
Proving Performance Properties
(even Probabilistic Ones)

Nancy Lynch
MIT Laboratory for Computer Science

Cambridge, MA 02139, USA

lynchOtheory.lcs.mit.edu

September 2, 1994

Abstract: This paper surveys some new tools and methods for formally verifying time performance
properties of systems that satisfy timing assumptions. The techniques are potentially of practica! benefit
in the validation of real-time process control and communication systems. The tools and methods include
nondeterministic timed automaton models, invariant assertion and simulation techniques for proving
worst-case time bounds, probabilistic timed automaton models, and Markov-style techni~ues for proving
probabilistic time bounds. Ali of these techniques are well suited for (partial) mechanization.

1 Introduction

A rich collection of formal methods ha ve become well established for proving correctness
properties - usually, safety and liveness properties - for asynchronous concurrent systems.
The most important of these techniques are invariant assertion rnethods and simulation
(refinement) methods for proving safety properties, and temporal logic methods for prov­
ing liveness properties. Other important techniques include algebraic and partial ordering
methods.

But basic correctness properties are not the only ones that must be proved. Perfor­
rnance properties- especially time performance properties- are often nearly as important
as correctness. In fact, for some systems, timing properties of system components are re­
quired to ensure the correct operation of the system as a whole. Yet formal methods ha ve
not been used very much to prove perforrnance properties; nearly all of the proofs that
have been carried out for such properties are ad hoc.

The goal of this paper is to show sorne ways in which proofs of tirning properties can
be formalized and systernatized. We discuss the methods in three groups: those that are
used for proving worst-case time bounds for asynchronous and timing-based algorithms,
those for proving timing properties for hybrid systems, and those for proving probabilistic
tirne bounds for probabilistic systems. Another paper in this proceedings, by Luchangco,
Soylemez, Garland and Lynch [12], shows how proofs using the methods in the first group
can be verified mechanically.

D. Hogrefe et al. (eds.), Formal Description Techniques VII
© IFIP International Federation for Information Processing 1995

4 Invited Talk

2 Time Bounds for Asynchronous and Timing-Based
Algorithms

2.1 Theory

The basic model that we use for modelling asynchronous and timing-based systems is
the nondeterministic timed automaton model of Lynch and Vaandrager (18, 17, 14]. We
base our work on an automaton model rather than any particular specification language,
programming language or proof system in order to obtain the greatest flexibility in choice
of specification and proof methods.

Timed automata. A timed automaton A consists of a set states(A) of states, a nonempty
set start(A) ~ states(A) of start states, a set acts(A) of actions, including a special time­
passage action ZI, a set steps(A) of steps (transitions), and a mapping nowA : states(A)-+
R~0 . (R~0 denotes the nonnegative reals.) The actions are partitioned into externa/ and
internat actions, where ZI is considered externa!; the visible actions are the non-ZI exter­
na! actions; the visible actions are partitioned into input and output actions. The set
steps(A) is a subset of states(A) x acts(A) x states(A). We write s --!4 A s' as shorthand
for (s,?r,s') E steps(A), and usually write s.nowA in place of nowA(s). We sometimes
suppress the subscript or argument A.

A timed automaton must satisfy five axioms: (Al] If s E start theiJ. s.now = O.
[A2] If s ~ s' and 1r =/= ZI then s.now = s'.now. [A3] If s --!4 s' then s.now < s'.now.
[A4] If s --!4 s" and s" --!4 s', then s --!4 s'. The statement of [A5] requires the auxiliary
definition of a trajectory, which describes restrictions on the state changes that can occur
during time-passage. Namely, if I is any interval of R~0 , then an I-trajectory is a function
w : I-+ states, such that w(t).now = t for ali tE/, and w(ti) --!4 w(t2) for ali t 11 t2 EI
with t 1 < t2. That is, w assigns a state to each time t in interval I, in such a way that
time-passage steps can connect any pair of states in the range of w. If w is an I-trajectory
and I is left-closed, then let w.fstate to be the first state of w, while if I is right-closed,
then let w.lstate denote the last state of w. If I is a closed interval, then an I-trajectory
w is said to span from state s to state s' if w.fstate = s and w.lstate = s'. The final axiom
is: [A5] If s --!4 s' then there exists a trajectory that spans from s to s'.

Timed Executions and Timed Traces. A timed execution fragment is a finite or
infinite alternating sequence a= w0 1r1w11r2w2 • • • where:

1. Each Wj is a trajectory and each 7rj is a non-time-passage action.

2. If a is a finite sequence, then it ends with a trajectory.

3. If Wj is not the last trajectory in a then its domain is a closed interval. If Wj is the last trajectory
then its domain is left-closed (and either right-open or right-closed).

4. If Wj is not the last trajectory then Wj ./state~ Wj+!·fstate.

A timed execution is a timed execution fragment for which w0 .fstate is a start state. We
focus mainly on the admissible timed executions, i.e., those in which the now values
occurring in the states approach oo. A state of a timed automaton is defined to be
reachable if it is the final state of the final trajectory in some finite timed execution.

Proving peiformance properties 5

In order to describe the problems to be solved by timed automata, we require a
definition for their visible behavior. We use timed traces, where the timed trace of any
timed execution is just the sequence of visible events that occur in the timed execution,
paired with their times of occurrence. The admissible timed traces of the timed automaton
are just the timed traces that arise from all the admissible timed executions.

