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In this paper, an algebra of timed processes with real-valued clocks is presented, which 
servea as a formal description language for real-time communicating systema. We show 
that requirements auch as "a procesa will never reach an undesired state" can be verified 
by solving a simple class of constraint aystema on the clock-variables. A complete method 
for reachability analyais associated with the language is developed, and implemented as an 
automatic verification tool based on conatraint-solving techniquea. Finally as examples, 
we study and verify the safety-propertiea of Fiacher'a mutual excluaion protocol and a 
railway crosaing controller. 

1. INTRODUCTION 

Correct timing playa an important role in ensuring the correct operation of real-time 
syatems. Since auch aystems are often embedded in safety-critical environments, it is 
important to formally verify that certain crucial requirements are always met by the 
syatema. This createa a need for formalisms to describe the abstract behavior of timed 
systema (i.e. modeling) and to check logical propertiea of the abstract descriptions (i.e. 
verification). During the paat few yeara, researchers have developed varioua formal tech­
niques for modeling and verifying real-time systems, e.g. automaton based, [1-3, 14] 
and procesa algebra based [24, 7, 9, 15, 22, 17, 13, 20, 29]. One of the moat auccesaful 
approachea is timed automata due to Alur and Dill [3], which are the classical finite-state 
automata extended with variables modeling ayatem clocka. 

In this paper, we study real-time communicating syatema. Such a syatem may consist 
of a number of componenta with their own or shared clocks. The componenta may com­
municate with each other, and the environment through channels according to the timing 
conatrainta on the values of the clocka. Naturally, we can use timed automata to deacribe 
the componenta. However, it is not obvious how to combine the component deacriptiona 
to achieve the whole system description. Originally, the parallel composition of timed 
automata ia interpreted as logical conjunction, which is similar to the atrong (multi-) 
synchronization operator from procesa algebras, defined by the rule: 

P....!!:....tP' Q....!!:....tQ' 
P&Q ....!!:....t P'&Q' 
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Intuitively, it means that the whole system described by P&Q may make a move (i.e. 
doing a) only if the components described by P and Q can do the same. That is, all 
components of a concurrent system must synchronize on every action at every time point. 
Otherwise, the system will be deadlocked. This seems to be a strong restriction for 
practica! application of timed automata, as real systems are often highly distributed and in 
many cases, a system component may only want to communicate with the environment or 
a particular component, without synchronizing with the others. Therefore, we introduce 
a CCS-like parallel composition operator for timed automata, to describe one-to-one 
communication and interleaving. 

As the first contribution of this paper, we present an algebra of timed automata, which 
provides a number of algebraic operators including the parallel composition operator to 
model communication and concurrency. The operators can be used to construct complex 
automata (i.e. complex system descriptions) in terms of simpler ones (i.e. component 
descriptions). Thus, the algebra may serve as a structural description language for real­
time communicating systems. 

As the second contribution of the paper, we develop a verification tool based on 
constraint-solving techniques, for the type of systems described above. There have been 
a number of verification techniques developed for timed automata, e.g. (2, 1, 14]. How­
ever, most of the existing algorithms are based on the notion of region graphs, which 
always construct the whole reachability graph for a given automaton first and then check 
properties of the graph. Though there have been efficient algorithms to construct min­
imal reachability graphs such as (2], the problem of state-explosion is stil! an obstacle 
for automatic verification. In particular, when the systems tobe analyzed include many 
components, it would be impossible to construct the whole reachability graph even in the 
untimed setting. 

It has been pointed out in (12] and elsewhere that the practica! goal of verification of 
real-time systems is to verify simple logica! properties, which does not need the whole 
power of model-checking (e.g. for timed CTL). We shall only consider simple safety­
properties, which can be verified without constructing the whole reachability graph of a 
timed system. For instance, a railway control system (see section 4) should guarantee 
that "at most one train can cross a critica! point at the same time". This is a typical 
safety-property meaning that bad things can never happen. However, we can also verify 
properties requiring that a good thing will eventually happen within a certain time limit. 
For example, "a train should be able to pass a critica! point (such as a bridge), within a 
bounded delay". We will show that such properties can be verified by solving a simple 
class of linear constraint systems. 

