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In this paper, we propose a structural analysis approach to the evaluation of fault coverage of 
protocol conformance testing based on the finite state mac hine model. The attractiveness of this 
approach is its low computational complexity. It allows us to calculate the fault coverage of a 
given test suite by directly analyzing the test suite against the specification machine. Therefore, 
it avoids the generation and execution of mutants. The approach has been implemented and a 
number of experiments has been carried out. Some of the experimental results are summarized 
in this paper to show the accuracy of this approach compared with the mutation analysis 
technique. 
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1. INTRODUCTION 

The finite state machine (FSM) model has been widely used in the development of hardware 
and software systems. Especially in the recent years, it has been extensively used in the 
conformance testing of communication protocols. Quite a number of methods have been 
proposed in the literature for generating test suites from protocol specifications given in the 
form of FSMs. An important issue related to the test suite generation is the effectiveness of a 
test suite which depends primarily on its fault coverage, i.e., its capability of detecting faults in 
a potential implementation. Approaches based on Monte-Carlo simulation have been proposed 
in the literature to evaluate the fault coverage of a test suite generated from a given FSM 
specification [DaSa 88, DDB 91, SiLe 89 and MCS 93]. These approaches require a (large) 
number of mutants of the given specification machine to be enumerated and executed against the 
test suite. In our recent work [YPB 94], a different procedure has been developed which, 
without the need of explicitly generating and then executing a certain (and often large) number 
of mutant machines, can decide if the given test suite provides full fault coverage (i.e., if it can 
detect all bad implementation machines). However, this approach does not provide a numeric 
measure for a test suite which does not have full fault coverage. Consequently, it is impossible 
to use this approach to compare the fault coverage of two test suites, if none of them provides 
full fault coverage. In this paper, we will propose a structural analysis approach to evaluate the 
fault coverage of a given test suite. The basic idea of this approach is, by analyzing the given 
test suite against the specification machine, to make an estimation on the number of mutants 
representing potential bad implementations that can be detected by the test suite without the need 
to generate and execute the mutants. 

The rest of the paper is organized as follows. In Section 2, the FSM model is introduced and a 
framework of software testing based on this model is presented. The structural analysis 
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approach to the evaluation of fault coverage of a test suite is developed in Section 3. The "Order 
Coverage", which is based on the structural analysis approach and proposed to deal with large 
complex specification machines, is then presented in Section 4. Finally, in Section 5, our 
approach is compared with other related work. 

2. A FRAMEWORK OF TESTING BASED ON THE FSM MODEL 

We will frrst introduce the finite state machine model and then present a software testing 
framework based on this model. 

2 .1 The FSM Model 

A finite state machine (FSM), often simply called a machine throughout this paper, is essentially 
an initialized Mealy machine which can be formally defined as follows. 

Definition 2.1 (finite state rnachine) 
A finite state machine is a 7-tuple <S, X, Y, S1. S, Â., D>, where 
S is a set of n states { S 1o S2, ... , Sn} with S 1 as the initial state; 
X is a finite set of input symbols; 
Y is a finite set of output symbols; 
D is a specification domain which is a subset of S x X; 
S is a transfer function S: D --> S; 

Â. is an output function Â.: D --> Y. • 
An FSM is said to be completely specified (defined), iff D = S x X. Otherwise it is said to be 

partial/y or incompletely specified (defined). Since S and Â. are required to be functions, this 

FSM model is deterministic. That is, for each (Si. x) e D, there should be exactly one state Sj e 

S and exactly one output symbol y e Y such that S(Si. x) = Sj and Â.(Si, x) = y. In this case, 
we say there is a transition leading from state Si to Sj with input x and output y. Such a 
transition is usually written as Si -x/y-> Sj. or as a triplet < Si; x/y; Sj >. Si is said to be the 
head or starting state of the transition, while Sj is said to be the tail or ending state of the 
transition. An FSM can be given in a graph form, with the states and transitions of the FSM 
represented by the vertices and arcs ofthe graph, respectively. As an example, Figure 1 gives a 
FSM which is partially specified since, at state S3, no transition is specified for input symbol 1. 

l/1 

2(1. 

S = { SI, S2, S3, S4 } 
X= { 1, 2} 
y = { 1, 2} 
Initial state is S 1 

Figure 1: An exarnple FSM 
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The following notations will be used throughout the paper. For a given symbol set Z, z* is 
used to represent the set of words constructed on Z and "e" to represent the empty word, i.e., 

the word consisting of no symbols. Also, the dot "·" is used to represent the concatenation 
operation of two words. However, this dot symbol is often omitted when no ambiguity arises. 
Furthermore, IZI is used to represent the cardinality of Z. 

Definition 2.1 (defined input sequence) 
Let p = XlX2···Xk E x•. p is called a defined input sequence for state Si e s. if there exist k 
states Sn, S;2, ... , Sik e S and an output sequence q = YlY2···Yk e y* such that there is a 
sequence of transitions 
Si ·X11Y1-> Sn -X'J/'/2-> S;2 --> ... --> Sik-1 -XkfYk·>Sik (1-1) 
in the ffnîte state machine. • 

We use 'lf(Si) to denote the set of all the defined input sequences for state Si. A sequence of 
transitions such as (2-1) can be abbreviated as Si -p/q-> Sik, which, when we do not care 
about the output sequence q, can be further simplified as Si -p-> Sik, with the meaning that the 
FSM, when in state Si and given an input sequence p, will enter state Sik. The definitions of the 
transfer function 8 and output function Â. can be naturally extended to apply not only to single 
inputs, but also to sequences of inputs. 