Composition. Let A and B be timed automata satisfying the following compatibility
conditions: A and B have no output actions in common, and no internal action of A is
an action of B, and vice versa. Then the composition of A and B, written as Ax B, is
the timed automaton defined as follows.

• states(A x B) ={(sA, ss) E states(A) x states(B): BA.noWA = ss.nows};

• start(A x B) = start(A) x start(B);

• acts(A x B) = acts(A) U acts(B); an action is externa! in A x B exactly if it is externa! in either
A orB, and likewise for interna! actions; a visible action of Ax B is an output in Ax B exactly
if it is an output in either A orB, and is an input otherwise;

• (sA,ss)-+~xs(sA_,s8)exactlyif

1. BA!tA sA_ if 71" E acts(A), else BA= sA_, and

2. ss!!.,B s8 if 71" E acts(B), else ss = s8;

• (sA,BB).noWAxB = BA.ROWA·

Then Ax B is a timed automaton. lf a is a timed execution of Ax B, we write aiA and
alB for the projections of a on A and B, respectively. For instance, odA ls defined by
projecting all states in a on the state of A, removing actions that do not belong to A,
and collapsing consecutive trajectories.

MMT automata. An important special case of the timed automaton model, describ­
able in a particularly simple way, is the MMT timed automaton model [20], developed by
Merritt, Modugno and Tuttle. We use a special case of their definition from [19, 14].

An MMT automaton is an I/0 automaton [13] together with upper and lower bounds
on time. An I/0 automaton A consists of a set states(A) of states, a nonempty set
start(A) ~ states(A) of start states, a set acts(A) of actions, (partitioned into extemal
and intemal actions; the externa! actions are further partitioned into input and output
actions), a set steps(A) of steps, and a partition part(A) of the locally controlled (i.e.,
output and interna!) actions into at most countably many "tasks". The set steps(A) is a
subset of states(A) x acts(A) x states(A); An action 1r is said to be enabled in a state s
provided that there exists a state s' such that (s,1r, s') E steps(A), i.e., such that s ~As'.
It is required that the automaton be input-enabled, by which is meant that 1r is enabled
ins for every state s and input action 71". The final component, part, is sometimes called
the task partition. Each class in this partition groups together actions that are supposed
to be part of the same "task" .

An MMT automaton is obtained by augmenting an I/0 automaton with certain upper
and lower time bound information. Let A be an I/0 automaton with only finitely many
tasks. For each task C, define lower and upper time bounds, lower(C) and upper(C),
where O :5 lower(C) < oo and O < upper(C) :5 oo; that is, the lower bounds cannot be
infinite and the upper bounds cannot be o.

6 lnvited Talk

A timed execution of an MMT automaton A is defined to be an alternating sequence
of the form s0 , (7ri> ti), s1 , · · · where the 7r's are input, output or interna! actions (but not
time-passage actions). For each j, it must be that Sj ~ si+l· The successive times are
nondecreasing, and are requii"ed to satisfy the given lower and upper bound requirements.
Finally, admissibility is required: if the sequence is infinite, then the times of actions
approach oo. Each timed execution of an MMT automaton A gives rise to a timed
trace, which is just the subsequence of externa! actions and their associated times. The
admissible timed traces of the MMT automaton A are just the timed traces that arise
from ali the timed executions of A.

It is not hard to transform any MMT automaton A into a naturally-corresponding
timed automaton A'. First, the state of the MMT automaton A is augmented with a
now component, plus first(C) and last(C) components for each task. The first(C) and
last(C) ·components represent, respectively, the earliest and latest time in the future that
an action of task C is allowed to occur. The time-passage action v is also added. The
first and last components get updated in the natural way by the various steps, according
to the lower and upper bounds specified in the MMT automaton A. The time-passage
action has explicit preconditions saying that time cannot pass beyond any of the last(C)
values, since these represent deadlines for the various tasks. Restrictions are also added
on actions of any task C, saying that the current time now must be at least equal to
first(C). The resulting timed automaton A' has exactly the same admissible timed traces
as the MMT automaton A.

Invariants and simulations. We define an invariant of a timed automaton to be any
property that is true of ali reachable states.

The definition of a simulation is paraphrased from [18, 17, 14). We use the notation
f[s], where f is a binary relation, to denote { u : (s, u) E !}. Suppose A and B are timed
automata and IA and I 8 are invariants of A and B, respectively. Then a simulation
from A to B with respect to IA and I 8 is a relation f over states(A) and states(B) that
satisfies:

1. If u E f(s] then u.now = s.now.

2. If s E start(A) then f(s] n start(B) -1 0.

3. If s~A s', s,s' ElA, and u E f[s] nlB, then there exists u' E f[s'J such that there is a timed
execution fragment from u to u' having the same timed visible actions as the given step.

Note that 71'" is allowed tobe the time-passage action in the third item. The most important
fact about simulations is that they imply admissible timed trace inclusion:

Theorem 2.1 1/ there is a simulation from timed automaton A to timed automaton B,
with respect to any invariants, then every admissible timed trace of A is an admissible
timed trace of B.

In practice, the simulations often have an interesting form: a system of inequalities
[19).

Proving performance properties 7

2.2 Applications

We sketch several examples of time bounds for asynchronous and timing-based concurrent
algorithms, proved using the tools and methods described above. The MMT model is
sufficient to describe ali of these. The examples are summarized from [14, 15, 11].