The rest of the paper will be organized as follows: In section 2, we present an algebra 
of timed processes, in whiCh a syntactical term describes a timed automaton; any timed 
automato::J. can be expressed in the algebra. In section 3, we study the reachability 
problems associated with the algebra. An algorithm is presented, and proved to be sound 
(i.e. it always provides the right answer) and complete (i.e. it always terminates). It 
is implemented as a tool, based on an existing constraint-solving program. In section 
4, as examples, we study a variant of the railway crossing problem and Fischer's mutual 
exclusion protocol. Finally, in section 5 we give some concluding remarks. 
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2. AN ALGEBRA OF PROCESSES WITH CLOCKS 

Process algebras provide a clean and general paradigm for compositional specification 

of communicating processes. We present an algebra of timed automata, serving as a 
structural description language for real-time communicating systems. The idea is to use 
algebraic operators to construct complex system descriptions in terms of simpler ones 

(or component descriptions). Following the tradition of process algebra, we shall call the 
algebraic terms processes instead of timed automata. 

2.1. Syntax 
Traditionally, a prefix expression a.P in process algebras like CCS describes a process 

which may perform an a-transition and then continue with P. But no timing information 
is given on when the transition may be taken. 

Following Alur and Dill [3], we assume a set of clocks to specify timing constraints 
on transitions. Conceptually, the clocks may be considered as the system clocks of a 

concurrent system, owned or shared by processes in the system. The processes may test 

the clocks by comparing the clock values with integer constants and reset the clocks (i.e. 

assigning clock values to 0). Further, assume that all clocks proceed at the same rate and 

measure the amount of time that has been elapsed since they were reset or started. 

We extend the action prefix a.P to the form (g, a, 4;).P where g is a predicate over the 

clock values and 4> is a subset of clocks tobe reset. Intuitively, (g,a,f/>).P describes a 
timed process which may perform an a-transition instantaneously when g is true of the 

current clock values and then continue with P with the clocks in 4> being reset ( and the 
other clocks will proceed with their old values). 

Enabling Conditions. We use C to denote the set of clocks, ranged over by x, y, z. 
An enabling condition g is a logical formula generated by the following syntax: 

g ::= tt 1 ff 1 A 1 g A g 

where A is an atomic formula of the form: x -< n for -<E {5, ~' <, >} and n being a 
natural number. We could allow a more general form of formulas such as disjunction 

g V f. However, it will not give more expressive power to the description language we are 
going to develop. In fact, logical disjunction can be modeled by the behavioural choice 
operator. 

The language is essentially CCS extended with the timed action prefix (g,a,4;).P. As 

in CCS, we assume a set A = ~ U 3.2 with a = a for all a E A, ranged over by a,ţ3 

representing external actions, and a distinct symbol T representing internal actions. We 

use Act to denote the set A U { T} ranged over by a, b, c representing both internal and 

external actions. Further, assume a set of process variables ranged over by X, Y (and 
sequences of letters). 

We shall see that the algebraic structure of a process expression P represents the 
control-structure of a process. This will be clear when we present the operational se­

mantics. We adopt a two-phase syntax according to two types of control-structures: 
regular and concurrent. 

2The action a is called the co-action of a. In our example, we shall use a! instead of a to denote an 
output event and a? instead of a to denote an input event. 
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Processes with Regular Control-Structure. We start with proces~es whose control­
structure is regular in the sense that no concurrency is involved. The regular process 
expressions are generated by the following grammar: 

E ··= nil 1 X 1 (g,a,r/>).E 1 E + F 1 X~ E 

We shall restrict expressions to be well-guarded in the following sense: 

Definition 2.1 X is well-guarded in E if and only if every free occurrence of X in E is 
within a subexpression (a guard) of the prefix form (g, a, rf>).F in E. E is well-guarded if 
and only if every free variable in E is well-guarded in E, and for every subexpression of 

the form X d;j Fin E, X is well-guarded in F. o 

Let A denote the set of closed and well-guarded expressions generated by the grammar 
above. We cal! A regular timed processes. Note that if we consider the prefix (g, a, r/>) 
to be a single guard ( or structured action), A corresponds precisely to the set of CCS 
regular processes. 

Processes with Concurrent Control-Structure. We shall study concurrent pro­
cesses in the form: 

where P; E A describing the components and L ~ A representing the set of interna! 
channels connecting the components. 

We use P to denote the set of timed concurrent processes, ranged over by P, Q and 
R. For simplicity, we have ignored the relabelling operator. The results of this paper 
can easily be extended to more general types of processes modeled by the combination of 
parallel composition, restriction and relabelling. 

