
12

An Improvement in Formal Verification
Gerard J. Holzmann and Doron Peled

AT&T Bell Laboratories, Computer Science Research, Murray Hill, NJ 07974, USA.

Critica! safety and liveness properties of a concurrent system can often be proven with the help
of a reachability analysis of a finite state model. This type of analysis is usually implemented as
a depth-first search of the product state-space of ali components in the system, with each (finite
state) component modeling the behavior of one asynchronously executing process. Formal veri­
fication is achieved by coupling the depth-frrst search with a method for identifying those states
or sequences of states that violate the correctness requirements ..

It is well known, however, that an exhaustive depth-frrst search of this type performs redundant
work. The redundancy is caused by the many possible interleavings of independent actions in a
concurrent system. Few of these interleavings can alter the truth or falsity of the correctness
properties being studied.
The standard depth-first search algorithm can be modified to track additional information about
the interleavings that have already been inspected, and use this information to avoid the explo­
ration of redundant interleavings. Care must be taken to perform the reductions in such a way
that the capability to prove both safety and liveness properties is fully preserved. Not ali known
methods have this property. Another potential drawback of the existing methods is that the addi­
tional computations required to enforce a reduction during the search can introduce overhead
that dirninishes the benefits. In this paper we discuss a new reduction method that solves some
of these problerns.
Index Terms: D.2, F.l,2,3.

l.INTRODUCTION
The depth-first search algorithm that is used for on-the-fly reachability analyses <:an explore
many execution sequences that are not strictly required to prove the safety and liveness proper­
ties of a concurrent system. In the last few years, severa! proposals have been made for revised
search algorithms that can avoid some or ali of this redundancy, e.g., [V90], [G90], [GW91],
[HGP92], [V93], [P93].
The methods that have been studied so far can be classified as 'dynarnic reduction methods.'
They attempt to compute mostly at runtime (i.e., during the search) which parts of the reachabil­
ity analysis are redundant and can be skipped. Unavoidably, the additional computations also
consume resources: they require memory to store additional data structures, and they require
CPU time to discover the redundancies. This overhead reduces the amount of improvement that
can be achieved. In some cases, the costs of improvement outweigh the gains, which means that
the unoptirnized full search can sometimes outperform the 'optirnized' reduced search.

This paper considers the feasibility of perforrning the computations before the search, instead of
during the search. We prove for one such reduction strategy that it preserves both the safety and
the liveness properties of a concurrent system. The new reduction strategy is therefore generally
usable for linear time temporal logic (LTL) model checking.

Section 2 discusses the main concepts needed for a definition of the static reduction method.
Section 3 introduces the algorithm itself, and Section 4 contains its proof of correctness. Section
5 discusses an implementation of the static reduction method, as an experimental addition to the

D. Hogrefe et al. (eds.), Formal Description Techniques VII
© IFIP International Federation for Information Processing 1995

198 Part Four Verification

verification tool SPIN [H92]. Section 6 contains an evaluation of the performance of this imple­
mentation, and a comparison against both the classic search method and an existing dynarnic
reduction method, ali implemented as part of the same verification system. Section 7 summa­
rizes the results.

2. DEFINITIONS
We consider any verification problem that can be formalized as a reachability analysis problem
in a finite labeled transition system (LTS). This specifically includes the problems of proving
safety, liveness, and linear time temporal logic properties for any finite state concurrent system.

An LTS is defined as a triple {S,so ,T}, where Sis a finite set of states, s0 is a distinguished ini­
tial state inS, and T is a finite set of transitions, with Tr;;;,(SxS). In a simple forrn, an LTS can
be used to formalize the behavior of a single sequential process. It can also forrnalize the com­
bined behavior of a finite number of interacting and asynchronously executing sequential pro­
cesses. Each transition of the LTS then corresponds to the execution of a specific atomic state­
ment within one of the processes, in accordance with a standard interleaving semantics of con­
currency. The LTS can be represented by a graph with nodes corresponding to the states in S
and directed edges corresponding to the transitions in T. A connected path through this graph
then defines the effects of a possible execution in the underlying concurrent system. There will
be at least one path through the graph for every possible way in which the execution of atomic
process statements could be interleaved in time.

Given a transition tE Tin an LTS, we will use the notation Label(t) to refer to the process state­
ment that is represented by transition t, and we will use Pid(t) to refer to the sequential process
that contains the statement Label(t). Without loss of generality, we assume that the mapping
from transitions to process statements is unique. The reverse mapping will in general not be­
unique. Note that, in general, a compound process statement (such as a selection ora repetition
structure) could correspond to .a series of transitions in the LTS. In the remainder of this sec­
tion, therefore, the term 'statement' will always refer to a simple statement (i.e., not a com­
pound), and can therefore be used interchangeably with the term 'transition.'

The semantics of a statement a =Label(t) are defined by two functions Cond and Act, where

Cond(a) is the subset of S where a is enabled (or 'executable' [H92]), and
Act(a,s) is that state of S that is reached when a is executed in a given sE Cond(a).