Counting Process. The first and simplest example involves an automaton that counts
down from some fixed positive integer k and then reports its completion. The time
between successive steps is assumed to be in the range [el> c2].

Count:

Actions:
Output: report
Interna!: decrement

State components:
count, initially k > O
reported, Boolean, initially false

Transitions:

decrement
Precondition:

count >O
Effect:

count := count - 1

Tasks and bounds:
{ report}, bounds [e1 , e2]
{ deerement}, bounds [el. e2]

re port
Precondition:

count =O
reported = false

Effect:
reported := true

lnformally, it is easy to see that the time until a report occurs is in the range [(k +
1)c1, (k + 1)c2]. In order to prove this formally, we express these time bound assumptions
by a trivial high-level reporting automaton called Report.

Report:

Actions:
Output: report

State components:
reported, Boolean, initially false

Transitions:

re port
Precondition:

reported = false
Effeet:

reported := true

8 lnvited Talk

Tasks and bounds:
{report}, bounds ((k + l)c1 , (k + l)c2].

We can show that Cov.nt implements Report, that is, that every admissible timed
trace of Cov.nt is an admissible timed trace of Report. Specifically, we define (s, u) E f
provided that the following hold:

• u.now = s.now,

• u.reported = s.reported,

• u.last(report) 2:

{ s.last(decrement) + s.count · c2

s .last (report)

• u. first (re port) :5

{ s .first(decrement) + s. count · c1

s.first(report)

if s.count > O,
otherwise.

if s.count > O,
otherwise.

The now and reported conditions are straightforward. The last(report) component is
constrained to be at least as large as a calculated upper bound on the latest time until
a report action is performed by Cov.nt. If count > O, then this calculated bound is the
last time at which the first decrement can occur, plus the additional time required to do
cov.nt - 1 decrement steps, followed by a report; since each of these cov.nt steps could
take at most time c2 , this additional time is at most count · c2 . On the other hand, if
cov.nt = O, then this calculated bound is the last time at which the report can occur.
The interpretation of the condition for first(report) is symmetric - the lower bound to
be proved should be no larger than a calculated lower bound on the earliest time until a
report action is performed by Cov.nt.

Lemma 2.2 The relation f is a forward simv.lation from Count to Report.

Pro0f: The proof involves verifying the three properties in the definition of a forward
simulation (after proving some trivial invariants). The correspondence between now val­
ues is immediate, and it is easy to check that the unique start states of the two automata
are related by f. The interesting part of the proof is the third condition - the step
correspondence. For this, we consider cases based on types of transitions.

For example, consider a transition s ~·C.,'!.~t s', where u E f[s]. Then s.cov.nt > O.
Thus, u.now = s.now, u.reported = s.reported, u.last(report) 2: s.last(decrement) +
s.cov.nt · c2, and u.first(report) ~ s.first(decrement) + s.cov.nt · c1. It suffices to show that
u E f[s']. The first two conditions in the definition of f carry over immediately.

For the third condition, consider first the case where s'.count >O. Then the left side
of the inequality, last(report), does not change, while on the right side, last(decrement)
cannot increase by more than c2 , and the second term decreases by exactly c2 . (The reason
why last(decrement) cannot increase by more than c2 is as follows: The construction of
the timed automaton from the MMT automaton for Count - captured by invariants
- implies that s.now ~ s.last(decrement). On the other hand, s'.last(decrement) =
s'.now + c2 and s'.now = s.now.) So the inequality stiH holds after the step.

Similar arguments can be made for the case where s'.count = O, and for the lower
bound. •

Proving performance properties 9

This lemma implies the following theorem, which says that Count satisfies the timing
requirements.

Theorem 2.3 Every admissible timed trace of Count is an admissible timed traces of
Report.

It is possible to use an equational theorem prover to verify proofs of simulations such
as this one, as well as proofs of the needed invariants. In fact, such a theorem prover can
fill in some of the proof steps. Work along these lines, using the Larch theorem prover
[6], is described in [12].

The Count algorithm is trivial; in the rest of this section, we sketch more interesting
time bound results that can be proved using the same strategy. Without such a stylized
method, proving such time bounds would be a difficult task.

Fischer mutual exclusion algorithm. The Fischer mutual exclusion algorithm [5] is a
popular test case for formal methods for verifying real-time algorithms. In this algorithm,
a collection of user processes compete for control of a resource, using a single shared
variable x that they can only access using read and write operations. We model the
entire assembly of processes and x as an MMT automaton, where the tasks correspond
to the different types of steps performed by the processes (severa! tasks per process). A
high-level description of the algorithm is:

Fischer, process i:

1: wait for x = O
X:= i

if x f= i then go to L

(Critica! Region)

X :=0

As described so far, this algorithm can violate mutual exclusion. For example, two pro­
cesses, i and j, might both test x and find its value to be O. Then i might set x := i
and immediately check and see its own index, and then j might do the same. In order to
avoid this bad interleaving, we introduce time restrictions: for each process, the time for
setting x, once x has been seen equal to O, is in the range [0, a], while the time to check
x after it has been set is in the range [b, oo], for some constants a, b, where a < b. This
rules out the bad interleaving above, since any process i that sets x := i is made to wait
long enough before checking to ensure that any other process j that tested x before i set
x (and therefore might subsequently set x := j) has already set x := j. That is, there
should be no processes left at the point of setting x, when i finally checks.