2.2. Semantics 
We interpret P in terms of clock assignments. A clock assignment p : C ---+ R+o is a 

function mapping each clock x to a non-negative real p(x). We assume that a process is 
always started with an initial clock assignment. 

Before going further, we need to define some notation. Assume that dis a non-negative 
real and <jJ is a set of clocks. We use p + d to denote the clock assignment which maps 
each clock x to p(x) + d, and rf>[p] to denote the clock assignment which maps x to O if 
x E rJ> or p(x) otherwise. Furthermore, given a predicate g over C, we write g(p) to mean 
the truth value of g, relative to assignment p. 

A global state (ora configuration) of a process is a pair (P,p) where PE P stands for 
the current control-state and p denotes the current clock values. A process may make two 
types of transitions from state to state: 

• Timed transition: (P,p)~(P,p + d) following the rules given in definition 2.2. 

• Action transition: (P,p)~(P',p') following the rules given in definition 2.3. 

The timed transition relation describes the pure passing of time; the action transition 
relation describes the instantanesous occurrence o.f actions and, possibly, the resetting of 
clocks. 
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Definition 2.2 (time transition relation) 

d::; M(E,p) 

(E, p )_:!.(E, p + d) 

where M(E,p) is the maxima[ delay of(E,p), defined inductively asfollows: 

M(nil,p) 
M((g,a,qy).E,p) 

M(E+F,p) 

M(X,p) 
M(E!F,p) 
M(E\L,p) 

00 

sup{tig(p+t)} 
max{M(E,p), M(F,p)} 
M(E,p) if X d;j E 
min{M(E,p), M(F,p)} 
M(E,p) 
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o 

For example, assume p(x) = 0.4 and g = x < 1. Then sup{tig(p + t)} = 0.6 and 
M((g,a,qy).E,p) = 0.6. 

Intuitively, M(P,p) is the maximal time that (P,p) may stay in the same control-state 
i.e. P before it must switch to another control-state. This is also assumed by the maximal 
progress assumption adopted in timed process algebras [9, 29]. For example, the control-

state of X d;j (x < 1, T, {} ).Q will become Q by doing the T-action before the clock 
value of x proceeds to 1. However, when the value of x is larger than, or equal to 1, the 

control-state of Y d;j (x < 1, T, {} ).Q + (x 2: 1, a, {x} ).R will remain the same, i.e. Y, 
but T-action will be disabled and a-action will be enabled. 

Definition 2.3 (action transition relation) 

g(p) 
((g, a, qy).E, p )~(E, qy[p]) 

(E, p )~( E', qy[p]) 
(E + F,p)~(E',qy[p]) 

(E,p)~(E',qy[p]) [X d;j E] (E,p)~(E',<j>[p]) 
(X, p)~(E', qy[p]) (EIF,p)~(E'IF, qy[p]) 

(F, p )~(F', <j>[p]) 
(E + F,p)~(F',qy[p]) 

(F, p)~(F', qy[p]) 
(EIF, p)~(EIF', 4Y[p]) 

(E, p )~(E', qy[p]) (F, p )~(F', <p[p]) 
(EIF, p)...::..(E'IF', (4Y u <p)[p]) 

(E, p)~(E', qy[p]) 
[a, a~ L] 

(E\L, p)~(E'\L, <j>[p]) 

3. VERIFYING SAFETY-PROPERTIES OF PROCESSES 

o 

The language developed in the previous section can be used as a tool to construct the 
abstract model of an existing system or a system to be designed. In this section, we 
discuss how to verify properties of such systems in terms of their abstract models. 
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3.1. Verification by Reachability Analysis 
It has been pointed out in [12] and elsewhere that the practica! goal of verification 

of real-time systems, in particular safety-critical systems is to verify simple safety­
properties. The type of properties is usually formalized as temporal logic formulas in 
the form 0-.F read as "it is impossible that F will be true in the future". Here, F 
describes a certain undesired situation or logical property. For example, to verify a rail­
way control system, the first question to ask would be: is it possible that two trains are 
crossing a certain critical point at the same time? For finite-state systems, this kind of 
properties can be verified simply by checking all reachable states whether they satisfy F 
or not, that is, by "reachabili ty analysis". U nfortunately, the systems concerned here are 
infinite-state because the clock values range over the reals. 