Definition 2.3 (extensions of transfer and output functions to input sequences) 
Let p = X1X2···xk e 'lf(Si) and e be the empty word. Then, 
8(Si, e) = Si, 8(S;. p) = 8(8(Si, p'), xk) 

Â.(S;. e) = e, Â.(Si. p) = l(S;. p')_l(8(Si. p'), xk) 

where p' = XlX2···Xk-l· 

Definition 1.4 (compatible states and distinct states) 
• 

We say that Si and Sj are compatible states iffor 'V pe 'lf(Si) n 'lf(Sj). ls(Si, p) = ls(Sj, p). 
Otherwise, they are called distinct states. • 

According to the above defmition, if 'lf(Si) n 'lf(Sj) = cll. then Si is compatible with Sj. If the 
FSM happens to be completely specified, then the definition of compatible states given above 
reduces to the definition of equivalent states as found in the literature (see for example, [Gill 62, 
Koha 78]). 

Definition 2.5 (reduced machine) 
A FSM is said to be reduced if and only if no two states are compatible. 

It is easy to verify that the FSM given in Figure 1 is reduced. 

Definition 2.6 (reachable state and strongly connected FSM) 

• 

A state S; is said to be reaclwble (from the initial state S1) if there exists an input sequence p e 
'lf(Si) such. that S1 -p->S;. A machine is said to be initially connected if all the states are 
reachable. • 

All the states of the FSM in Figure 1 can be reached from the initial state and therefore this 
example FSM is initially connected. 
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Definition 2.7 (mutant machine) 
Let M1 and M2 be two given FSMs. M2 is said tobe .a mutant machine of M1 if M2 is obtained 
by applying to M1 each of the following four types of operations, in any order, for a certain 
number of times (including zero times): 
Type 1: change the tail state of a transition; 
Type 2: change the output of a transition; 
Type 3: add a transition; and 
Type 4: add an extra state. • 

The following corollary follows direcdy from the above definition. 

Corollary 2.8 
A machine is a mutant machine of itself. • 
2. 2 A Testing Framework Based on FSM Model 

The FSM model was widely used in traditional hardware testing. In recent years, this model has 
also received much attention in the testing of certain software systems such as communication 
protocols [PBD 93] and object-oriented programs [HoSt 93, TuRo 92]. Testing based on the 
FSM model can be formalized as the problem of testing a FSM implementation[Ura191]: given 
a FSM representation (specification) of a system (denoted henceforth as Ms) and an 
implementation of tlte system (denoted henceforth as MI). we are required to determine if the 
implementation machine MI cmiforms to (i.e., is correct with respect to) the specification 
machine Ms by testing MI as a black-box. This implies that we should generate from Ms a set of 
input sequences, called a test suite, and the corresponding set of expected output sequences 
such that MI conforms to Ms if and only if, when the input sequences in the test suite are 
applied to MI, the observed output sequences from MI are the same as the corresponding 
expected output sequences. As already pointed out in the literature [Moor 56, Gil162, YPB 93a, 
YPB 93b], this problem is not solvable unless it is dealt within a restricted framework. 
Therefore, some assumptions should be made about the specification machine Ms and the 
implementation machine MI. Firstly, the restrictions on the specification machine are 
summarized in the first assumption. 

Assumption 1: (reduced and initially connected specification machine) 
The given specification machine Ms is reduced and initially connected. • 
Secondly, testing based on the FSM model is essentially a mutation testing. Therefore, for the 
given specification machine Ms. an implementation machine MI is actually a mutant machine (of 
Ms) obtained from Ms by applying each of the four types of operations listed in Definition 2.7 
for a number of times (including zero times). These four types of operations represent the basic 
types of changes that can be made during the implementation of Ms. However, it should be 
noted that, in practice, the implementation machine MI is nonnally completely defined even 
though the given specification machine Ms is often only partially specified. Therefore, the 
following assumption is made throughout this paper. 

Assumption 2: (completeness of an implementation machine) 
For the given specification machine Ms. an implementation machine MI is a completely defmed 
mutant machine of Ms. • 
Thirdly, if the number of changes of Type 4 applied to the given specification machine Ms is 
not limited. the number of mutants of Ms wil1 be infinite and the problem of testing will become 
intractable. Therefore, in practice, the number of changes of Type 4 is always limited to an 
upper bound. Throughout this paper, we simply do not allow any change of Type 4 as stated in 
the next assumption. · 

