
21 

Visual Animation of LOTOS using SOL VE 

K. J. Tumer", A. McClenaghanb• 

•computing Science, University of Stirling, Stirling FK9 4LA (kjt@compsci.stirling.ac.uk) 

bPhilips Research Labs., Redhill, Surrey RHl 5HA (ukrmccl@prl.philips.co.uk) 

SOL VE is an object -oriented approach and toolset based on Loros to allow formal requirements 
capture and visual animation, particularly for interactive systems and digital logic design. 

Classification: D.l.S, D.l.7, D.2.1, D.2.2, 1.6.2 
Keywords: object-oriented programming, visual programming, requirements/specifications, 

tools and techniques, formallanguages, Loros (Language Of Temporal Ordering Specification) 

1 Overview 

The requirements phase in Loros-based development has received little attention previously, 
and was the focus of the project SPUCE 1 (Specijication and Prototyping for a LOTOS Interactive 
Customer Environment- Phase 1). Unlike traditional software engineering methods, the SOLVE 
approach developed by the project allows manipulation of formal requirements through visual 
animation. SPUCE studied requirements capture for OSI services, digital logic, neural networks 
and interactive systems. 

SOLVE (Specijication using an Object-oriented, LOTOS-based, Visuallanguage [1]) uses fa
miliar object-oriented prograrnming concepts translated automatically into Loros, thus ensuring 
a precise basis. The visual animation requires no knowledge of Loros, and is suitable for cus
tomers/clients, analysts or designers/programmers. SOLVE is partly oriented towards interactive 
systems, but applications such as digital logic design have also been investigated. SOLVE would 
benefit from extensions such as more data types, inheritance, dynamic object creation and 
deletion, dynamic modification of communication paths, and multi-media characteristics. 

2 SOLVE Approach 

The key concepts in SOLVE are object orientation, interactive animation, and formal specifi
cation. SOLVE is designed for those who are not familiar with formal languages (in particular 
Loros). SOLVE allows an analyst to write a requirements specification in an intuitive language 
that is automatically translated into Loros for exploration through visual animation. 

A SOLVE specification consists of a number of concurrent objects that communicate via mes
sages. The SOLVE language deliberately avoids the algebraic feei of Loros. However, SOLVE 
descriptions can be automatically translated into Loros specifications. An object declaration 
gives its name, instance parameter sorts and method parameter sorts; an object definition de
scribes inner details. Behaviour within any single simple object is sequential. Method definitions 
use the following statements: 

*The designer of SOL VE and XDILL, supported by the UK Science and Engineering Research Council on SPLICE. 

D. Hogrefe et al. (eds.), Formal Description Techniques VII
© IFIP International Federation for Information Processing 1995



284 Position Statements 

Variables Name : Sort, ... EndVariables 
Assign (Variable, Value) 
If Condition Then Statement Else Statement Endlf 
While Condition Do Statement EndWhile 
AskWaitCall ObjectName.MethodName (Parameter) (Results) 
TeiiCall ObjectName.MethodName (Parameters) 

3 SOLVE In Action 

comments 
local variables 
variable bindings 
conditionals 
loops 
blocking calls 
non-blocking calls 

SOL VE has been used, for example to define a system for setting the clock of a VCR (Video 

Cassette Recorder). This has an on-screen 24-hour clock that is set using on-screen cursor and 
control buttons. The cursor can be moved using left or right buttons to select one digit, which 
can then be adjusted with increment and decrement buttons. The mapping between informal 

requirements and SOLVE objects, attributes and methods is straightforward. For example, 
manual operation of a push-button is represented by clicking its icon. A skeleton of the SOLVE 
description for the VCR clock is given below; the full description is about 250 lines [1], and is 

translated automatically into about 1700 lines of LOTOS. 

System VCRclock Is 
PicDecls 

leftArrow, rightArrow 
ObjectDeclarations 

Object Cursor(Bool) Is 
QueryXPos()(Int) 
Left()() 

ObjectDefinitions 
Object Cursor(Bool:flashingOn) Is 

Method QueryXPos() Is 
Return(xPos) 

Method Left() Is 
If (xPos Nei 1) 

Then 

-- system name 
-- icon declarations 
--icon filenames 
-- object interfaces 
--cursor object, flashing parameter 
-- check cursor x position method 
-- move cursor left method 
-- object internals 
-- cursor object 
-- return cursor x position 

-- move cursor left 
-- position not 1 (i.e. leftmost)? 

Assign(xPos,xPos Minus 1) -- decrement position 
TeliCall Interface.Setlcon(xPos,yPos,iconPic) 

-- asynchronous ca11 to redisplay icon 
Else -- move attempt ignored 

Endlf 
Return() 

The SOL VE approach has also been extended to allow interactive visual animation of digital 
logic specifications written using DILL (Digital Logic in LOTOS [3]). DILL provides a library 

of pre-defined circuit components, combined using a macro language and LOTOS operators. 
XDILL (X-based DILL [2]) visually animates requirements for digital logic circuits. A stage in 

the visual animation of a D-Latch (a one-bit memory) is illustrated overleaf. In the left-hand 

animation window the user has clicked on the F (False) button to drop the input clock iC. The 
right-hand window shows that the D-Latch has stored its input data iD, reftected in the state of 

output oQ and inverted output oQbar. 



Visual animation of LOTOS using SOL VE 285 

. ' d l 1 

ru. 1 riie 

Ilo Ido 

T 

T 

The SOLVE toolset uses the X-Windows environment and is mainly written in C, with some 

code generated by yacc and X-Designer. An analyst or customer can use the toolset to explore 
and assess a requirements specification. Normally automatic selection of events is chosen, 
allowing direct interaction with the system by mouse clicks and drags. 

Front-end tools comprise the editor and parser. SOLVE specifications are textual and can be 

prepared by a standard editor. However, the syntax-directed editor syd was developed with 
SOLVE in rnind; the philosophy of syd is to enforce the syntax of the language down to a 

selected Ievel. The parser tool is built using yacc, and translates SOLVE to Loros fairly 
straightforwardly [1]. Each object corresponds to a Loros process that communicates via a 

common intermediate process as a communication medium. 
Animation tools comprise the simulator, displayer and animator. A modified version of the 

hippo tool is used to carry out LOTOS simulation. Although hippo is an old design, its attraction 

is simple comrnunication with it via standard input/output. Other common tools are used to 
parse and check the Loros specification. To manage an interactive animation, the animator tool 

synchronises hippo and displayer event offers. The displayer displays object icons in response to 
requests from the animator, and passes mouse clicks and drags on object icons to the animator. 
The animator manages the interactive animation of a SOLVE description, communicating via 

Unix pipes to/from the standard input/output of displayer and hippo. 
Overall, SOLVE has gone a long way to achieving the goals of SPLICE. Requirements capture 

and specification in disparate areas have been undertaken. It has also been possible to demon

strate visual animation offormal requirements specifications without requiring specialist Loros 

knowledge from the tool user. 

References 

1. A. McClenaghan. SOLVE: Specification using an object-oriented, LOTOS-based, visual 

language. Technical Report CSM-115, Computing Science, Univ. of Stirling, UK, Jan. 1994. 

2. A. McClenaghan. XDILL: An X-based simulator tool for DILL. Technical Report CSM-119, 

Computing Science, Univ. of Stirling, UK, Apr. 1994. 
3. K. J. Turner and R. O. Sinnott. DILL: Specifying digital logic in LOTOS. In R. L. Tenney, 

P.D. Amer, and M. O. Uyar, editors, Proc. Formal Description Techniques VI, pages 71-86. 

North-Holland, Amsterdam, Netherlands, 1994. 