Normally, a statement in a sequential process is 'enabled' or 'executable' only if it is pointed to
by the current program counter of the sequential process that contains that statement. In a con­
current system, however, we can detine additional constraints on the enabledness or executabil­
ity of statements. A message send operation, for instance, can be defined to be enabled only if
also the destination message buffer is non-full, and a message receive operation can be defined
to be enabled when also the source message buffer is non-empty.

Two statements a and bare defined tobe independent at state sE S, written as { a,b}E Ind(s), if
and only if the following fi ve conditions are met:

(1) SE Cond(a), i.e., statement a is enabled ins,
(2) sE Cond(b), i.e., statement b is enabled ins,
(3) Act(a,s) E Cond(b), i.e., the execution of a cannot disable b,
(4) Act(b,s) E Cond(a), i.e., the execution of b cannot disable a,
(5) Act(b,Act(a,s))=Act(a,Act(b,s)), i.e., the effect of executing a followed by b is
indistinguishable from that of executing b followed by a.

Note that two statements from the same sequential process, i.e., with Pid(a) =Pid(b), can not be
independent. If the two statements are executed sequentially, they cannot be simultaneously

An improvement in formal verification 199

enabled. If they appear together in a single selection, the execution of either one statement will
disable the other. Two statements from distinct sequential processes can be independent under
certain conditions. Two send operations on distinct message queues will in general be indepen­
dent, but two send operations on the same message queue will not. The send operation that exe­
cutes first may disable the second if its message fills the queue to capacity, which violates
requirements (3) and (4). In addition, the order in which the two statements are executed can be
distinguished by the order in which the messages appear in the destination queue, which violates
requirement (5).
Statements a and b are defined to be globally independent if and only if they are independent in
every possible state where they are simultaneously enabled:

(6) SE (Cond(a)nCond(b)) --7 {a,b}Elnd(s).

Note that a and bare trivially globally independent when Cond(a)nCond(b) = 0. Two assign­
ment statements from two distinct sequential processes, i.e., Pid(a)ctPid(b), that access only
local variables within each process, will in general also be globally independent.

Because it is known that both safety and liveness properties can be expressed by .next-time-free
linear-time temporal logic (LTL) formulae [W83], we will focus on a method for proving the sat­
isfiability ofLTL formulae (cf. [V90], [V93], [P93]). The LTL formulae we consider may con­
tain boolean propositions on system-states, the boolean operators A, v, ! (not), and the temporal
operators o (always), O (eventually), and U (until), but not the temporal operator O (next-time).

Wolper [W83] showed that any next-time-free LTL formula can be formalized as a nondetennin­
istic Bi.ichi Automaton with a predefined initial state, and a finite set of acceptance states. The
transitions in the Bi.ichi Automaton carry predicate labels, each of which represents a boolean
proposition. In our case, the boolean propositions can refer only to the (global) system-state of
the labeled transition system for which the LTL formula formalizes a property. The Bi.ichi
Automaton itself can be represented by an LTS with predefined acceptance states. The satisfac­
tion of an L TL formula can now be proven by detecting acceptance cycles in the synchronous
product of two labeled transition systems: one representing the concurrent system and one repre­
senting the Bi.ichi Automaton (e.g., [CVWY92]). The absence of acceptance cycles can simi­
larly prove that the LTL formula cannot be satisfied [H92].

The synchronous product FxG of a labeled transition system F, representing a concurrent sys­
tem, and a Bi.ichi Automaton G, derived from a next-time-free LTL formula, is defined as fol­
lows. Let F =(S F.fo ,T F) and G =(S 0 ,g0 , T 0). Each state ofthe synchronous product FxG is
a pair (f ,g), withf E S F and gE S 0 . Each transition, similarly, is a pair (v, w), with VE T F and
WE T 0 . We detine the LTS for the synchronous product FxG recursively as follows. The initial
state of FxG is (f0 ,g0). For each state (f,g) there is a successor state (h,k), reachable via
transition (v, w), if and only if:

(1) v =(f ,h) E T F• i.e., h is a successor ofjvia vin F,
(2) w = (g ,k) E T 0 , i.e., k is a successor of g via w inG, and
(3) The boolean proposition defined by Labei (w) is true in state f E S F·

A statement a in Fis said to be observable by Bi.ichi Automaton G if there exists a !abel in G for
which the correspondi.ng proposition can have a different truth-value in at least one system-state
sE Cond(a) and in Act(a,s). The statement acan now be said tobe

• Safe if a is non-observable to G and globally independent from every statement b with
Pid(a)ctPid(b), and
• Conditionally Safe for condition P(s), if a is safe in every state s where P(s) holds.

The reduction algorithm that we will describe in the next section relies on the fact that the safety

200 Part Four Verification

or conditiona! safety of statements canin many cases be determined statically.

3. REDUCTION ALGORITHM
We first consider the standard depth-first search algorithm that implements the generation of the
labeled transition system F from a specification of a concurrent system. We then consider how
this search can be extended to generate the synchrono1,1s product FxG, where G is a BUchi
Automaton that encodes an LTL formula, and to detect the existence of acceptance cycles in that
product.