Assumption 3: (limited number of states in an implementation machine) 
For the given specification machine Ms. any operation of Type 4 is not allowed and therefore 
the number of states in an implementation machine MI will not exceed that of Ms. • 
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We also note here that additional types of changes, such as changes of inputs, changes of head 
states and missing states, may be introduced [MiPa 92]. However, these types of changes are 
not necessary for our discussion as the FSM model is deterministic (Definition 2.1) and 
implementation machines are assumed to be completely defined (Assumption 2). The following 
example explains that the same consequences of a missing state can be achieved by changing the 
tail states of certain transitions (Type 1). Figure 2 (a) shows that, when implementing the FSM 
given in Figure 1, state S4 is not implemented (i.e., missing in the implementation) and the 
transition < S3; 2!2; S4 > is changed to < S3; 2/2; St >. However, we can still think: that state 
S4 is present in the implementation as shown in Figure 2 (b). The reason is that S4 is no longer 
reachable and therefore, during the black-box testing, whether S4 is present or missing in the 
implementation makes no difference. 

l/1 
~~/2 
~2 

1/1 

1/2 

(a) 

Figure 2: A missing state 

(b) 

Therefore, as a matter of fact, all the n states St. S2, ... , Sn of the specification machine Ms are 
assumed tobe present in an implementation machine My. However, some of these states may 
become unreachable in M1 due to the changes of Type 1 introduced during the implementation. 
Confusion may arise because the same state names St. S2, ... , Sn are used for both Ms and My. 
It is therefore often helpful, although not necessary, to make things clear by renaming the states 
S~o S2, ... , Sn in My to It. l2, ... ,In, respectively. Then without loosing generality, let 

Ms = < {St. S2, ... , Sn}, X, Y, St, lis, Â.s, Ds >, and 

My = < {It. l2, ... ,In}, X, Y, It. liy, Â.y, Dy >. 

Since My is supposed tobe completely defined, we know that Dy = {It, h .... ,In} X X and 

therefore 'lf(li) = x* and 'lf(Sj) ~; 'lf(li). for any Ii and Sj. Now, we need to introduce some 
important concepts. The f'rrst concept required is the so-called conformance relation which 
essentially defines when My is a correct implernentation of Ms. This concept is defined through 
the following two def'mitions. 

Definition 2.9 (equivalence of states in respect to a set of input sequences) 
Let Ii be a state of My and Sj a state of Ms. V is a set of input sequences such that V !; 'lf(Sj). 
Then 

li ~V Sj if Â.y (Ii. p) = Â.s( Sj, p), for'<;} p e V. • 

Definition 2.10 (conformance relation) 
M1 conforms to Ms, written M1 CONF Ms. if and only if It ~'Jf(St) St. where It and Stare 
the initial states of My and Ms, respectively. • 
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The above defined confonnance relation corresponds to the notion of weak confonnance [SaDa 
88, SiLe 89 and MiPa 92]. The relationship between the above defined confonnance relation 
and the types of operations listed in Definition 2. 7 is established by the following lemma of 
which the proof is similar to that of Lemma A.l given in the appendix of [YPB 93a]. 

Lemma 2.11 
For the specification machine Ms and implementation. Then Mr confonns to Ms if and only if 

there exists a mapping f: {St. S2, ... , Sn} -> {Ilo h .... ,In}, such that 
(1) fis one-to-one; and 
(2) lf Si - x/y -> Sj is in Ms. then Ik - x/y -> I9 is in Mr, where Ik = f(Si) and I9 = f(Sj). • 

Since the implementation machine Mr is treated as a black-box, test cases should be generated 
from the specification machine Ms. The following two definitions fonnally defines the concepts 
of test case and test suite. 

Definition 2.12 (test case) 
A test case is a sequence of inputs which should be of finite length and in 'lf(S1). • 

As is clear fr9m the above definition, a test case always starts from the initial state S1 of the 
specification:machine Ms. Accordingly, each test case should be applied to the implementation 
machine Mr when it is in its initial state I1. Therefore, an important assumption in the testing 
based on the FSM model is about the availability of the so-called reliable reset function and is 
summarized as our fourth (and final) assumption. 

Assumption 4: (availability of reliable reset) 
The reliable reset is an operation that, when activated, will bring the implementation from any 
other state back into its initial state. It is assumed to be available in an implementation under 
test. • 
A special input symbol "r" representing the invocation of the reset operation is added to the 
beginning of each test case. 

Definition 2.13 (test suite) 
A test suite is a finite set of test cases. 

TS = { r.1.1.2, r.2.1.2.1, r.2.2.1 } 

(a) 

(b) 

Figure 3: A test suite generated from the example FSM 

• 
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Figure 3 (a) lists the test cases of a test suite generated from the machine shown in Figure 1. 
Each of the test cases is prefixed by the reset symbol "r". Applying the three test cases to the 
initial state S1 results in the three sequences of transitions shown in Figure 3 (b) that will be 
executed. 

Definition 2.14 (to pass a test suite) 
Let TS be a test suite and p e TS be a test case. We say that a given implementation M1 passes 

the test case p, written MI pass p, iff ÂI (l~o p) = Â.s( S~o p). Further, we say that MI passes the 

test suite TS, written MI pas$ TS, iff MI pass p, for '<;}pe TS. • 

An implementation machine which cannot pass a given test suite is said to fail the test suite or to 
be detected by the test suite. 

Let Impi(Ms) represent the set of all the implementation machines of Ms, i.e., all the 
completely defmed mutant machines with same number of states as Ms. Then the following 
lemma follows directly from the above defmitions. 