Definition 3.1 (Simple Reachability Problem) Assume P0 ,P1 E P and po,PJ are clock 
assignments. We say that ( P1, p 1) is reachable from ( P0 , p0 ) iff there is a natural number 
n and a sequence of transitions starting from (P0 ,p0 ) and ending up with (PJ,PJ), z.e. 

(Po,po)~(PJ,pi) ... (Pn-!,Pn-!)~(PJ,pj) for CTi E Act u n+O· o 

More generally, we will consider the reachability problem for sets of clock assignments. 

Definition 3.2 (General Reachability Problem) Assume Pa, P1 E P and Do, D1 are sets 
of clock assignments. We say that (PJ,DJ) is reachable from (P0 ,D0 ) iff there exists 

Po E Do, and PJ E D f such that (PJ, PJ) is reachable /rom (Pa, pa). O 

We shall develop an algorithm based on constraint-solving techniques, for solving the 
General Reachability Problem. 

3.2. Reachability Analysis by Constraint-Solving 
Given a process to be analyzed, we assume that its clocks are ordered as a vector 

< x~, x2 , ••. , Xn >. Then a clock assignment can be considered as a vector of reals or a 
point in the n-dimensional space R+.o· We shall use linear constraint systems to describe 
regions of points in such a space (as their solution sets ), and sol ve the reachability problems 
by manipulating a simple class of linear constraint systems. 

3.2.1. A Class of Linear Constraint Systems 
By a linear constraint system, we simply mean a set of linear inequalities over a set of 

variables ranging over R+o (in our case, the clock variables). A solution to such a system 
is an assignment that maps each variable to a value, which satisfies the set of inequalities. 
In general, a constraint system may have more than one solution. In the rest of the paper, 
we shall simply call a constraint system D a region, which means its solution set. We 
shall write (1) D = {} to mean D is not satisfiable, (i.e. its solution set is empty), (2) 
D <;;; D' to mean that D implies D' (i.e. the solution set of D is included in the solution 
set of D'), and D 1\ D' to mean the intersection of the solution sets of D and D'. 

As we are only allowed to compare clock variables with natural numbers in enabling 
conditions, the class of constraint systems we need to deal with is restricted to a simple 
class which we call time regions. We shall use 1) to denote this class of constraint systems 
ranged over by D, D'. 
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Definition 3.3 {time region) Let C = { XJ .•• xn} be a set of clocks. A time region of C is 
a constraint system in the following form3 : 

D ={a;-< x;li::; n} U {x;-< b;li::; n} U {x;- x;-< d;;li,j::; n} 

where -< E {::;, <}, and a;, b;, d;; are natural numbers. In particular, b;, d;; may be oo. O 

lntuitively, a; is the lower bound of x; in D, b; is the upper bound of x ; in D and d;; 
is the maxima! distance between x; and x; in D. We shall need a few operations on time 
regions in doing reachability analysis. 

Definition 3.4 Assume that D is a time region. 

1. (Weakest Pre- Condition) : wp(D) = { p 1 3d E 'R.+o: p +dE D} 

2. {Border-Line): border(x,D) = { p 1 pE D and p(x) =O} 

3. {Free-Variable): free(x,D) = { p[x := d] 1 pE D and dE 'R.+o} o 

x, x, 

x, x, 

(a) - Time Region (b)- Weakest Pre-Condition 

x, x, 

.... --1 D" ' =free(x ~D") 

.... .... 1 
.... 1 

/ D' / 
.... 

/ D"=border(x1>D') D" .,_,...... __ _.,__ ___ _. 
x, x, 

(c)- Border-Line (d)- Free-Variable 

Figure 1. Operations on Time Regions 

3Note that the symbol U here means the union of the sets of constraints. It does not mean the union of 
the solution sets, rather the intersection of the solution sets. 
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The three operations on time regions are illustrated in Fig 1 for the case of two clocks. 

The weakest pre-condition, wp( D) is the largest region of points that will eventually reach 

D after some delay, border(x2, D') is the border-line of D' on x1-coordinate (that is the 
region D' /\ { x2 = O}) and free( x2 , D") is the largest region that has the same projection 
as D" on x 1-coordinate. 