It is easy to translate this code into an MMT automaton Fischer (say, in precondition­
effect style). The in put actions are of the form try;, by which a process i tries to get access
to the resource, and exit;, by which a process returns the resource, and the outputs are
crit;, by which the algorithm grants access to the resource (critica! region) and rem;,
by which the algorithm gives permission to the user program to return to the remainder
of its processing. There are also interna! actions test;, set;, check; and reset;. The
tasks correspond to the individual actions. Then mutual exclusion can be expressed

10 lnvited Talk

as an invariant on the algorithm's state (more precisely, on the state of a composed
Fischer system automaton consisting of the Fischer automaton and and a collection of
nondeterministic user automata). It can be proved as a consequence of the following
invariant, which is in turn proved easily by induction:

Lemma 2.4 !f pc;= check and x = i and pc;= set then first(check;) > last(set;).

That is, if i is about to check x successfully, then any other process that is about to set
x is scheduled to do so before i can check x.

Mutual exclusion is the property that is usually proved for this algorithm. But since
this paper is about proving time bounds, we take the example further. We assume an
upper bound of c, c ~ b, for each check action, and an upper bound of a for ali the other
actions, and we show that the time from when any process is trying to obtain the resource
until some process has it is at most 2c + 5a.

Following the same strategy as for the Count example, we formulate the specification
of the time bound as an MMT automaton Mutex with the same externa! actions as the
Fischer algorithm. The Mutex automaton is very nondeterministic; it expresses only the
mutual exclusion property plus the given time bound. Then we use the simulation method
to show that the Fischer system implements the Mutex system (i.e., the composition of
the Mutex automaton and the users).

In this example, the time bound is most easily understood in terms of reaching certain
milestones. In particular, once the critical region is empty, the first important event is
for the shared variable x to be "seized" by some contending process. The next important
event is for the value of x to "stabilize" so that it can no longer be modified by any process
until someone reaches the critical region. It turns out that the first milestone is reached
within at most time c + 3a, then the second milestone is reached within additional time
a, and finally some process reaches the critica! region within additional time c + a; the
total is 2c + 5a.

Formally, we can express these milestones as the events of another intermediate MMT
automaton /. A trivial simulation can be used to show that the 1 system implements
the Mutex system, and then a more complicated simulation can be used to show that the
Fischer system implements the 1 system. For example, a key piece of the simulation from
Fischer to 1 is the set of inequalities that involve calculated bounds on time for some
process to seize x:

1. u.last(seize) ~ s.last(reset;) + c + 2a if s.pc; = reset.

2. If s.x =O then u.last(seize) ~ min;{h(i)},

{
s.last(check;) + 2a if s.pc; = check,

h h(") s.last(test;) +a if s.pc, =test,
w ere ' = s.last(set;) if s.pc, = set,

oo, otherwise.

Thus, if some process i has just exited, the calculated bound is the maximum time until
process i resets x := O, plus c + 2a. If x = O, the calculated bound is the minimum of a
collection of individual process bounds, where the bound for process i measures the time
until i sets x (if no other process does so in the meantime).

Theorem 2.5 Every admissible timed trace of the Fischer system is an admissible timed
trace of the Mutex system.

Again, the proof can be checked mechanically (12].

Proving performance properties 11

Dijkstra mutual exclusion algorithm.. Dijkstra's asynchronous algorithm [4] for mu­
tual exclusion using read/write shared memory is one of the earliest published distributed
algorithms.

Dijkstra, process i:

L: ftag(i) := 1

while x 1 ido

if ftag(x) =O then x := i
ftag(i} := 2

for j 1 ido:
if ftag(j} = 2 then goto L

(Critica! Region)

ftag(i} :=O

Unlike the Fischer algorithm, the Dijkstra algorithm guarantees mutual exclusion regard­
less of the relative speeds of processes. For a time bound, we can assume an upper bound
of a for all process steps and show that the time from when any process is trying uritil
some process is critica! is at most (3n + ll)a. (Here and elsewhere, n is the number of
processes in the system.)

The proof strategy is the same as for the Fischer algorithm, using an intermediate
automaton with seize and stabilize milestones, plus an additional dropback milestone.
The dropback event indicates a point by which all but the process whose index is in
x have dropped back to the first stage of the algorithm, where flag = 1 (or by which
someone goes critica!, it this happens first). I uses upper bounds (n + 5)a, 2a, (n + 1)a
and (n + 3)a for the milestones seize, stabilize, dropback and critica[, respectively. Using
I, we can provide two stylized simulations to show the needed time bound.

LeLann-Chang-Roberts leader election algorithm. The LeLann-Chang-Roberts
leader election algorithm for ring networks [10, 3] works as follows:

LCR:
Every process sends its process identifier clockwise. Smaller identifiers that encounter larger

identifiers are discarded. lf a node receives its own identifier in a message, it elects itself as

leader.

If we assume an upper bound of e on the step time for each process, and an upper bound
of d on the time to deliver the oldest message in each channel, then we can show that the
time until a leader is elected is at most (n+1)f+nd. The difficulty of the proof involves the
possible pile-up of messages in channels if some processes and channels operate faster than
others. The proof again uses an intermediate automaton I, this time with n milestones.
Milestone i, 1 ~ i ~ n, is reached when the slowest token has progressed distance i around
the ring. The bounds for the successive milestones are ali e + d, and the bound for the
finalleader report is e. The simulation from the LCR system toI determines how many
milestones have been reached based on the least progress roade by any identifier.