Lemma 2.15 
Let TS be a given test suite for Ms and MI e lmpl(Ms). MI does not pass TS implies that MI 
does not conform to Ms. • 

3. A STRUCTURAL ANALYSIS APPROACH TO EVALUATING 
FAULT COVERAGE 

In this section, we are going to present a structural analysis approach to the evaluation of fault 
coverage of a test suite in respect to a given specification machine. This approach avoids the 
necessity of explicit generation and execution of mutant machines representing possible 
implementations of the given specification machine Ms. First of all, let us introduce the 
following notations: 

Nt(Ms) - the total number of machines in Impi(Ms); 
N:z(Ms) - the number of machines in Impl(Ms) which conform to Ms; 
NJ(Ms) - the number of machines in Impi(Ms) which do not conform to Ms; 
N4(M8 , TS) - the number of machines in Impi(Ms) which can pass the given test suite TS; 
Ns(Ms, TS) - the number of machines in Impi(Ms) which do not conform to Ms and cannot 

pass the given test suite TS; 

We have the following lemma whose validity is obvious (see [Gill62, SiLe 89]). 

Lemma 3.1 
The total number of implementation machines, that is the cardinality of Impi(Ms), is 

Nt(Ms) = llmpl(Ms)l = (n!YI)niXI (3-1) 
Among these implementation machines, there are 

N2(Ms) = (n- 1)! (niY!)niXI-IDsl (3-2) 
implementation machines which conform to Ms, where n, X, Y and Ds are the number of 
states, the input set, the output set and the specification domain ofMs, respectively. • 

It is also easy to see that N3(Ms) = Nt(Ms)- N:z(Ms) and Ns(Ms, TS) = Nt(Ms)- N4(Ms. 
TS). 
Therefore, we can give the following so-called precise fault coverage of a given test suite TS in 
respect to a given specification machine Ms. 
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Definition 3.2 (precise fault coverage) 
The precise fault coverage of a test suite TS in respect to Ms, denoted as FCp(Ms, TS), is 
FC (Ms, TS) = N5(M8, TS) = N1(M8)- N4(M5, TS) • 

P N3(M5) N1(M8)- N2(M5, TS) 

As is clear from the above definition, in order to calculate the fault coverage, we stiH need to 
find N4(Ms, TS), the number of machines in Impi(Ms) which can pass the given test suite TS. 
The exact value of N4(Ms, TS) is in general too difficult to find without using the exhaustive 
mutation analysis technique. However, as we have already mentioned, the exhaustive analysis 
technique is often not feasible in practice due to the high cost. Therefore, in our approach, we 
will use an estimated value, denoted as N4(Ms, TS), of N4(Ms, TS). Substituting N4(Ms, TS) 
for N4(Ms, TS) in the calculation of the fault coverage as defmed in Definition 3.2 results in the 
following estimated fault coverage. 

Definition 3.3 (estimated fault coverage) 
The estimated fault coverage of a test suite TS in respect to Ms, denoted as FCe(Ms, TS), is 

FC (M TS) = Nt(Ms)- N4(Ms, TS) • 
e s• N1(Ms)- N2(M8, TS) 

Definition 3.4 (prefix set of a test suite) 
The prefix set AP(TS) of a test suite TS is the set which consists of all the prefixes of all the 
test cases in TS, i.e., 
AP(TS) = ( p 1 p is a prefix of some test case in TS } . • 

Definition 3.5 (transition covered by TS) 

A transition < S;; x/y; Sj > in Ms is said to be covered by TS, if there are a, ax e AP(TS) 

such that Bs(St. a) = S; and Bs(St. ax) = Sj. • 

Definition 3.6 (tail state Sj of a transition distinguished from Sk by TS) 
The tail state Sj of a transition < S;; x/y; Sj > in Ms is said to be distinguished from another state 

Sk by TS if there are a, ax, axy, ~. ~ e AP(TS) such that 

Bs(St. a)=Si. Bs(St. ax)=Sj. Bs(St. ~)=Sk and Âs(Bs(St. ax), y) "* Âs(Bs(St. ~). y). • 

We will proceed in two steps to fmd the value of N4(Ms, TS). In the frrst step, we will make 
an estimation, denoted as N6(Ms, TS), on the number of implementation machines which can 
pass the given test suite TS, by analyzing the structures of the given specification machine and 
test suite. In the second step, N6(Ms, TS) will be adjusted to N4(Ms, TS). 

To find the value of N6(Ms, TS), we need to classify the transitions of Ms into two classes: the 
first class includes the transitions covered by TS, while the second class consists of the 
transitions not covered by TS. Taking the specification machine given in Figure 1 and the test 
suite TS shown in Figure 3 (a) as an example, we can easily check that, among the seven 
specified transitions in Figure 1, the six transitions listed in Table 1 (a) are covered by the test 
suite TS, while the other transition given in Table 1 (b) is not covered. 

For a transition < S;; x/y; Sj >in Ms, we use Tail_Dis(< S;; x/y; Sj >, TS) to denote the set of 
states from which the tail state Sj of transition < S;; x/y; Sj > is distinguished. Then, 
Tail NDis(< S;; xly; Sj >, TS) = ( St, S2, ... , Sn} - Taii_Dis(< S;; x/y; Si>, TS) 
is the set of states from which the tail state Sj of transition < S;; x/y; Sj > is not distinguished. 