We will apply the operations border(x, D) and free(x, D) on sets of variables. As­

sume that ,P is a set of clock variables and ,P = { x} U ,P'. We define border( ,P, D) = 
border(x, (border(,P', D))), free(,P, D) = free(x, (free(,P', D))) and in particular, border( {}, D) = 

free( {}, D) = D. Furthermore, we define conjunction D /\ D' of two time regions D, D' in 
the standard way, that is, {pjp E D and pE D'}. 

It can be established that the class of constraint systems known as time regions is 

closed under the operations: "Conjunction", "Weakest Pre-Condition", "Border-line" 
and "Free-Variable". 

Proposition 1 Assume that C is a set of clocks, D and D' are time regions of C, and 

,P ~ C. Then D /\ D', wp( D), free( ,P, D) and border( ,P, D) are also time regions of C. D 

We shall use these operations for backward reachability analysis. Similar operations 
such as strongest post-condition can be defined in order to do forward reachability anal­

ysis. 

3.2.2. An Algorithm and lts Correctness 
Having introduced the notion of time regions, in the following we will simply caii (P, D) 

a region of states, and extend the transition relation "-+ to regions. 

Definition 3.5 Assume a E Act and a new symbol c; representing delays. 

1. (P, D)~(P', D') iff for alt pE D, (P,p)~(P',p') for some p' E D', and vice versa 

for alt p' E D', (P,p)~(P',p') for some pE D. 

2. (P, D)..,:.(P, D') iff for alt p E D, (P,p)...;:.(P',p') for some dE R+o and p' E D', 

and vice versa for alt p' E D', ( P, p )...;:.( P, p') for some d E R+o and p E D. D 

Now, the general reachability problem can be reformalized as follows: 

Proposition 2 Given an initial region (P0 ,D0 ) and a final region (PJ,DJ), (PJ,DJ) is 
reachable from (Po, Do) iffthere exists a finite number n, (Ti E ActU{c:} and Di E V for alt 

i:::; n, such that Pn := Pj, Dn/\Dj f= {} an,d (Po, Do)~(P!, D!) ... (Pn-b Dn-d~(Pn, Dn)· 
D 

To achieve a decision algorithm for the problem, we shall take the approach of backward 

reachability analysis. Usually, to verify safety-properties, a backward analysis algorithm 

may terminate much faster than a forward analysis algorithm for the following reason: In 
case that a system does not contain an undesired state, the backward analysis needs not 
to check the whole reachable state-space of the system (but the forward analysis does), 
and the probability for a safety-critical system to contain a serious error is often very 

small. 
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The general principle of backward analysis is to start from the final and search back to 
the initial. If the initial is found, the algorithm terminates with answer "yes", otherwise 
"no". However, our backward analysis method can be easily adopted to forward analysis. 

First, we need to study the control-structures more carefully. It has been said earlier 
that the algebraic structure of a term P describes the control-structure of a process. 
In fact, the set of subexpressions of P is a superset of the control-states of P, and the 
transitions among the control-states obey the rules in Fig. 2. 

g,a,~ 1 

E----tE 
g,a,cP 

(g, a, cp).E---+E E+F~E' 
E g,a,<J> 1 

----tE F~F' 
EIF~E'IF EIF~EIF' 

E~E' F~F' 
EIF~E'IF' 

Figure 2. Transition Rules for Control-States. 

g,a,t/> 1 

E----tE [X d;j E] 

X~E' 
E~E' [a, a~ L] 

E\L~E'\L 

It should be obvious that each term P0 describes a timed au toma ton, i.e. < Cs, Po,---+ > 
where Cs is all control-states reachable from Po,---+ is the least transition relation defined 
by the transitional rules. In particular, note that Cs is finite. 

The reachability analysis algorithm is based on the following idea: Assume that we 

want to decide whether (P', D') may reach (P, D) in one step (i.e. without passing 

other control-states) or not. The first thing to check is whether it is possible for P' 

to switch to P directly. If this is not the case, that is, P'~P for no P',g,a,cp, we 
can conclude immediately that (P, D) is not reachable from (P', D') in one step. Now, 

g,a,</> • • 
assume P'----tP. To reach (P,D), there should be t1me regwns D0 ,Dt,D2 such that 
D' n Da # {} and (P0 , D0)~(P0 , D1 )~(P, D2 )_;_.(P, D). Note that D' and D are given. 
We need to find D0 , Dt, D2. Clearly, we may choose 

D2 border( cp, wp( D)) 
Dt g 1\ free( cp, D2) 
Do wp(Dt) 

