993, pp. 21-33.

[MiPa 92] R. E. Miller and S. Paul, "Structural Analysis of a Protocol Specification and
Generation of a Maxima! Fault Coverage Conformance Test Sequence", submitted for
publication.

[Moor 56] E. F. Moore, "Gedanken-Experiments on Sequential Machines", Automata
Studies, Princeton University Press, Princeton, New Jersey, 1956.

[PBD 93] A. Petrenko, G. v. Bochmann and R. Dssouli, "Conformance Relations and Test
Derivation", Proc. IWPTS, Pau, France, 1993, pp. 157-178.

[Petr91] A. Petrenko, "Checking Experiments with Protocol Machines", Proc. of the 4th
Int. Workshop on Protocol Test Systems, 1991.

[SiLe 89] D. P. Sidhu and T. K. Leung, "Formal Methods for Protocol Testing: A Detailed
Study", IEEE Trans. SE-15, 4, April1989, pp. 413-425.

[Ural91] H. Ural, "Formal Methods for Test Sequence Generation", Computer
Communications, Voi. 15, No. 5, June 1992, pp. 311-325.

[YPB 93a] M. Yao, A. Petrenko and G. v. Bochmann, "Conformance Testing of Protocol
Machines without Reset", Department Publication #861, Departement d'informatique
et de recherche operationnelle, Universite de Montreal, February 1993, 27 p.

[YPB 93b] M. Yao, A. Petrenko and G. v. Bochmann, "Conformance Testing of Protocol
Machines without Reset", Proc. of the 13th IFIP Symposium on Protocol
Specification, Testing and Verification, Liege, Belgium, 1993, pp. 241- 253.

[YPB 94] M. Yao, A. Petrenko and G. v. Bochmann, "Fault Coverage Analysis in Respect
to an FSM Specification", Proc. of the IEEE INFOCOM'94, Toronto, Canada, 1994.