The initialization of the search is illustrated in Figure la. First, the basic transition structure of
the concurrent system is obtained and optimized. The optimization step, can, as we shall argue,
also include a precomputation of independence relations, with a static identification. of ali safe
and conditionally safe process-statements. Two sets of states are then initialized with the prede­
fined initial system state so: the Statespace and the Stack. The search begins with a call of the
depth-frrst search routine, Dfs(), with parameter 1. The relevance of the parameter will become
clear shortly.

1 start_search(so)
2 { derive and optimize transition structures
3 enter s 0 into Statespace;
4 push s0 onto Stack;
5 Dfs(1); /* see Figure le*/
6 }

Figure 1 a - lnitialization
Figure lb first shows the expansion step for process statements, in a routine called dfs(). In the
absence of a BUchi Automaton, the calls online 5 in Figure la and online 16 in Figure lb could
be implemented as calls on dfs(N), instead of the capitalized version Dfs(1).

7 dfs(N)
8 { s = top (Stack);
9 for each sequential process i

10 { nxt = all transitions in F enabled in s with Pid(t)=i
11 for all t in nxt
12 { s• = successor of s after t;
13 if {s',N} NOT in Statespace
14 { enter {s' ,N} into Statespace;
15 push s• onto Stack;
16 Dfs(N);
17
18
19

pop s from Stack
}

Figure 1 b - Expansion Step for the Sequential Processes
In the presence of a BUchi Automaton the calls on Iines 5 and 16 invoke the routine Dfs(N)
shown in Figure le, which implements the expansion step for the transitions in the BUchi
Automaton. The state of the BUchi Automaton is part of compound system state s. Because the
transitions in the BUchi Automaton represent boolean propositions from an underlying LTL for­
mula, a transition te T G in BUchi Automaton G will only be enabled (cf.line 22 in Figures lc-e)
if and only if proposition Label(t) holds. The synchronous coupling of system F and BUchi
Automaton G is achieved by alternating the calls to Dfs (N), online 16, and dfs (N) online
28. Each pair of subsequent calls, explores one synchronous transition of FxG.
Figure le shows only the basic expansion step without the extra hooks that are required to detect

An improvement in formal verification 201

20 Dfs (N)
21 { s = top(Stack);
22 nxt = all transitions in G enabled in s; /* Buchi Autmt */
23 for al1 t in nxt
24 { s' = successor of s after t;
25 if {s',N} NOT in Statespace
26 { enter {s',N} into Statespace;
27 push s' onto Stack;
28 dfs(N);
29
30
31

pop s from Stack
}

Figure 1 c - 1nterleaved Transitions of Buchi Automaton
the presence of acceptance cycles in the synchronous product of concurrent system and Buchi
Automaton. To enable also the detection of acceptance cycles, we can check for every reachable
acceptance state in G if that state is also reachable from itself. We do so with a second depth­
first search, in post-order, in a separate state space. Two separate values for parameter N serve to
indicate in which part of the search the algorithrn operates. To initiate the second search, we
include four extra lines between lines 28 and 29 of Figure le, as illustrated in Figure ld. If the
seed state is reachable from itself when N equals 2 this can be detected and reported at line 24, as
illustrated by lines 24a-d in Figure ld.

20 Dfs (N)
21 { s = top(Stack);
22 nxt = all transitions in G enabled in s; /* Buchi Autmt */
23 for all t in nxt
24 { s' = successor of s after t;
24a if
24b {
24c
24d }
25 if
26 {
27
28

N == 2 and s' == seed
report acceptance cycle
re turn

{s',N} NOT in Statespace
enter {s',N} into Statespace;
push s' onto Stack;
dfs(N);

28a if N == 1 and s is an accepting state in G
28b { seed = s
28c dfs(2)
28d
29
3 O pop s from Stack
31 }

Figure 1 d- Extension for Cycle Detection
A description, and correctness proof, for this method of cycle detection was given in
[CVWY92]. The algorithm generates at least one example of an acceptance cycle, if one or
more such cycles exist. It is not guaranteed to generate ali such cycles. lf, however, the Buchi
Automaton is used to formalize an undesirable behavior, i.e., the violation of a correctness
requirement, a proof of either the existence or the absence of acceptance cycles that satisfy the
claim is always sufficient for a conclusive verification result.
Note that when the existence of an acceptance cycle is discovered, its complete traversa! is

202 Part Four Verification

contained in the Stack, and can be generated as a counter-exampie to the correctness claim.

3.1 Static Reduction
To impiement a static reduction technique, it suffices to modify oniy the algorithm from Figure
1 b, since the 'safety' of transitions, as defined at the end of section 2, applies only to the transi­
tions in the sequential processes, not to those of the Biichi Automaton. The change is illustrated
in Figure le. The aim of the reduction method is to find a smalier set of transitions that suffices
to perform the expansion (given that we want to preserve both safety and liveness properties).
Cleariy, the expansion cannot be complete uniess for every transition selected, we also select ali
those simultaneously enabied transitions that are dependent with it (i.e., not independent from
it). This means that if we seiect a, we must minimally also seiect ali simultaneously enabled
transitions b with Pid(b)=Pid(a) (cf.line 10 in Figure le).