12 lnvited Talk

Discussion. Timed automata, MMT automata, simulations and invariants have been
successful for verifying time bounds for a substantial collection of asynchronous and
timing-based concurrent algorithms. These have not all been toy examples, but include
algorithms for which time bounds are otherwise difficult to obtain. The method pro­
vides information (invariants, simulations) that help in documenting the operation of the
algorithms. The method is systematic, and lends itself to mechanical assistance.

The proofs have more common structure than just the use of simulations and invari­
ants. In several of the cases, an intermediate milestone automaton is used. In every
case, an important part of the simulation is a set of inequalities involving calculated up­
per and/or lower bounds. These calculated bounds can usually be expressed as "progress
functions" that measure the time until the specification-level goals are reached. If progress
functions satisfy certain properties (as detailed in (19}), then a relation derived from them
in a systematic way is guaranteed to be a simulation. Identifying such common structure
should help in further systematizing the proofs.

3 Timing Properties for Hybrid Systems

The results of Section 2.2 show how simulation and invariant methods can be used to
prove time performance properties for asynchronous and timing-based algorithms. Now
we show how the same methods can be used to prove properties of "hybrid" systems
containing both real world and computer components, for example, real-time process
control systems. The real world components typically include physical quantities that
change continuously as time passes, as well as quantities that are changed by discrete
events.

3.1 Theory

It turns out that the timed automaton and MMT automaton models introduced in Sec­
tion 2.1 for representing algorithms are also adequate for representing most real-time sys­
tems with real world components. The main difference is that the trajectory mechanism
provided by the general timed automaton model now becomes important for modelling
continuous changes in the real-world components. The simulation and invariant methods
are still used in much the same way as before.

3.2 Applications

We discuss one example: the Generalized Railroad Crossing (GRC) problem [7].

Generalized railroad crossing. The problem involves real world trains and gates,
interacting with a computer system via sensors and actuators. There are several parallel
tracks on which trains travel through a road intersection /. Before arriving in/, each train
arrives in the general region R, and triggers a sensor that notifies the computer system
of its arrival. When a train leaves I, it also triggers a sensor. The computer system is
capable of lowering and raising a crossing gate. Parameters t 1 and t 2 describe lower and
upper bounds on the time from when a train triggers the arrival sensor until it reaches I,

Proving performance properties 13

and parameters "tdown and 'rup describe upper bounds on the time to lower and raise the
gate completely. There are two requirements:·

1. A safety property, which says that if a train is in 1 then the gate is down.

2. A utility property, which says that the gate must be up unless there is a reason it should not be:
either within following time {1 or preceding thne {2 (two additional parameters), some train will
be in 1.

The problem is to formalize these requirements and to design and verify a computer
system that satisfies them. This problem was originally proposed as a challenge problem
for comparing the effectiveness of various formal methods for handling such problems.

We present the approach from (8, 9]. We begin by defining separate timed automata for
the trains and gate components, plus a placeholder automaton to represent the interface
between the real world components and the computer system. Initially, we give discrete
automata 17-ains and Gate, and later infer results about the corresponding continuous
components using general properties of timed automaton composition. For example,
17-ains is the following MMT automaton.

Trains:

Actions:
Output: enterR(r), r a train

enter1(r), r a train
exit(r), r a train

State components:
for ea.Ch train r:

r.status E { not-here, P,1}. initially not-here

Transitions:

enterR(r)
Precondition:

r.status = not-here
Effect:

r.status := P

enter1(r)
Precondition:

r.status = P
Effect:

r.status := 1

Tasks and bounds:

exit(r)
Precondition:

r.status = 1
Effect:

r.status := not-here

Each action is a separate task; ali bounds are trivial except each enter1(r) has [E~o E2].

Similarly, Gate is modelled as a discrete MMT au toma ton, with four states, up, going-down,
down and going-up. It has inputs lower and raise, which place the gate in state going-down
or going-up, respectively, and outputs down and up, which signal the arrival of the gate
at the extreme positions.

For the specification, there is also a trivial CompSpec component describing the com­
puter system's interface. The complete specification AxSpec consists of the composition of

14 lnvited Talk

these three automata, plus two axioms corresponding to the safety and utility properties,
which constrain the set of executions.

To describe an implementation, we replace CompSpec by Complmpl - a timed au­
tomaton that decides when to raise and lower the gate. It lowers the gate when there is a
train that might reach 1 within time 'Ydown, and raises it when there is no train that could
reach 1 within time 'Yup + 'Ydown· The complete system Syslmpl is just the composition
of the three components, with no extra constraints. We must show that Syslmpl satisfies
the requirements, specifically, that each admissible timed execution of Syslmpl projects
on the real world components to look like an admissible timed execution of AxSpec. This
is the same as saying that Syslmpl satisfies the two axioms.

The safety property is proved as an invariant of Syslmpl. We are more interested
here in the utility property, however, since it can be classified as a performance property.
As for the previous performance properties, we would like to prove this using a simula­
tion. But to do this, we need a specification automaton, which is not the same as an
axiomatic specification. Thus, we give a second specification, OpSpec, in the form of a
timed automaton. Instead of having an axiom about time intervals, we put in explicit
last components as before, as deadlines for certain specification-level goals. For example,
OpSpec includes the provision that whenever the gate is lowered, some train will be in
the crossing within time 6- This is expressed by means of a last component that gets set
when Complmpl lowers the gate to time 6 in the future, and gets disabled when some
train enters l.