That is, Do = wp(g 1\ [free( cp, border( cp, wp( D)) )]). In fact, Da is the largest region of points 
that may (1) pass the guard g and (2) be reset by cp, and finally (3) reach D. In general, 

for any given g, cp and D, we define image(g, cp, D) = wp(g 1\ [free( cp, border( cp, wp(D) ))]). 
Now, we are ready to present the algorithm, shown in Fig. 3 for backward reachability 

analysis. We use two buffers for saving regions (of states): passed and waiting where passed 
stands for the set of regions that have been examined and waiting for the set of regions 
that are to be examined next. 
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Algorithm. (Input: Pa, P1 E P and D0 , D1 E V and Output: answer = 'yes' or 'no'.) 

1. Initial: passed := {} and waiting := {(PJ,D1)}. 

2. Repeat 
for all (P, D) E waiting, do 

begin 
(1) If there is no D' such that D ~ D' and (P, D') E passed then 

begin 
(a) passed := passed U {(P, D)} and 
(b) waiting := waiting U {(P', D')} for all P',g, a, cp 

g,a,.J> • 
such that P'---+P, and D' = 1mage(g,<j>,D) f. {}. 

end; 
(2) waiting := waiting- {(P, D)} 

end 
o o o o 

untii wa1tmg = {} or (P0 , D~) E wa1t1ng for some D~ such that Do 1\ D~ f. {}. 

3. Termination: If waiting = {} then answer := 'no'; otherwise answer := 'yes'. 

Figure 3. An Algorithm for Reachability Analysis. 

The algorithm is started with passed = {} and waiting = {(PJ,Df)}, and then repeat­
edly examines the regions in waiting. If a region (P, D) found in waiting is smaller than 

a region (P, D') (with the same control-state) in passed, then (P, D) does not need tobe 
examined further. Otherwise, put all the regions that may reach (P, D) in one step into 
waiting to be examined !ater, and put (P, D) into passed. The algorithm will terminate 

when waiting is empty (i.e. nothing is left to be examined, and therefore fails to find the 
initial region) or a region (Pa, D~) is found, which includes a part of the initial region 

(Pa, Do) (i.e. Do 1\ D~ f. {} ). 
It is easy to prove the partial correctness (soundness) of the algorithm: given proper 

inputs, it always provides the right answer. 

Theorem 1 (Partial Correctness) For alt initial regions (P0 , Do) and final regions (PJ, D f ), 

if the algorithm terminates with 'yes', then (PJ, D1) is reachable fmm (Pa, Da). Otherwise, 

(PJ, Df) is not reachable from (Pa, D0 ). D 

It is slightly more difficult to prove the total correctness ( completeness) of the algorithm: 
given proper inputs, it always terminates with an answer. 

Theorem 2 (Total Correctness) For alt initial regions (Po, Do) andfinal regions (PJ, DJ ), 
the algorithm always terminates with an answer which is either 'yes' or 'no'. D 

3.2.3. lmplementation 
In describing the reachability algorithm, we did not explain how to ( 1) perform the four 

operations ( wp, free, border, 1\) defined on time regions, (2) check the emptiness of a time 
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region (or satisfiability of a constraint system), and (3) set-inclusion (i.e. <:;::) between 

time regions. In fact, these functions are often provided by constraint solvers or straight 
forward to implement using primitive functions of a constraint solver. 

We have implemented the algorithm as a tool, based on a constraint solver developed 

at the Swedish Institute of Computer Science called Prolog Constraint Solver (PCS) (21]. 

Severa! examples have been used to test the tool (see next section), which show that the 
implementation is fairly efficient. 

4. EXAMPLES 

In this section, we present examples which have been verified by our tool. In addition 

to clock variables, in describing the examples, we shall also use ordinary variables. These 
variables do not change their values automatically as the clock variables; they can only be 

assigned to values from finite domains, and therefore they will not cause infinite-stateness. 

Fortunately, the implementation of our tool is based on a general constraint solver which 
can handle logica! constraints and assignments including ordinary variables in the same 

way as timing constraints and clock assignments. 