7 dfs (N)
8 {s = top(Stack);
Sa order processes; /* (cond.) safest process first- see text */
9 for each sequential process i
9a { boolean NotinStack = true
9b boolean AtLeastOneSuccessor = false

10 nxt = all transitions t in F enabled in s with Pid(t)=i
11 for a11 t in nxt
12 { s' = successor of s after t;
13 if {s',N} NOT in Statespace
14 { enter {s' ,N} into Statespace;
15 push s' onto Stack;
16 Dfs (N);
16a else if s' in Stack /* reduction proviso */
16b NotinStack = false
16c AtLeastOneSuccessor = true
16d }
16e if AtLeastOneSuccessor A NotinStack
16f break /* from the loop over processes */
17
18 pop s from Stack
19 }

Figure 1 e - Reduced Expansion Step
In the static reduction method we try to identify at Ieast one process that can execute oniy safe,
or conditionally safe, transitions. Such a process can be found by a prescan of the processes. In
Figure le this critica! step is performed on line Ba and is used to re-order the processes in such a
way that processes that perform oniy (conditionally) safe transitions can be selected frrst for the
expansion step on line 9. If the expansion succeeded (more about this below) we can ignore the
(independent) transitions from ali other processes by breaking out of the loop over processes on
line 16f. The ordering step itseif introduces virtually no runtime overhead. In the implementa­
tion discussed in Section 5, for instance, it is impiemented by a table-Iookup for unconditionaliy
safe transitions, and by the evaluation of a precomputed boolean condition for conditionally safe
transitions.

A check is added on lines 16a-b, to see if the last transition expiored returned the search to a
state s' that is already contained in the search stack or not. If there is at least one such transition,
the value of a local boolean variable NotlnStack is set tofalse. Once ali transitions of the pro­
cess have been explored, the vaiues of NotlnStack and AtLeastOneSuccessor are inspected. The

An improvement informal verijication 203

reduction attempt fails unless all transitions explored for the current process have produced suc­
cessor states that are currently not contained in Stack. If this requirement is not met, the algo­
rithm will try to make another selection of transitions, by moving to the next process in the outer
for-loop. In the worst case, this will mean that the reduced expansion step will explore ali
enabled transitions, just as it did in Figure 1 b.

The condition online 16e that has tobe fulfilled for the reduction attempt tobe considered suc­
cessful is known as the reduction proviso. The need for such a proviso was first recognized by
Valmari in [V90]. The version of the proviso used here was first proposed in [P93]. A weaker
version of the same test, for the preservation of safety properties only, was discussed in
[HGP92]. In the next section we will show that the stronger proviso from [P93] guarantees the
preservation of both safety and liveness properties.

The tests online 16a and 16e introduce virtually no overhead to the algorithm.

4. PROOF OF CORRECTNESS [skip onfirst reading]
We will give the main proof argument that supports the correctness of the reduction algorithm.
The remaining steps that are required for a rigorous proof are briefly indicated.

An execution sequence a of an LTS can be defined either as a sequence of transitions oras the
sequence of states that is traversed by these transitions. Let Eq(a) be the set of ali execution
sequences that can be obtained from a by zero or more perrnutations of adjacent, globally inde­
pendent, transitions. A finite prefix of at least one sequence in Eq(a) is called a permuted pre­
fix of a. A generalized permuted prefix of a is any finite sequence that can be transformed
into a permuted prefix of a by ornitting zero or more non-observable transitions.

To prove the correctness of the reduced search algorithm, we frrst prove the following Lemma.
The Lemma states that each transition that could be generated from a given reachable state in an
unreduced search, is necessarily also generated by the reduced search, though possibly after
some intervening non-observable transitions.

Lemma- At each reachable state s, for every execution sequence a that begins at s with a tran­
sition a, when placed in s the reduced search algorithm generates at least one generalized per­
muted prefix p of a that begins at s and that ends with transition a. o
Proof- The proof is by induction on the order in which states are removed from the depth-first
stack in the reduced search algorithm.

[1.] For the induction hasis, consider the first state that is removed from the stack in the reduced
search algorithm. There are two cases to consider, depending on the number of enabled transi­
tions in that state.
[1.1.] The state has no enabled transitions, and thus no successor states. In this case there exist
no further executions from this state, and the Lemma holds.

[1.2.] The state has enabled transitions. Ali these transitions must have returned the search to
previously visited states: they cannot be new states because such states would have been
removed from the stack before the current one (a property of the depth-first search). Since no
states were previously removed from the stack, ali previously visited states are stiH contained in
the stack. The reduction proviso from the reduced search algorithm will in this case force a com­
plete exploration of all enabled transitions from this state (line 16a, Figure le). This set includes
the first transition a from a. This transition a is a generalized permuted prefix p of length one.
The Lemma therefore holds for this case.