For a transition < S;; x/y; s1 > covered by TS, we can easily calculate Taii_Dis(< S;; x/y; Sj >, 
TS) and therefore Taii_Nuis(< S;; x/y; Sj >, TS). As an example, let us consider one of the 



Evaluation of fault coverage for protocol confonnance te sting 407 

covered transition < S1; 2/2; S2 > given in Table 1 (a). As is clear from Figure 3 (b), this 
transition is covered twice by the test suite. The tail state S2 at point V 6 is distinguished from 
state s4 at point V 8· The same tail State s2 at point V 11 is distinguished from state s3 at point 
V7. Therefore, Tail_Dis(< S1; 2/2; S2 >, TS) = { S3, S4} and Tail_NDis (< S1; 2/2; S2 >, 
TS) = { s1o s2 }. 

< S1; 1/1; S2 > 

< S2; 2/2; S2 > 

< S1; 2/2; S2 > < S2; 1/1; S3 > 

< S3; 2/2; S4 > < S4; 1/2; S4 > 

(a) transitions covered by TS 

< S4; 2/2; S1 > 

(b) transition not covered by TS 

Tail_Dis (< S1; 1/1; S2 >, TS) = { S4} 

Tail_Dis (< S1; 2/2; S2 >, TS) = { S3, S4} 
Tail_Dis (< S2; 1!1; S3 >, TS) = { S1, S2} 

Tail_Dis ( < S2; 2/2; S2 >, TS) = { S4 } 

Tail_Dis (< S3; 2!2; S4 >, TS) = { S1, S2} 

Tail_Dis ( < S4; 1/2; S4 >, TS) = cp 

(c) 

Tail_NDis (< St; l/1; S2 >, TS) = { S1, S2, S3} 

Tail_NDis (< S1; 2/2; S2 >, TS) = { S1, S2} 
Tail_NDis (< S2; 1/1; S3 >, TS) = { S3, S4} 

Tail_NDis (< S2; 2/2; S2 >, TS) = { S1, S2, S3} 

Tail_NDis (< S3; 2/2; S4 >, TS) = { S3, S4} 
Tail_NDis ( < S4; l/2; S4 >, TS) = { SI, S2, S3, S4 } 

(d) 

Table 1: lntermediate calculation results for the example FSM and TS 

The related results for the other five covered transitions can be found in Table 1 (c) and (d). 
Since a state in Taii_NDis(<S;; x/y; Sj>. TS) is not distinguished from the tail state~ of <S;; 
x/y; ~>. changing the tail state Sj of transition < S;; x/y; Sj > to any state in Tail_ Nuis( < S;; 
x/y; :Sj >, TS) will give us an implementation machine which can pass the test suite TS. 
Theretore, there are ITaii_NDis(< S;; x/y; Sj >, TS)I possible ways to make such a Type 1 
change (as defined in Definition 2.7). However, we should note that, as transition < S;; x/y; Sj 
> is covered by TS, changing the output symbol "y" to any other output symbol (Type z 
change) will result in an implementation machine which is very likely tobe detected by TS. 
Therefore, to guarantee to generate an implementation machine which can pass TS, we have 
only one choice of keeping the output "y" of the transition. Consequently, the given transition < 
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Si; x/y; Sj > covered by TS gives us ITaii_NDis(< Si; x/y; Sj >, TS)I possibie ways of 
generating an impiementation machine which can pass the test suite TS. It can be noted that, 
with certain test suite generation methods such as the W method [Chow 78], ali the transitions 
in the specification machine will be covered and the taii state of each transition will be 
dis~nguis~ed from ali other states. Therefore, Taii_NDis(< Si; x/y; Sj >, TS) = { Sj } and 
ITali_NDts(< Si; x/y; Sj >, TS)I = 1. 

For a transition < Si; x/y; Sj > not covered by the given test suite TS, its tail state ~ is not 
distinguished by TS from any state. Therefore, we have Taii_NDis(< Si; x/y; Sj >, TS) = { 
St. S2, ... , Sn }. Furthermore, since the transition is not covered by TS, we can change the 
output symboi "y" to any symboi in Y and still get a mutant machine which can pass TS. 
Combining the possibie ways of changing the tail state (Type 1 change) and the possibie ways 
of changing the output (Type 2 change), we can immediateiy conclude that, for the transition < 
Si; x/y; Sj > which is not covered by TS, there are ITail NDis(< Si; x/y; Sj >, TS)I x IYI = niYI 
possibie ways to generate an impiementation machine wliich can pass the test suite. As a result, 
the set of ali the transitions not covered by TS gives us (n-!YI)m choices to generate an 
impiementation mac hine which can pass TS (where m is the number of transitions not covered 
by TS). 

As we have assumed in Section 2, an impiementation machine shouid be compieteiy defined. 
Therefore, for the given specification machine Ms which is in general partialiy specified, we 
need to appiy the Type 3 operation to add an extra transition for each (Si, x) e S x X - Ds. 
Since the taii state of such an extra transition can be any of the n states St. S2, ... , Sn and the 
output symboi can be any one in Y, we know that there are a total of (n·IYI)niXI-ID~ possibie 
ways to generate an impiementation machine by adding niXI - IDsl extra transitions. 