An ad hoc argument is used to prove that OpSpec implements AxSpec (in the sense
that each admissible timed execution of OpSpec projects on the real world to look like an
admissible timed execution of AxSpec). (The implementation relationship does not need
to go the other way.) Then the more systematic simulation methods are used as before
to show that Syslmpl implements OpSpec. Technically, the simulation proof only shows
inclusion of sets of admissible timed traces, and not the preservation of the complete
view of the real world. But general properties of timed automaton composition yield the
stronger correspondence as a corollary. We obtain:

Theorem 3.1 For every admissible timed execution a of Sys1mpl, there is an admissible
timed execution a' of AxSpec such that a'J Trains x Gate = aJ Trains x Gate.

Also, as noted earlier, we can define more realistic models of the real world components,
such as a Gate' automaton with a specific function describing the position of the gate while
it is being lowered or raised. We can then infer results about the continuous models from
those for the discrete models, using general properties of timed automaton composition.

Discussion. Timed automata, simulations and invariants have proved able to cope suc­
cessfully with the Generalized Railroad Crossing problem, in particular, with its perfor­
mance properties. The results obtained are very general- e.g., they apply to arbitrary
values of the various parameters. This is in contrast, say, to model-checking methods
which (usually) only work for specific constants. As before, the method provides useful
information in the form of invariants and simulations, is systematic, and lends itself to
mechanical assistance.

Proving performance properties 15

It appears that applications experts for process control systems prefer a.xiomatic to
operational specifications. Furthermore, the a.xioms should be statements about the real
world, and should (as far as possible) be independent of each other. On the other hand,
an operational, automaton-style specification is needed for the application of invariant
and simulation proof methods. We conclude that both types of specifications should be
provided, and a proof that the operational specification implements the a.xiomatic spec­
.ification should be given. In the GRC example, this proof of correspondence between
the two specifications is ad hoc. It remains to develop a user-friendly language for a.x­
iomatic specification of real-time systems, and a systematic way of relating (and perhaps
translating) such specifications to operational specifications.

It is useful to work initially with simplified, discrete models of the real world compo­
nents, and then to use general properties of timed automaton composition to extend the
results to more realistic, continuous models.

The GRC example is small. It remains to see how well these methods scale up to
realistic size process control systems. We are currently looking at some problems arising
in transportation systems such as the Personal Rapid Transit system currently being
designed by Raytheon.

4 Probabilistic Time Bounds for Probabilistic Algo­
rithms

We finish with a collection of new formal tools and methods for proving time bound
properties for probabilistic systems. The motivating examples are the many randomized
distributed algorithms that have been developed in the theory of distributed computing.
The appropriate time bounds for such algorithms are generally probabilistic time bounds,
i.e., assertions that some event occurs within a certain amount of time t, with at least a
certain probability p.

It is notoriously difficult to obtain correct proofs for randomized distributed algo­
rithms, and so it is worthwhile to develop systematic proof methods. The methods we use
to prove probabilistic time bounds are somewhat different from the simulation methods
discussed in the previous sections. However, the development of these methods represents
work in progress; eventually, the methods used for probabilistic algorithms ought to be
better unified with those used for non-probabilistic algorithms.

4.1 Theory

The theory we used is taken from [22, 16, .21].

Probabilistic timed automata. We modify the timed automaton model to incorpo­
rate probabilistic state transitions; specifically, we allow non-time-passage steps to be of
the form (s, 1r, II), where II is a probability distribution whose domain is a subset of the
states of the algorithm. The meaning is that when the step occurs, a probabilistic choice
according to distribution II is used to determine the new state. A probabilistic timed

16 Invited Talk

automaton (pta) has a combination of nondeterministic and probabilistic branching in its
timed executions, where nondeterminism is involved in the choice of the next step.

Meaningful probabilistic statements about the behavior of a pta must be based on a
probability distribution on its timed executions. In order to obtain such a distribution, we
must resolve ali nondeterministic choices, making a1l the branching probabilistic. We do
this by hypothesizing an entity called an adversary that determines the next step; formally,
an adversary is a function that, given the finite execution performed so far, returna the
following (possibly probabilistic) step. A fixed adversary A gives rise to an execution tree
with only probabilistic branch points, and thereby to a probability distribution on timed
executions.

An adversary is said to be admissible provided that ali the timed executions that
appear in its distribution are admissible, i.e., provided that it always allows time to pass
to oo. When we claim that an algorithm (pta) guarantees some property P with at least
probability p, we mean that for every admissible adversary A, the probability of P in the
probability distribution of timed executions generated by A is at least p.

Markov rules. One practica} method for proving probabalistic time bound properties
is based on formulating Markov-style statements of the form U __!._. U', where U and U'

p

are sets of states. This statement means that for every admissible adversary A, if the
algorithm is started in a state in U, then in the probability distribution generated by A,
the probability that a state in U' is reached within time t is at least p. Such statements
can be combined:

Lemma 4.1 lfU ~U' and U' .-i.....u" then U !!i.u".
" ". PP'

Coin lemmas. In most situations where a property of the form U ~ U' is true, the
p

probability p arises as the probability that certain designated random choices are made
in a favorable way. In such a case, the statement can usually be proved by fixing the
results of those choices in the favorable way and converting ali the remaining random
choices to nondeterministic choices. This gives rise to an ordinary (non-probabilistic)
timed automaton A. Proving that the desired time bound holds with certainty for A
implies that it holds with probability p in the original pta. The soundness of this strategy
is justified by a series of coin lemmas in [21].