[2.] Next, we must show that if the Lemma holds for the first N states that are removed from the
stack, it necessarily also holds for the (N + 1)-th state. Let s be that state. There are again two

204 Part Four Verification

cases to consider.
[2.1.] The set of enabled transitions in s does not contain a truc subset of (conditionally} safe
transitions that includes ali the enabled transitions for one sequential process, none of which
leads to a successor state on the stack. In this case, the reduced search algorithrn explores ali
enabled transitions from s and the Lemma holds by the same construction as was used in the
proof of step [1.2.].
[2.2.] The set of enabled transitions ins does contain a truc subset of (conditionally} safe transi­
tions that includes ali enabled transitions for one sequential process, and none of which leads to a
successor state on the stack. Caii that subset x, and caii the (non-empty} set of ali remaining
enabled transitions y. The reduced search algorithrn explores only the sequences that start with a
transition from x. Note that the transitions in x are necessarily non-observable.
There are two cases to consider.
[2.2.1.] If a starts with a transition from x, the Lemma again holds.
[2.2.2.] Next, consider the case where a starts from state s with a transition a not from x, but
from y. We distinguish two further sub-cases.
[2.2.2.1.] Consider fJISt the case where at least one transition from x appears somewhere after a
in a. Let b be the fJISt such transition in a. The sequence of transitions that appear before b
must then be independent of b, since b is itself either safe or conditionally safe (or else it could
not have been in set x}. This means that there must exist another sequence a' in Eq(a} that
starts with the two transitions b.a. Caii s' the state that is reached after the execution of b. Let
a" be the sequence obtained from a' after removing the initial b. a" is an execution sequence
that starts from state s'. By the induction hypothesis we now know that the reduced search algo­
rithm will generate a generalized permuted prefix p of a", from state s'. But then, b. p must also
be a generalized permuted prefix of a that starts at state s. Thus the Lemma also holds for this
case.
[2.2.2.2.] Next, consider the case where no transition in x appears in a, which means that ali
transitions in x are globally independent of ali transitions in a. If b is a transition from x, then
b.a corresponds to a possible execution sequence from s. Caii s' the state that is reached after
the execution of b in this last sequence. Again, by the induction hypothesis we know that the
reduced search algorithm will generate a generalized permuted preftx p of a from state s'. But
then, since b is non-observable, b. p is trivially also a generalized permuted prefix for a that
starts at state s. This completes the proof of the Lemma. o
The Lemma can be shown to imply that for every execution sequence a, the reduced search algo­
rithm explores at least one execution sequence that becomes equivalent to a when a finite num­
ber of non-observable transitions are deleted from it. (This proof step is not detailed here.} · Next
we .must show that this property is sufficient for the completeness of the search itself. To do
this, we must take a closer look at the synchronous product of a concurrent system and a BUchi
Automaton.
Given a concurrent system C and a BUchi Automaton M, we can construct an ordered set of pred­
icates P(M} with one predicate for each boolean proposition on the states of C that appears in M.
For each reachable system state of C, each predicate in P(M} then uniquely defines a boolean
value, and the set P(M} similarly defines a unique vector of boolean values. For given P(M}, an
execution sequence of C corresponds to a sequence of boolean value vectors. Caii that sequence
'the vector-sequence induced by M.'

We define two execution sequences to be M-equivalent, for given Biichi Automaton M, if and
only if the corresponding vector-sequences induced by M are equal up to stuttering, i.e., if the

An improvement in formal verification 205

two sequences are equal when each series of two or more consecutive occurrences of the same
value vector v is replaced by a single occurrence of v.

The Lemma implies that the reduced search algorithm generates at least one M-equivalent
sequence for each execution sequence of the concurrent system. The intuition for this is that ali
non-observable transitions correspond to stuttering steps. (This proof step is not further detailed
here.) The correctness of the reduced search algorithm can now be formalized in the following
theorem.
Theorem - If there exist acceptance cycles in the synchronous product of a Biichi Automaton
and a concurrent system, the reduced search algorithm will detect at least one of tbese cycles. o
Proof- by the Lemma and the fact that the set of sequences satisfying a next-time-free LTL for­
mula is closed under stuttering [L83]. The reduced search generates at least one M-equivalent
sequence for each complete sequence that satisfies the LTL formula. AU sequences tbat satisfy
the LTL formula are detected in the non-reduced depth-first search as acceptance cycles in the
synchronous product of the corresponding Biichi Automaton and the concurrent system (e.g.,
[W83][CVWY92][H92]). Therefore, if at least one M-equivalent sequence for sucb a satisfying
sequence is generated in the reduced search, at least one acceptance cycle is detected. o
A more general version of tbe proof of correctness for this reduction metbod can be found in
[P94]. ldeally, we believe it should be possible to produce proofs such as tbese in a more
mechanical fashion, using automated tbeorem provers.