Following from the above discussions, we have 

N6(Ms, TS) = (njYI)niXI-IDsl+m IT l'faii_NDis(< Si; x/y; Sj >, TS~ (3-3) 
< Si; x/y; Sj > 

covered 
implementation machines in lmpi(Ms) which are estimated to be able to pass the given test 
suite, where m is the number of transitions not covered by TS. 

However, we should note that, among ali the implementation machines in Impi(Ms), there are 
N2(Ms) = (n- 1)! (niYI)niXI-ID~ 
implementation machines which conform to the given specification machine Ms and therefore 
can pass any test suite. As such, we need to adjust the estimated number of implementation 
machines that can pass the test suite TS and use N4(Mg, TS) = max(N2(Ms), N,(Ms, TS)) 
(i.e., the maximum ofthe two) 

FC (M TS) = N1(M5)- max(N2(M8, TS), N6(M8, TS)) 
e S• N 1 (Mg) - N2(M5, TS) 

(3-4) 

Let us continue our example with the specification machine given in Figure 1 and the test suite 
shown in Table 1 (a). For this particular example, IDsl = 7, m = 1, n = 4, lXI = IYI = 2. 
Therefore, we have Nt(Ms) = 16777216, N2(Ms) = 48, N,(Ms, TS) = 18432 and fmally the 
estimated fault coverage FCe(Ms, TS) = 99.89042%. 

Several properties ofFCe<Ms. TS) given in (3-4) are summarized in the following theorem. 
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Theorem 3.7 
(1) O S FCe(Ms, TS) S 1; 
(2) FCe(Ms, TS) = 1 if FCp(Ms, TS) = 1; 
(3) FCe(Ms, TS) =O if FCp(Ms, TS) =O; and 
(4) FCe(Ms, TS) S FC0 (Ms, TS') if AP(TS) !;;; AP(TS'). • 
It is quite straightforward to prove these properties. However, we feel that the meaning of the 
forth property needs some explanation. We note that AP(TS) is the prefix set of TS and that 
AP(TS) !;;; AP(TS') implies that TS' bas more or longer test cases than TS. The forth property 
essentially tells us that the estimated fault coverage for TS and TS' coincide with the intuition 
that TS' provides better fault coverage than TS. 

The calculation of the estimated fault coverage given in (3-4) can be simplified since a common 
factor (n IYI)niXI- IDsl exists in N1(Ms), Nz(Ms) and N6(Ms, TS) as shown in (3-1), (3-2) 
and (3-3), respectively. After eliminating this common factor from all the items in (3-4), we 
have the following simplified formula: 

FC (Mş, TS) = K1(Mş)- max(K2(Mş, TS), K3(Mş, TS)) 
e K1(Mş)- K2(Mş, TS) (3-5) 

where 
K 1(Ms) = (nfYI)ID~. 
Kz(M5, TS) = (n - 1)!, 

K3(MS, TS) = (njYI)ID TI rrail_NDis(< Si; x/y; sj >, TS~. 
< si; x/y; sj > 

covered 

From this simplified formula, we can see that only the specified transitions in a given 
specification machine will contribute to the calculation of the estimated fault coverage and those 
non specified can be excluded from consideration. 

The above structural analysis approach to the evaluation of fault coverage bas been implemented 
under SUN/UNIX and a number of experim<:nts have been done to show how accurately the 
estimated fault coverage can match the precise fault coverage. Taking the FSM given in Figure 1 
as a specification machine, we generated the following nine test suites: 

TSt =cii 
TSz = { r.1 } 
TS3 = { r.1.1.2, r.2.1.2.1 } 
TS4 = { r.1.1.2, r.2.1.2.1, r.2.2.1 } 
TSs = { r.1.1.2, r.2.1.2.1, r.2.2.1.2 } 
TS6 = { r.l.1.2, r.2.1.2.1.1, r.2.2.1.2 } 
TS7 = { r.l.1.2, r.2.1.2.1, r.2.2.1.2.2 } 
TSs = { r.l.l.2, r.2.1.2.1.1, r.2.2.1.2.2 } 
TS9 = { r.1.1.2.1.1.1, r.l.1.2.1.2.1, r.1.2.1.2.1, r.1.1.2.2.1.1.2.1, r.1.1.2.2.1.2.1, 

r.1.1.2.2.2.1, r.1.2.2.1, r.2.1.2.1.1, r.2.2.1.2.2 } 

Applying our structural analysis approach to these test suites yields the estimated fault coverage 
listed in the second column of Table 2. To assess the accuracy of these estimated fault coverage 
values, we need to compare them with the precise fault coverage values for these test suites. 
Fortunately, for the small specification machine given in Figure 1, we have been able to make 
an exhaustive mutation analysis. We have written a program which generates and executes one 
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by one ali the (4 x 2)(4 x 2) = 16777216 possible implementation machines against each of the 
above nine test suites. Therefore, we have been able to calculate the precise fault coverage for 
these test suites and the results are listed in the third column of Table 2. The differences 
between the estimated and precise fault coverage are listed in the forth column of Table 2. 