4.1. Fischer's Mutual Exclusion Protocol 
The protocol was proposed originally by Fischer and described by Lamport (18]. It is to 

guarantee mutual exclusion in a concurrent systems consisting of severa! processes using a 

shared variable (among the processes) and properly timing the processes in changing the 

shared variable. Each of the processes is assumed to have a local clock. The idea behind 

the protocol is that the timing constraints on the local clocks are set so that only one 

process can change the global variable to its own process number, then read the global 

variable !ater and if the shared variable is still equal to its own number, enter the critica! 
section. 

Assume a concurrent system with n processes Pl···Pn. We use Xi to model the local 

clock for each process Pi. The formal description of Pi is given in Fig. 4, and illustrated4 

in Fig 5. 
This is a simplified version of the original protocol and has been studied by researchers, 

e.g. (4, 25], which permits only one process to enter the critica! section and never exits 

it. Recovery actions from failure to enter the critica! section are omitted. However, the 
protocol can be extended to an actual mutual exclusion algorithm. 

The processes, Pi, may be in either of the four local states Ai, Bi, Ci, CSi. Initially, ali 
processes are in their A-state and the shared variable vis initially O. A process, Pi, that 

tries to enter the critica! section changes state from Ai to Bi if it sees v=O. In Bi, it will 
move to Ci before the clock Xi proceeds to const, and in doing so, reset the clock Xi (i.e. 

Xi :=O) and assign v t.o its own process number (i.e. v := i). From Ci, it can move to the 
critica! section CSi if V is stil! equal to its process number (i.e. V = i) when the clock value 

of Xi is larger than const. 
Intuitively, the protocol behaves as follows: The constraints on the shared variable v 

4In figures, we adopt the convention that when a transition is not labelled with a timing constraint, it 
means implicitly that the constraint is tt, that is, the transition can be taken at any time. We shall also 
adopt the convention that when a transition is not labelled with an action, it means that the transition 
is an interna! one, that is, labelled with r. 



254 Part Five Verification and Real-Time 

P; d~ A; 

A; d_of ({v = O},r,{x;}).B; 
B; d_oj 

({xi < const},r,{v := i,xi}).Ci 
C; d_of ({v = i,x; > const},r,{}).CSi 

CS; d~ nil 

Figure 4. The Formal Description of Fischer's Protocol. 

Figure 5. Fischer's Mutual Exclusion Protocol 

ensure that a process must reach B-location before any process reach C-location; oth­
erwise, it will never move from A-location to 8-location. The timing constraints on the 
clocks ensure that all processes in C-location must wait until all processes in B-location 
reach C-location. The last process that reached C-location and set v to its own process 
number gets the right to enter its critica! section. In fact, the protocol will guarantee 
mutual exclusion for any non-zero constant const. 

We need to verify that the mutual exclusion property is satisfied, i.e. there will never 
be more than one process which may reach the critica! section, CSi. The requirement can 
be formalized as follows: The concurrent system, with an initial state where the control­
state is Ali· .. lAn and arbitrary variable assignment, will never reach a state where the 
control-state is in the form 

for some k, 1:::; n and Si E {Ai, Bj, Ci, CSi}· 
We have used our tool and verified a system consisting of 10 processes and const = 1, 

which satisfies the property. We are in progress to extend the tool to treat the number of 
processes as a variable and verify that the property is satisfied by systems with arbitrary 
number of processes. 

4.2. A Simple Railway Control System 
We consider a railway control system to automatically control trains passing a critica! 

point such as a bridge. The idea is to use a computer to guide trains from severa! tracks 
crossing a single bridge instead of building many bridges. Obviously, a safety-property of 
such a system is to avoid the situation where more than one train are crossing the bridge 
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at the same time. 
Assume that the whole system consists of n trains and a simple controller. We model 

the system by the following process: 

(CITrainll· .. 1Train0 )\A 

where Train; describe the behavior of trains, C describes the behavior of the controller, 

and A = { appr;, stop;, lea ve;, go;} is the set of internal channel names ( or signals) between 

the trains and the controller. 
To describe timing constraints, we use x and x; to model the local time of the controller 

and the trains respectively. The controller uses a list L for the trains waiting to cross the 

bridge. The formal descriptions of Train; 's and C are given in Fig. 6 and illustrated in 

Fig. 7. 