S.IMPLEMENTATION
For tbe implementation of the static reduction technique in the verification system SPIN and its
specification language PROMELA [H92], we identified five types of statements tbat can be
marked statically as unconditionally safe when they appear separately, and conditionally safe
when they appear as guards in selection structures.
(1) Any access to exclusively local variables. Any atomic process-statement that reads or

writes exclusively objects that are non-observable to other processes, is also non-observable
to the PROMELA never claim (whicb formalizes the Biichi Automaton).

(2) Any receive operation on a message queue q, provided that no more than one process can
either receive messages from q or test the contents or lengtb of q. We mark sucb a queue
witb a special status: exclusive receive-access. Exclusive receive-access implies that a
never claim contains no propositions on the contents of q.

(3) Any send operation on a message queue q, provided that no more than one process can send
messages to q, or test the contents or length of q. We say tbat such a queue bas exclusive
send-access. Exclusive send-access implies that a never claim contains no propositions on
the contents of q.

(4) The boolean test nfull(q), that retums true when message queue q is currently non-full, and
false otherwise, provided that the statement is performed by a process tbat bas exclusive
send-access to that queue.

(5) The boolean test nempty(q), that retums true when message queue q is currently non­
empty, and false otherwise, provided that the statement is performed by a process tbat bas
exclusive receive-access from that queue.

The statements of types (1)-(5) are conditionally safe if they do appear as guards in selection
structures. The condition for the conditionally safe statements is defined as the logica! and com­
bination of the following clauses for each type of guard: (1) true (i.e., these statements contribute
no additional constraints), (2) and (5) nempty(q}, and (3) and (4) nfull(q). Note tbat statements

206 Part Four Verijication

of type (2-5) can only contribute constraints of two statically determined types.
We extended tbe PROMELA grammar witb tbe two new primitives nfull() and nempty(), referred
to in (4) and (5). A simple grammar rule in the parser prevents attempts to include negations of
tbese two tests.
Tbe observability of tbe effect of statements to tbe propositions.of the Biicbi Automaton (i.e., tbe
PROMELA never claim) is already guaranteed by tbe scope rules of PROMELA: in tbe absence of
remote referencing, the never claim can only refer to global objects in tbe specification. AH safe
and conditionally safe operations are tberefore necessarily non-observable to the claim. Any ref­
erence to a queue, for instance, breaks the exclusive access. status of that queue, and automati­
cally marks tbe send or receive operations as observable, and therefore non-safe.
Because PROMELA allows tbe dynamic creation of a finite number of processes, it is not always
possible to determine a priori whicb processes will be able to access wbicb queues. Exclusive
send and recei ve access, in our implementation, is tberefore entered into the PROMELA specifica­
tion as a logica! assertion, whicb can be cbecked at runtime. Tbe Appendix sbows an example of
a complete PROMELA specification for a leader election protocol from [DK.R82], with tbe exclu­
sive send and recei ve assertions added. It can easily be sbown tbat tbe validity of im assertion of
this type can be proven by botb tbe non-reduced and the reduced searcb, even wben the reduction
is based on an invalid assertion of this type. Tbe intuition behind this is tbat tbe reduced searcb
can only permute globally independent statements, it cannot preveni tbeir execution alltogetber.
Tberefore, at least one send or receive operation that violates an exclusive access assertion will
eventually be executed in the reduced searcb, thougb perbaps at a different place tben in tbe
non-reduced searcb. Tbere is, of course, also tbe possibility tbat the reduced searcb is stopped
on tbe detection of an acceptance cycle before the violation of an exclusive access assertion can
be demonstrated. In tbat case, bowever, tbe searcb bas already reacbed its goal: it bas detected
the existence of at least one error (i.e., an acceptance cycle). If tbe violation of an exclusive
access assertion can be demonstrated first, our implementation also reports an error (i.e., an
assertion violation), wbicb in tbat case means tbat tbe reduction itself was invalid.
For tbe correctness of the reduction algorithm itself it must be demonstrated that if tbere exist
one or more acceptance cycles in FxG, tbe reduced searcb algorithm will always report at least
one of tbem. Tbe proof of this property is given in [P94]. Note that it is not guaranteed, neitber
for tbe reduced nor for tbe standard algorithm, tbat all acceptance cycles will be reported.