4.2 Applications

We have so far carried out two significant proofs of probabilistic time bound properties
for randomized distributed algorithms.

Lehmann-Rabin Dining Philosophers algorithm. The randomized Dining Philoso­
phers algorithm of Lehmann and Rabin works as follows.

LehmannRabin:

Each contending process executes a loop wherein it randomly chooses a direction, left or

Proving performance properties

right, waits to obtain the fork in that direction, and then instantaneously examines the other
fork. If the second fork is free, it takes it and proceeds to the critica! region; otherwise, it
drops its first fork and returns to the beginning of the loop.

17

The safety property, i.e., that no two processes with conflicting resource requirements ever
reach their critical regions simultaneously, is easy to show. A more interesting property is
the following probabilistic time bound claim: from any state where some process is trying
to obtain its forks, within time 14l, and with probability at least f6, some process will

reach the critical region. 1 This can be expressed in the form T ~C. where T is the set
-h

of states in which some process is trying to get its forks and C is the set of states in which
some process is in the critical region.

This property is proved in [16] using Markov rules and coin lemmas. We use a chain of
five Markov rules marking progress from T toC, each with its own time and probability
bounds, and combine them using Lemma 4.1. Some of these rules involve probability 1,
and in fact describe results that hold with certainty; these can be proved by methods such
as the simulation method already developed for proving time bounds for non-probabilistic
timed automata. The others all involve the results of particular random coin tosses,
generally the first coin tosses by a small number of neighboring processes. These can be
proved by using the coin lemmas to reduce the problem to one involving non-probabilistic
timed automata, then using methods for proving time bounds for non-probabilistic timed
automata. In [16], operational arguments are used to prove the claims for non-probabilistic
timed automata, but it is clear in principle that the arguments could be. redone more
systematically using simulations.

For an example of an argument that is done for this proof, consider a situation involving.
a process i. and its right neighbor i + 1. Suppose that i has already obtained its left fork
and is about to test its right fork {the one shared with i + 1), while process i + 1 is about
to toss its coin. This situation is formally described as a set U of states.of the algorithm.
We claim that U + U', where U' is the set of states in which some process has both its

2

forks. The probability of! is just the probability that i + 1 chooses right. In that case,
we claim that the given situation leads to U' with absolute certainty, within time f.. To
see this, note that i must test its right fork within time l. If it succeeds in getting it, then
we are done. If not, then it must be that in the meantime, i + 1 has obtained it. But if
i + 1 has obtained it, then it must be i + 1 's second fork, since i + 1 's next coin toss is
right. Thus in this case, i + 1 must 'have both its forks and again we are done.

Aggarwal-Kutten spanning tree algorithm. A larger and more complex example
is the Aggarwal-Kutten randomized algorithm for finding a spanning tree in a network
based on an unknown undirected graph G [2]. Processes are assumed to be identica!
(e.g., they do not have unique identifiers), and so the only way to break symmetry in
the construction of the tree is using randomness. The algorithm is too complicated to
explain quickly, but the basic idea is that each process tries to form a spanning tree with
itself as the root, using a broadcast-convergecast strategy. In doing this, each process

1 Again, t is an upper bound on process step time.

18 lnvited Talk

uses a randomly-chosen identi'fier, and if it âiscovers the existence of another root (by
discovering a different identifier) it takes steps to combine with the other root.

The problem is that there might be more than one root with the same identifier, pre­
venting them from discovering each other's existence. To address this problem, the roots
make repeated random choices of new identifiers, according to a careful discipline, and
propagate these throughout their trees. Then it turns out that within time proportional
to the diameter of the network, and with at least a nonzero constant probability, a unique
spanning tree will result.

This algorithm is a randomized distributed algorithm of typical difficulty; the state
of the art in the distributed algorithms area has till now not permitted careful proofs of
such algorithms. Nevertheless, in [1) this bound is proved, using Markov rule and coin
lemma methods. There are two interesting points to be noted about the proof. First,
as is common when careful proofs are carried out for complicated algorithms, a mistake
was found in the original code. (It was easy to fix.) Second, although the final proof is
fairly lengthy, the parts of it that deal with probabilities constitute only a few pages. One
effect of our work on systematizing such proofs has been the reduction of reasoning about
probabilistic systems to reasoning about non-probabilistic systems.

Discussion. Systematic proofs of probabilistic time bounds for probabilistic algorithms
are possible. The methods we have used so far - Markov rules and coin lemmas - are
somewhat different from those used for non-probabilistic algorithms. Mechanical assis­
tance is clearly possible for the non-probabilistic parts of the reasoning; we do not know
if additional assistance is possible for the probabilistic parts.

Intuitively speaking, there seems to be some redundancy in the methods we have
applied so far to probabilistic systems. Both the strategy of combining Markov rules and
the techniques for proving individual Markov rules involve measuring progress toward a
goal. Perhaps there is a way of unifying these methods.

It should also be possible to extend simulation methods directly to probabilistic sys­
tems, without first removing the probabilistic choices. The simulation relations themselves
might be probabilistic, corresponding states with probability distributions on states rather
than with single states. It remains to define such correspondences, verify their soundness,
and see how they can be used in verification.