TSi FCe(Ms, TSi) FCp(Ms, TSi) Deviation 

TSt 0.00000% 0.00000% 0.00000% 

TS2 50.00014% 50.00014% 0.00000% 

TS3 99.34110% 99.25871% 0.08239% 

TS4 99.89042% 99.66497% 0.22545% 

TSs 99.89042% 99.66898% 0.22144% 

TS6 99.94535% 99.77655% 0.16880% 

TS7 99.94535% 99.88084% 0.06451% 

TSs 99.97282% 99.92032% 0.05250% 

TS9 100.00000% 100.00000% 0.00000% 

Table 2: Fault Coverage for the FSM m F1gure 1 

We have also applied this structural analysis approach to some real protocol machines. For 
instance, the FSM shown in Figure 4 actually represents the control portion of the NBS 
transport protocol (class 4) [SiLe 89]. It bas 15 states, 27 inputs, 46 outputs and 62 specified 
transitions. For this FSM, the following two test suites are generated in [SiLe 89] with the 
transition tour method and the UIO method, respectively. 

TST = { r.xl.x14.x5.x5.x19.x24.xl2.x3.x8.x9.x8.xll.x16.x8.x7.xll.x24.x2.x17.xl.x15. 
x5.x24.xl3.x19.x1.x14.x8.x10.x11.x16.x8.x7.x8.x9.x24.x 12.x5.x24.x17. x19.x13. 
x18.x2l.x23.x24.xl.x15.x6.x24.x12.x22.x4.x19.x24.x17.x2.x27.x1.x14.x23. 
x24.x12.x3.x9.x16.x11.x7.x24.x17.x1.x15.x23.x24.xl.x14.x25.x26.x16.x5.x24. 
x1.x 15.x20.x6.x24.x 13.x 18.x3.x 16.x9.x8.x7 .x24.x12.x3.x 16.x 1 O.x 11.x7 .x 1 O.x11. 
x9.x24.xl.x14.x16.x8.x9.xll.x7.x24.xl.x14.x16.x23.x24.xl.x14.x16.x.25.x26 } 

TSum = { r.xl.x14.x5.x5, r.xl.x14.x8.x9, r.xl.x14.x23.x5, r.xl.x14.x25.x8, 
r.xl.x14.x26.x8, r.xl.x14.x16.x5.x5, r.xl.x14.x16.x8.x7, r.xl.x14.x16.x23.x5, 
r.xl.x14.x16.x25.x8, r.xl.x14.xl6.x26.x8, r.xl.x15.x5, r.x12.x3.x8.x9, 
r.xl2.x3.x9.x8.x16.x7, r.x12.x3.x9.xll.x16.x7, r.x12.x3.x9.x16.x8.x7, 
r.x 12.x3.x9.x16.x7.x5, r.xl2.x3.x9.x16.xll.x7, r.x12.x3.x10.x9, 
r.x12.x3.xll.x9, r.xl2.x3.xl6.x8.x7, r.x12.x3.x16.x7.x8.x9, 
r.x 12.x3.x 16.x7 .x9 .x5, r.x 12.x3 .x 16.x7 .x 10.x9, r.x 12.x3.x 16.x7 .x ll.x9 
r.x12.x3.x16.x9.x8.x7, r.x12.x3.x16.x9.x7.x5, r.x12.x3.xl6.x9.x11.x7 
r.xl2.x3.x16.x10.x7, r.xl2.x3.xl6.xll.x7, r.x12.x5.x5.x5, r.xl2.x5.x19.x5 
r.x12.x5.x24.x12, r.x12.x5.xll.x5, r.x12.x21.x3, r.x12.x23.x5, r.xl2.x22.x3 
r.xl2.x4.x5.x5, r.x12.x4.x6.x5, r.x12.x4.x19.x5, r.x12.x4.x23.x5 
r.xl2.x4.x20.x5, r.x2.xl2, r.x17.xl.xl4, r.x17.x19.x12, r.x17.x2.x27 
r.x17.x27.xl2, r.x13.x19.xl2, r.x13.x18.x3 } 
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x7/y38 

Figure 4: The NBS Transport Protocol (Ciass 4) 
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For both these two test suites, our structural analysis approach yields the estimated fault 
coverage tobe 100%. For such a large machine, we are apparently unable to use the exhaustive 
mutation analysis technique to simulate ali the 69()405 possib1e implementation machines. 
Therefore, we cannot compare our estimated fault coverage values with the corresponding 
precise fault coverage values here. However, we have also used the Monte-Carlo simulation 
approach to estimate the fault coverage for these two test suites. 106 randomly generated 
mutants, each of which does not conform to the specification machine given in Figure 4 and 
contains a random number of transfer and/or output faults, have been simulated. It tums out that 
both test suites can detect ali these 106 non conforming mutants. Therefore, with the Monte­
Carlo simulation approach, we have found that the fault coverage of these two test suites to be 
also 100%. This coincides with the result obtained with our structural analysis approach. It 
should be noted that our Monte-Carlo simulation differs from the one used in [SiLe 89] where 
10 classes of mutants were defmed and only mutants within those classes were simulated. 