6. PERFORMANCE
We bave rneasured the performance of tbe new reduction algorithm on five sample protocols,
including a best-case example, a worst-case example, and two average protocol applications pro­
duced independently by users of SPIN [H92]. Tbe performance is compared botb to the non­
reduced 'classic' verification algorithm, and to an existing dynamic reduction method based on
Godefroid's sleep-set metbod [G90], [HGP92], whicb is publicly available (in binary form) via
anonymous FTP from tbe University of Liege as an extension to SPIN. In the comparisons, it
sbould be observed tbat the dynamic reduction metbod preserves only safety properties, wbile
tbe otber two methods preserve both safety and liveness properties, and tbus provide a stronger
and more general model cbecking system. There exist other reduction methods that preserve
botb safety and liveness properties (e.g., [V90], [V93]), but at the time of writing no implemen­
tation of tbese metbods was available for tbese comparisons.
Not ali types of reduction can be computed with a static algorithm. For instance, if multiple
sequential processes share access to the elements of a data array, tbe precise values of the array
indices may only be known dynamically, which makes it impossible for a static algorithm to

An improvement in formal verification 207

Table 1- Measurements

Protocol Algorithm States Transitions Time(sec.) Memory(Mb)
Best-Case Non-Reduced 100,001 450,002 13.2 4.3

Static Reduction 47 47 (<0.1) 1.0
Dynamic Reduction 47 47 0.1 1.4

Worst-Case Non-Reduced 100,001 450,002 14.5 5.0
Static Reduction 100,001 450,002 16.7 5.1
Dynamic Reduction 100,001 450,002 84.5 5.3

Tpc Non-Reduced 3,918,286 11,762,426 630.6 268.4
Static Reduction 391,534 466,753 30.6 26.2
Dynamic Reduction 267,204 295,395 131.4 18.9

Snoopy Non-Reduced 91,920 305,460 14.4 11.5
Static Reduction 16,279 23,532 1.7 3.2
Dynamic Reduction 7,158 8,459 6.8 2.6

Pftp Non-Reduced 417,321 1,244,865 73.2 62.3
Static Reduction 53,244 67,901 6.8 9.3
Dynamic Reduction 125,718 163,459 105.5 20.6

Leader Non-Reduced 45,885 185,032 8.1 9.6
Static Reduction 79 79 0.1 1.1
Dynamic Reduction 79 79 0.2 1.4

determine if the access of any given element is safe. Because every reduction that can be made
with a static algorithm can also be made with a dynamic algorithm, we should expect that
dynamic algorithms can achieve greater reductions than static ones in terms of the numbers of
states and transitions explored. If the bottom-line commodities of run-time and memory used
are measured, however, the results are less predictable, and it should be possible for a static algo­
rithm, with lower overhead, to defeat a dynamic one.
The best and the worst case examples are artificial cyclic models, containing only local and only
global statements, respectively. Tpc is a model of a telephone switch, specified in 279 lines of
PROMELA. Snoopy is a model of a cache coherence protocol specified in 255 lines of
PROMELA. Pftp is a version of the file transfer protocol of 204 lines from [H92]. Leader is the
leader election protocol with 5 processes, as shown in the Appendix. AII measurements were
made on a Sparc-10 workstation with 128Mbyte of RAM. The runtimes are the sum of system­
time and user-time.
The static reduction method gave the shortest run-time in ali cases tested, despite the fact that it
sometimes searched a larger statespace compared to the dynamic method. In one case (Pftp) the
static reduction method even completes its search in a smaller search space than the dynamic
method, but presumably, this is a deficiency in the dynamic method that could be remedied. The
amount of memory used by the static and the dynamic reduction method is comparable, and not
decisively in favor of either method. For both the dynamic and the static reduction method, the
amount of memory used is significantly lower than in a non-reduced search.
In the worst case, the performance of the reduced search is not significantly different from that
of a non-reduced search, which is not true for the dynamic method. The best-case application, as
expected, shows a (literally) exponential reduction of both runtime and memory requirements.

208 Pan Faur Verification

6.2 Exploiting Structure
The reduction rules for the static reduction algorithm also have an unexpected, and sometimes
quite dramatic, positive effect on our capability to prove essential properties of large protocol
specifications. Because it can lower the complexity of the search if we can mark queues as hav­
ing exclusive send-access or exclusive receive-access, the user can consciously avoid using
queues that do not have this property. It is often possible tc:i rewrite a specification in this way,
without changing its functionality. As an example, consider the system from Figure 2a, which
corresponds to a validation model that we built in 1988 for the validation of the IEEE 802.2 Log­
ica! Link Control Protocol [IEEE84].

r-----------, r-""" r-, r-----------,

! 1\\,'/1 !
8+---t})_t=J----~

Figure 2a- Model of IEEE LLC 802.2

An exhaustive search for this protocol generates 1,851,049 reachable states. The reduced search
brings this down to 111,159 reachable states. Notice, however, that the input queues of the LLC
processes are non-exclusive. By splitting these two queues, as illustrated in Figure 2b, using a
separate queue for each source of information, ali queues in the revised model obtain both exclu­
sive receive- and exclusive send-access.

Figure 2b- Revised Model

The reduction algorithm will be able to do a better job in this case, but the revision also bas an
effect on the complexity of the non-reduced search, by avoiding the generation of ali non­
deterrninistic interleavings of messages from different sources in the shared input queues of the
LLC processes. The search space reduces from 1,851,049 reachable states to 19,407 reachable
states, for the non-reduced algorithm. The reduction algorithm reduces this further to 2,000
reachable states. The reduction method in this case successfully guides us to a solution that
requires three orders of magnitude less resources than before.