5 Conclusions

There are now a wide range of practica!, systematic methods for verifying time perfor­
mance properties for concurrent systems, These include timed automata, simulations,
invariants, probabilistic timed automata, Markov rules and coin lemmas. Computer as­
sistance is possible for most of these, using equational theorem provers such as Larch.

Remaining work includes developing the formal methods for probabilistic systems
further, and unifying them with the simulation and invariant methods. It also includes
further attempts to automate these methods, and to apply them to many more examples.

Proving performance properties 19

References
[1) Sudhanshu Aggarwal. Time optimal self-stabilizing spanning tree algorithms. Master's thesis, MIT

Electrical Engineering and Computer Science, May 1994.

[2) Sudhanshu Aggarwal and Shay Kutten. Time optimal self stabilizing spanning tree algorithms. In
R.K. Shyamasundar, editor, 13th International Conference on Foundations of Software Technology
and .Theoretical Computer Science, volume 761 of Lecture Notes in Computer Science, pages 400-410,
Bombay, India., December 1993. Springer-Verlag.

[3) Ernest Chang and Rosemary Roberts. An improved algorithm for decentralized extrema-:linding in
circular configurations of processes. Communications of the ACM, 22(5}:281-283, May 1979.

[4) E.W. Dijkstra. Solution of a problem in concurrent programming control. Communications of the
ACM, 8(9}:569, September 1965.

[5) Michael Fischer. Re: Where are you? E-mail message to Leslie Lamport. Arpanet message number
8506252257.AA07636@YALE-BULLDOG.YALE.ARPA (47lines}, June 25, 1985 18:56:29EDT.

[6) Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover. Technical report,
Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, California 94301, December 1991.
Research Report 82.

[7) C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. A benchmark for comparing different approaches
for specifying and verifying real-time systems. In Proc., Tenth Intern. Workshop on Real-Time
Operating Systems and Software, May 1993.

[8) Constance Heitmeyer and Nancy Lynch. The generalized railroad crossing: A case study in formal
verification of real-time systems. In Proceedings of the 15th IEEE Real-Time Systems Symposium.,
San Juan, Puerto Rico, December 1994. To appear.

[9) Constance Heitmeyer and Nancy Lynch. The generalized railroad crossing: A case study in formal
verification of real-time systems. Technical Memo MIT/LCS/TM-511, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, 1994. To appear.

[10) G. LeLann. Distributed systems, towards a formal approach. In IFIP Congress, pages 155-160,
Toronto, 1977.

[11) Victor Luchangco. Using simulation techiniques to prove timing properties. Master's thesis, MIT
Electrical Engineering and Computer Science, 1994. In progress.

[12) Victor Luchangco, Ekrem Soylemez, Stephen Garland, and Nancy Lynch. Verifying timing prop­
erties of concurrent algorithms. In Proceedings of the Seventh International Conference on Formal
Description Techniques for Distributed Systems and Communications Protocols (FORTE'94), IFIP
Transactions, Berne, Switzerland, October 1994. IFIP WG6.1, Elsevier Science Publishers B. V.
(North Holland}.

[13) N. Lynch and M. Thttle. An introduction to Input/Output automata. CWI-Quarterly, 2(3}:219-246,
September 1989. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.

[14) Nancy Lynch. Simulation techniques for proving properties of real-time systems. In A Decade
of Concurrency: Reftections and Perspectives, Lecture Notes in Computer Science, pages 375-424,
REX School/Symposium, Noordwijkerhout, the Netherlands, June 1993. Springer-Verlag.

[15) Nancy Lynch. Simulation techniques for proving properties of real-time systems. In Sang H. Son,
editor, Principles of Real-Time Systems. Prentice Hali, 1994. To appear.

[16) Nancy Lynch, Isaac Saias, and Roberto Segala. Proving time bounds for randomized distributed
algorithms. In Thirteenth Annual ACM Symposium on the Principles of Distributed Computing, Los
Angeles, CA, August 1994.

[17) Nancy Lynch and Frits Vaandrager. Forward and backward simulations - Part II: Timing-based
systems. Submitted for publication.

20 Invited Talk

[18) Nancy Lynch and Frits Vaandrager. Forward and backward simulations for timing-based systems.
In Proceedings of REX Workshop "Real-Time: Theory in Practice 9 , volume 600 of Lecture Notes in
Computer Science, pages 397-446, Mook, The Netherlands, June 1991. Springer-Verlag.

[19) Nancy A. Lynch and Hagit Attiya. Using mappings to prove timing properties. Distrib. Comput.,
6:121-139, 1992.

[20) Michael Merritt, Francemary Modugno, and Mark R. Tuttle. Time constrained automata. In
J. C. M. Baeten and J. F. Goote, editors, CONCUR'91: fnd International Conference on Concur­
rency Theory, volume 527 of Lecture Notes in Computer Science, pages 408-423, Amsterdam, The
Netherlands, August 1991. Springer-Verlag.

[21) Roberto Segala. PhD thesis, MIT Dept. of Electrica} Engineering and Computer Science, 1993. In
progress.

[22) Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. In Proceed­
ings of the 5th International Conference on Concurrency Theory - CONCUR '94, Lecture Notes in
Computer Science, Uppsala, Sweden, August 1994. Springer-Verlag.