FCe(TS, M) 

1.0 

b 
a 

Kt*CIYI - U 
(KI - K2)*1YI 

Ideal 

Real 

..._ ___ .....; ____ .....l,~--~ FCp(TS, M) 
0.0 Kt*C!YI- 1l 1.0 

(Kt - K2)*1YI 

Figure 5: FCe(Ms, TS) vs. FCp(Ms. TS) for a given Ms 

As is clear from the above two examples, the estimated fault coverage approaches the precise 
fault coverage when the latter is either very high (almost 100%) or relatively low. The general 
relationship between the estimated fault coverage and the precise fault coverage is shown in 
Figure 5. We have already pointed out in Theorem 3.7 that the estimated fault coverage 
FCe(Ms, TS) takes the same value as the precise fault coverage FCp(Ms, TS) whenever the 
latter is equal to O or 1. It is also shown in Figure 5 that, for a test suite TS which has only one 
input symbol (excluding the reset), both the estimated fault coverage FCe(Ms, TS) and the 
precise fault coverage FC (Ms, TS) will be equal to (Kt*(IYI - 1))/((Kt- K2)*1YI). For a test 
suite TS which has more fuan one input, the precise fault coverage FCp(Ms, TS) will take a 
value "a", where (Kt*(IYI- 1))/((Kt- K2)*1YI) SaS 1. Ideally, we would like the estimated 
fault coverage FCe(Ms, TS) to take the same value "a". In reality, FCe(Ms, TS) approximates 

FCp(Ms. TS) by ta.king a value in the section [c, b], where c SaS b. 
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4. FAULT COVERAGE AT THE ORDER LEVEL 

For a large specification machine Ms (i.e., a machine that has large numbers of states, outputs 
and specified transitions) and a non trivial test suite TS that covers most or all of the transitions, 
it can be observed from (3-5) that K1(Ms) >> K2(Ms) and K1(Ms) » K3(Ms, TS) and 
therefore FCe(Ms, TS) = 1. For example, we have found with formula (3-5) that the estimated 
fault coverage for the two test suites TST and TSmo of the NBS Transport Protocol shown in 
Figure 4 tobe 100%. However, it is well known in the literature that a test suite generated with 
the UIO method will in general provide better fault coverage than a test suite generated with the 
transition tour method. It is therefore necessary to provide some kind of mechanism which can 
make a distinction between the two. Actually, the following formula, which we call "Order 
Coverage", can be used for this purpose: 

(3-6) 

The intuition behind this formula is as follows. For a large specification machine and a non 
trivial test suite such that Kl(Ms) >> K2(Ms) and K1(Ms) » K3(Ms, TS), K2(Ms) and 
K3(Ms, TS) can be neglected in the calculation with formula (3-5). However, the orders (i.e., 
the logarithms) of K:z(Ms) and K3(Ms, TS) are still comparable with that of the K1(Ms) and 
therefore will not be neglected in the calculation with formula (3-6). For instance, although 
FCe(Ms, TST) = FCe(Ms, TSmo) = 100%, we can still see a difference between the two test 
suites since FC0 (Ms, TST) = 63.82301% and FC0 (Ms, TST) = 66.05067%. 

The following theorem summarizes the properties of the "order coverage". 

Theorem 4.1 
(1) O~ FCo(Ms, TS) ~ 1; 
(2) FC0 (Ms, TS) = 1 if FCe(Ms, TS) = 1; 
(3) FC0 (Ms, TS) = O if FCe(Ms, TS) = O; and 
(4) FCo(Ms, TS) ~ FC0 (Ms, TS') if FCe(Ms, TS) ~ FCe(Ms, TS') . 

5. CONCLUSIONS 

• 

In this paper, we have presented a structural analysis approach to the evaluation of fault 
coverage of a test suite in respect to a system specification given in the form of a finite state 
machine. This approach differs from those methods proposed in [DaSa 88, SiLe 89, DDB 91 
and MCS 93] as it avoids the necessity of generating and executing a Oarge) number of mutant 
machines. Instead, it evaluates the fault coverage of a given test suite by direcdy analyzing the 
test suite against the specification machine. It provides a numeric measure for a test suite no 
matter whether the test suite has full fault coverage (i.e., 100%) or not. This feature makes the 
metric approach different from one of our previous work [YPB 94] where a test suite is 
analyzed only to see if it provides full fault coverage or not. As we have seen in Section 3, 
applications of our approach to a number of examples have shown that the estimated fault 
coverage of a test suite is quite close to the precise fault coverage, especially when the test suite 
approaches full fault coverage ( 100% ). Furthermore, this approach has very low computational 
complexity. Actually, it is not difficult to prove that its complexity is O(L2), where Lis the size 
of a test suite in terms of the total number of inputs in the test suite. We also proposed the 
"Order Coverage" based on the structural analysis approach for large complex specification 
machines. Other related work can be found in [MiPa 92, LoSh 92] where they aimed at 
generating test suites to achieve full fault coverage (or maxima! fault coverage as they called) 
rather than the evaluation of fault coverage of a given test suite. 
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We also note that the structural analysis approach has been developed under certain assumptions 
(Assumptions 1-4 as introduced in Section 2) which are the most relaxed ones compared with 
other work based on the FSM model [SiLe 89, DaSa 88 etc.]. In particular, we have not 
assumed the specification machine to be completely specified. Therefore, our approach can be 
applied to partially specification machines. We believe that this is very important for its practica! 
applications since the real-world systems, such as protocol machines, are normally partially 
specified. 
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