Train; d;j 

Safe; 
d.E.f 

Appr; d;j 

Cross; d;j 

Slow; d;j 

Stop; 
d.E.f 

Start; d;j 

c d;j 

Occ1 d;j 

Occ2 d;j 

Free d;j 

Safe; 

( {tt }, appr;!, { x;} ).Appr; 

({x; 2:: 01\x; ~ lO},stop;?,{x;}).Slow; 
+( { x; 2:: 11/\ x; ~ 20}, T, { x;} ).Cross; 

( { x; 2:: 3 1\ x; ~ 5}, lea ve;!, { x;} ).Safe; 

( {X; 2:: 5 1\ X; ~ 7}, T, { x;} ).Stop; 

( {tt }, go;?, { x;} ).Start; 

({x; 2:: 71\x; ~ l5},T,{x;}).Cross; 

Occ1 

( {tt}, leave;?, {L := L-i} ).Free + ( {tt}, appr;?, {n := i, x} ).Occ2 

( {x < 10}, stopn!, {L := L :: n} ).Occ1 

({L = empty},appr;?,{L := (i]}).Occ1 
+({L of- empty},go;!,{i := hd(L)}).Occ1 

Figure 6. The Formal Description of the Railway Control System. 

Intuitively, when a train, Train;, approaches the bridge it sends a signal to the controller 

within a certain distance. If the bridge is occupied the controller sends a stop signal stop; 

within 10 time units to prevent the train from entering the bridge. Otherwise, if the 

approaching train does not recei ve a stop signal within 10 time units, it will start to cross 

the bridge within 20 time units (but it will take at least 11 time units for a train to enter 

the bridge). The crossing train is assumed to leave the bridge within 3 to 5 time units; 

a stopped train will slow down and eventually stop after some delay. When the bridge is 
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L=empty 
appri? 

{L:=[i]) 

(a) 
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leavei? 
{L :=L-i) 

Figure 7. (a)- Controller, (b)- Train 

(b) 

free again and the controller signals (by sending go;) the first train in the waiting list to 
cross. 

Assume that the system is started with the following control-state: 

(Free!Safell· .. !Safen)\ { appr;, stop;, leave;, go;} 

and all clocks are initialized to O. 
We need to guarantee that the system will never reach a control-state where two trains 

are in location Cross (the clocks may have any values). That is, a state in the form: 

(S;IT li···ICrosski···ICrossii···IT n)\ { appr;, stop;, leave;, go;} 

for some k,l S n, S; E {Free,Ocq,Occ2} and T; E {Safe;,Appr;,Siow;,Stop;,Start;}. 
We have verified a system consisting of 6 trains by our tool, which satisfies the safety­

requirement. As in the previous example (Fisher's protocol), we can only check a system 
with a fixed number of trains. We hope to extend our system to deal with any number of 
trains. 

5. CONCLUSION 

The first contribution of this paper is an algebra of processes with clocks, which extends 
timed automata with algebraic operators. The algebra may serve as a formal description 
language for real-time communicating systems. In particular, a parallel composition op­
erator is introduced for timed automata to model communication and concurrency, which 
can be used to construct complex system descriptions in terms of component descriptions. 
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The second contribution of this paper is a reachability analysis algorithm for the de­

scription language, based on constraint-solving techniques. The algorithm is proved to 

be sound (i.e. always provides the right answer) and complete (i.e. always terminates 

with an answer). It has been implemented as an automatic verification tool, for verifying 
safety-properties of real-time communicating systems, based on an existing constraint­
solver. Several examples have been used to test the tool. In particular, we have studied 

and verified Fisher's mutual exclusion protocol and a railway controller using our tool. 
There ha ve been many proposals for verifying timed systems e.g. [2, 24, 1, 7, 14, 17]. 

However, most of them are intended to construct the whole reachability graph of a system 

or to obtain more efficient model-checking algorithms with respect to a real-time temporal 
logic, or to check equivalences between abstract specifications. We believe in that the 

goal of verifying real-time systems, in particular safety-critical systems is to check simple 
logical properties, which can be done without constructing the whole reachability graph 

or the full power of model-checking. We are of the opinion that our approach is simpler as 

it is based directly on constraint-solving techniques and can be fairly efficient in verifying 

systems consisting of many components as it avoids to explore the whole state-space. 

We are in progress to extend our tool to deal with more general types of variables such 

as lists, in addition to clock variables. In particular, we will treat the number of compo­

nents in a concurrent system as a parameter (i.e. an ordinary variable) in order to verify 

systems with many similar components such as the trains in the railway controller and 

the processes in Fisher's protocol in a more efficient way. 
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