7. CONCLUSION
We have described a new static reduction algorithm that preserves the capability of a depth-first
search to prove both safety and liveness properties of concurrent systems. We have shown that
this static reduction method performs considerab1y better than a non-reduced search. It also
approaches the reduction achieved by a dynamic method closely, while providing a greater cor­
rectness proving power. The static reduction method bas no significant worst-case behavior.

Because it is known which types of statements can be exploited by the algorithm, with a static
reduction method the designer of a protocol can reduce the comp1exity of a validation a priori,
be choosing a specific structure for the model. In certain cases, it may thus become possible to
perform true 'structured design validation' for concurrent systerns.
Our intention is to release the extended version of SPIN as Version 2.0, in source form, within the

An improvement in formal verijication 209

next few months.

8. REFERENCES
[CVWY92] C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakakis, "Memory efficient algo­
rithms for the verification of temporal properties," Formal Methods in Systems Design 1, 1992,
pp. 275-288.

[DKR82] D. Dolev, M. Klawe, and M. Rodeh, "An O(n log n) unidirectional distributed algo­
rithm for extrema finding in a circle," Joumal of Algorithms, Vol3. (1982), pp. 245-260.

[G90], P. Godefroid, "Using partial orders to improve automatic verification methods," Proc.
2nd Workshop on Computer Aided Verification, LNCS 531, Eds. R. Kurshan and E. Clarke,
New Brunswick, New Jersey, June 18-21, 1990.

[GW91], P. Godefroid, P. Wolper, "A partial approach to model checking," 6th LICS, 1991,
Amsterdam, pp. 406-415.

[H92] G.J. Holzmann, "Design and Validation of Computer Protocols," Prentice Hali, 1992.

[HGP92] G.J. Holzmann, P. Godefroid, and D. Pirottin, "Coverage preserving reduction strate­
gies for reachability analysis," Proc. IFIP, Symp. on Protocols Specification, Testing, and Veri­
fication, June 1992, Orlando, FI. pp. 349-364.

[IEEE84] ANSI/IEEE Standard 8802/2, Logical Link Control, ISBN 0-471-82748-7, New York,
1984.
[L83] L. Lamport, "What good is temporal logic?," Information Processing 83: Proc. of the 9th
IFIP World Computer Congress. Ed. R.E.A. Mason, Elsevier Publ., pp. 657-668.

[P93] D. Peled, "Ali from one, one for ali- on model checking using representatives," 5th lnt.
Conf. on Computer Aided Verification, Greece, 1993, LNCS 697, Springer Verlag, pp. 409-423.

[P94] D. Peled, "Combining Partial Order Reductions with On-the-fly Model Checking," 6th
Int. Conf. on Computer Aided Verification, Stanford, Ca., June 1994. LNCS 818, Springer Ver­
lag, pp. 377-390.
[V90] A. Valmari, "A stubbom attack on state explosion," 2nd Int. Conf. on Computer Aided
Verification, Rutgers University 1990, Dimacs Series, Vol3, pp. 25-42.

[V93] A. Valmari, "On-the-fly verification of stubbom sets," 5th Int. Conf. on Computer Aided
Verification, 1993, LNCS 697, Springer Verlag, pp. 397-408.

[W83] P. Wolper, M.Y. Vardi, and A.P. Sistla, "Reasoning about infinite computation paths,"
Proceedings of 24-th IEEE symposium on the foundations of computer science, Tuscan, 1983,
pp. 185-194.

210 Part Four Verijication

APPENDIX

The following PROMELA specification lists the complete model of the leader election protocol in
unidirectional ring that was used in the performance study. The protocol was defined in
[DKR82].

/*
* PROMELA validation model - Leader Election - [DKR82]
*/

#define !3
#define NS
#define LlO

mtype

chan q[N]

/* The node to have smallest identifier */
/* number of processes */
/* size of message buffer */

first, second } ;

[L] of {byte,byte}; /* global FIFO buffer */

proctype node(chan in, out; byte id)
{ byte number, maxi=id, neighbourR; /* local */

bit active=l; /* local */

xr in;
xs out;

/* assert exclusive receive access to chan in */
/* assert exclusive send access to chan out */

out!first(id);
end: do /* repetition : valid end-state */

.. in?first(number) ->
if /* selection */
.. active ->

fi

if /* selection */
. . number ! = maxi ->

out!second(number);
neighbourR

. . number == maxi ->
assert maxi == N

fi
!active -> out!first(number)

number

.. in?second(number) ->

od

if /* selection */
.. active ->

fi

if /* selection */
.. neighbourR > number && neighbourR > maxi ->

maxi = neighbourR;
out!first(neighbourR)

.. !(neighbourR > number && neighbourR > maxi) ->
active = O

fi
!active -> out!second(number)

init (
byte n=l;
atomic (

do

An improvement in formal verification

1* a local variable */
1* non-interleaved */
/* repetition */

:: n<=N ->
run node(q[n-1], q[n%N], (N+l-n)%N+l);
n=n+l

:: n>N->
break /* end repetition */

od

211

